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Abstract. It is common practice in molecular dynamics and Monte Carlo computer simulations to run
multiple, separately-initialized simulations in order to improve the sampling of independent microstates.
Here we examine the utility of an extreme case of this strategy, in which we run a large ensemble of M
independent simulations (a “swarm”), each of which is relaxed to equilibrium. We show that if M is of
order 103, we can monitor the swarm’s relaxation to equilibrium, and confirm its attainment, within ∼ 10τ̄ ,
where τ̄ is the equilibrium relaxation time. As soon as a swarm of this size attains equilibrium, the ensemble
of M final microstates from each run is sufficient for the evaluation of most equilibrium properties without
further sampling. This approach dramatically reduces the wall-clock time required, compared to a single
long simulation, by a factor of several hundred, at the cost of an increase in the total computational effort
by a small factor. It is also well suited to modern computing systems having thousands of processors, and
is a viable strategy for simulation studies that need to produce high-precision results in a minimum of
wall-clock time. We present results obtained by applying this approach to several test cases.

1 Introduction

When conducting a molecular dynamics or Monte Carlo
computer simulation study of an equilibrium system, a
key question is: “How long should we run?” First, equilib-
rium must be attained and verified, and then a sufficient
number of independent microstates of the system must
be sampled within equilibrium to allow for the accurate
evaluation of equilibrium properties. In a traditional ap-
proach, all of this is achieved in a single long run (SLR).
In this context, a run is “long” if it is many times (usually
100 times or more) longer than the equilibrium relaxation
time τ̄ of the slowest relaxing, unconstrained observable of
the system. When using a SLR, the evaluation of equilib-
rium properties relies on the ergodic hypothesis, i.e. that
a sufficiently long time average of an observable is equal
to the ensemble average taken over a set of independently
generated microstates [1].

While perfectly sound in principle, a SLR can produce
inaccurate results if τ̄ is underestimated. This can occur
in simulations of supercooled liquids and glassy systems
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exhibiting subtle and very slow structural relaxation [2], or
in complex systems (such as proteins) where metastable
basins of the free energy landscape trap the system for
time scales that are long compared to the time required
to explore the metastable basin itself [3]. In these cases,
a SLR may appear to achieve equilibrium when in fact it
has not.

As a consequence of these concerns, it is increas-
ingly common to initiate multiple, independently initial-
ized simulation runs to test for slow relaxation and trap-
ping in metastable states [4,3,5,6]. This strategy also
takes advantage of the multi-processor structure of vir-
tually all modern computing systems, since independent
simulations can run concurrently on separate processors.
Simulation studies of aging in glassy materials have long
used this approach, in order to average over different re-
alizations of the disorder in the initial configuration [7,8].

When using multiple runs to study an equilibrium sys-
tem, the final results are averaged both in time (within a
single run) and over the ensemble of independent runs.
Here we study the extreme case of an ensemble of runs
in which the number of runs M is so large that no time
averaging is required to obtain accurate results. Herein,
we refer to such a large ensemble of runs as a “swarm”.
That is, we create a swarm of M independent runs, bring
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each to equilibrium, and use only the last microstate of
each run to evaluate the equilibirum properties, which are
computed purely as ensemble averages.

Our motivation to study this extreme case is to min-
imize the wall-clock time required to obtain the final re-
sults: The shortest possible run that produces an equilib-
rium microstate is a run that just reaches equilibrium and
then stops. If a swarm of M such runs is carried out con-
currently, and if M is large enough to produce an accurate
ensemble average, then the wall-clock time to obtain re-
sults of a given precision will be substantially less than
for a SLR. While it is apparent that this strategy can pro-
duce accurate results if M is large enough, and if the runs
are long enough, it is not obvious that the reduction in
the wall-clock time will be worth the increase in the total
computational cost, compared to a SLR. The efficiency of
such a “swarm relaxation” strategy, relative to a SLR, will
depend on the ability to stop the swarm runs just as they
relax to equilibrium. However, we usually do not know the
time scale to reach equilibrium in advance.

In the following, we study several test cases of the
swarm relaxation approach, using Monte Carlo and molec-
ular dynamics simulations of water. Simulations of water
display a wealth of complex phenomena, carefully studied
in many previous works, making this system an excellent
choice for testing new computational strategies. We test
the swarm relaxation approach by examining the time de-
pendence of average properties, and their variance, dur-
ing the evolution of the swarm to equilibrium, and also
examine the properties of the autocorrelation functions
and relaxation times of these observables. For several test
cases, we show that when M is large enough (of order 103

or greater), the establishment of equilibrium can be de-
tected from the time evolution of the average properties
of the swarm on a time scale which is not much longer
than the time scale separating independent equilibrium
microstates in a single run. We also show that such val-
ues of M are sufficient to accurately evaluate equilibrium
properties. For our test cases, when all M simulations in
the swarm run concurrently, we show that a dramatic de-
crease of the wall-clock time is achieved (a factor of sev-
eral hundred), in return for a much smaller increase in the
total computational cost (a factor of not more than 3),
relative to a SLR. Thus a swarm relaxation strategy is a
viable approach for exploiting large-scale multi-processor
computing systems to substantially reduce the wall-clock
time required to evaluate equilibrium properties.

2 Definitions

Consider an ensemble of M independent runs in which
an observable x(i, t) is measured in run i of the ensemble
as a function of time t. In the following we use 〈· · · 〉 to
denote an ensemble average over the runs at fixed t. The
ensemble average of x over all runs at a fixed t is defined
as

〈

x(t)
〉

=
1

M

M
∑

i=1

x(i, t). (1)

The variance of x is

σ2
x(t) =

〈

[x(i, t) − 〈x(t)〉]2
〉

, (2)

where σx is the standard deviation of x at fixed t, which
characterizes the average deviation of x from 〈x〉 at time t.
Since 〈x〉 is an average of M completely independent val-

ues of x, the standard deviation of the mean sx = σx/
√

M
characterizes the error in our estimate of 〈x〉.

Following standard practice, we define the autocorre-
lation function for x, as measured from a reference time
t0, as

Cx(t0, t) =
〈[x(i, t0) − 〈x(t0)〉][x(i, t) − 〈x(t)〉]〉

σx(t0)σx(t)
. (3)

As a function of the time difference ∆t = t − t0, Cx mea-
sures the decay of the correlations between the fluctua-
tions of x from the ensemble average 〈x〉 occurring at t,
and the fluctuations occurring at t0. We emphasize that
only ensemble averaging is used in the definition of Cx.
Since our ensemble of runs is large, there is no need to av-
erage over different choices of the time origin t0 in order
to obtain an accurate value for Cx, as is commonly done
when evaluating an autocorrelation function from a SLR.
This feature allows us to compute Cx for any value of t0
both during the approach to equilibrium, as well as after
equilibrium has been established.

As documented in the appendix, it is straightforward
to show that the standard deviation of fluctuations of Cx

as Cx → 0 is exactly M−1/2. This result is important
in the present context because it establishes how large
M must be in order to effectively use Cx to monitor the
relaxation of the ensemble of runs to equilibrium. If we
choose M = 1000, then 1/

√
M = 0.032, and so when Cx

approaches zero, it will do so with fluctuations that remain
within ±2/

√
M = ±0.064 of zero for 95% of the time. As

we will see below, this error is sufficiently small to allow
for the accurate evaluation of the relaxation time for the
system, starting from any given t0.

3 Test cases

3.1 Bulk ST2 water

Our first test case is a Monte Carlo simulation of bulk
water, using the ST2 intermolecular potential. We em-
ploy the ST2 model of water in the original form pro-
posed by Stillinger and Rahman [9], using the reaction
field method to approximate the long-range contribution
of the electrostatic interactions [10]. ST2 water has been
extensively studied in previous works, mainly to investi-
gate the liquid-liquid phase transition that occurs in the
supercooled region of the phase diagram for this model.
As a consequence, there is a rich literature of published
works to which we can compare our results [11–15]. The
ST2 simulations presented here are part of a larger study
of ice nucleation in supercooled water, to be published
separately [16].
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Table 1. Run parameters and time scales for each of our swarm relaxation test cases. Symbols and abbreviations are as defined
in the text. Time units are MCS for runs A, B, C and D, and are ns for E and F.

Swarm T P Started trun τ̄ trun/τ̄ tstop tstop/τ̄

run label (K) (MPa) from (103 MCS or ns) (103 MCS or ns) (103 MCS or ns)

A 400 100 random 100 3.4 29 41 12

B 290 120 A 400 19 21 229 12

C 250 190 A 4000 230 17 3270 14

D 100 190 C 800 ≫ 103 ≪ 1 ≫ 103 –

E 180 – SLR at 180 K 24 1.8 13 23 13

F 180 – SLR at 220 K 24 1.9 13 23 12

Our Monte Carlo simulations of ST2 water are carried
out in the constant-(N,P, T ) ensemble, with N = 1728
molecules contained in a cubic simulation cell, with peri-
odic boundary conditions. One Monte Carlo step (MCS)
consists of (on average) N−1 attempted rototranslational
moves, and one attempted change of the system volume.
The maximum size of the attempted rototranslational and
volume changes are chosen to give MC acceptance ratios
in the range from 30% to 40%.

To initialize a swarm of independent runs, we generate
M = 1000 different configurations, each of which consists
of N water molecules with their centers of mass arranged
on a simple cubic lattice of density ρ = 1.0 g/cm3, and
with randomized molecular orientations. These configura-
tions are used to initialize a swarm of runs at T = 400K
and P = 100MPa (labelled run A in table 1). Each run in
this swarm is carried out for a run time of trun = 105 MCS.

As summarized in table 1, the final configurations gen-
erated in run A are used to initialize two new swarm runs,
B and C. Run B aims to characterize a state point on the
ice-liquid coexistence line for ST2 water, and run C stud-
ies a state point close to the liquid-liquid critical point
of ST2 water. The final configurations of run C are then
used to initialize a swarm of runs D, which studies a low-
temperature state at which the system is quenched into a
glass, and where (as we will see) the system is unable to
achieve liquid-like equilibrium on the time scale currently
accessible to simulations. Table 1 gives the values of T , P ,
and trun for each of these ST2 swarm runs.

Figure 1 shows the time dependence of the ensemble-
averaged density 〈ρ〉 and the potential energy 〈U〉 for
swarm runs A, B, and C. In each case, t = 0 corresponds
to the set of microstates used to initialize the ensemble,
as indicated in table 1. For runs A, B and C, trun is suf-
ficiently large that the time dependence of 〈ρ〉 and 〈U〉
in fig. 1 suggests that an approximately steady state has
been attained for t > trun/2, if not earlier. For each en-
semble, we evaluate the time average of 〈ρ〉 and 〈U〉 for
trun/2 < t < trun, respectively denoted ρ̄ and Ū . In each
panel of fig. 1, the horizontal solid line passing through
the middle of the data at large t identifies the correspond-
ing value of ρ̄ or Ū . The horizontal lines that bracket ρ̄
and Ū identify values at ρ̄ ± 2s̄ρ and Ū ± 2s̄U , respec-
tively, where s̄ρ and s̄U are time averages of sρ and sU for
trun/2 < t < trun. We see in fig. 1 that the fluctuations of
〈ρ〉 and 〈U〉 are largely confined to the ranges ρ̄± 2s̄ρ and

Ū ± 2s̄U in the second half of each run. This behavior is
consistent with 〈ρ〉 and 〈U〉 having reached equilibrium,
since in this case we would expect them to fluctuate within
a range of ±2s̄x for 95% of the time.

Figure 2 shows Cρ and CU for runs A, B and C evalu-
ated as a function of ∆t for t0 = trun/2, a time by which
equilibrium has been established according to the results
presented in fig. 1. The time scale for the decay of Cρ and
CU to zero therefore reflects the equilibrium relaxation
time of each state point. We find in each case that Cρ and
CU decay to zero in a time that is shorter than trun/2, con-
firming that our runs are able to relax completely within
equilibrium. The dotted horizontal lines in fig. 2 locate
±2M−1/2. We find that the fluctuations of Cx as Cx → 0
are largely confined within these bounds, as predicted in
sect. 2.

We also evaluate Cρ and CU for various values of t0,
shown as the blue “saw-tooth” curves in fig. 1. These
curves are calculated as follows: starting at t0 = 103 MCS,
we evaluate the decay of Cx as a function of t, for both
x = ρ and x = U . At the next smallest time such that
Cx < e−2, we reset t0 to the current time, and continue
evaluating Cx. This process is repeated for the duration
of the run, thus generating a saw-tooth curve that quan-
tifies successive cycles of relaxation, both as the ensem-
ble evolves towards equilibrium, and after equilibrium has
been established.

As shown in fig. 1, we find that the decay of Cx is ap-
proximately exponential (i.e., log Cx is linear in t), espe-
cially in the case of Cρ. We therefore define the relaxation
time τx as 1/2 of the time required for Cx to first reach e−2

during each relaxation cycle. Figure 3 shows τρ and τU as
a function of t for runs A, B and C. Consistent with fig. 1,
fig. 3 shows that τx is approximately constant in the 2nd
half of our runs. We note that τx initially increases with
t before reaching a steady state. This is to be expected
for runs B and C in part because the initial configurations
come from runs at higher T , where the equilibrium relax-
ation time is shorter. Also, in all cases, the system is far
out of equilibrium at the beginning of the runs, providing
a strong initial driving force for change, demonstrated by
the rapid decay of the autocorrelation functions at early
times.

To characterize the average equilibrium relaxation
time τ̄ for each state point, we first compute τ̄ρ and τ̄U ,
the average values of τρ and τU for t0 > trun/2. We then
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Fig. 1. Black curves show the time dependence of 〈ρ〉 (left panels) and 〈U〉 (right panels) for ST2 runs A, B, and C (panels top
to bottom). The black horizontal lines identify ρ̄ and ρ̄±2s̄ρ (left panels); and Ū and ρ̄±2s̄U (right panels). The bottom section
of each panel shows log Cρ (left panels) and log CU (right panels) over successive relaxation cycles, calculated as described in
the text. The red circles in the left panels are values of 〈ρ〉 (with error ±2sρ) at the beginning of each relaxation cycle, and the
green circle is 〈ρ〉 at t = trun. Similarly, the red circles in the right panels are values of 〈U〉 (with error ±2sU ) at the beginning
of each relaxation cycle, and the green circle is 〈U〉 at t = trun.
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Fig. 2. Cρ (solid lines) and CU (dashed lines) for ST2 runs
A, B, C and D. The horizontal dotted lines identify Cx =
±2M−1/2. Here ∆t = t − t0, with t0 = trun/2.

define τ̄ = max{τ̄ρ, τ̄U}, to ensure that we use the most
conservative choice of the relaxation time available. The
values for τ̄ so obtained are given in table 1. We note in
all cases that τ̄ρ is greater than τ̄U .

In each panel of fig. 1, the open red symbols present
values of 〈ρ〉 and 〈U〉 at the values of t0 that mark the be-
ginning of a new relaxation cycle in the saw-tooth curve
for Cx. The error bars on each data point represent ±2sρ

and ±2sU respectively, the instantaneously calculated er-
ror in 〈ρ〉 and 〈U〉. These data demonstrate that the error
in 〈ρ〉 and 〈U〉 does not vary significantly with t during
the evolution of the swarm to equilibrium. These data also
show that the instantaneous values of 〈ρ〉 and 〈U〉 attain
values that are within error of ρ̄ and Ū well before trun/2.

Figure 4 shows 〈ρ〉 and 〈U〉 plotted with a logarithmic
time axis. The time dependence of 〈ρ〉 exhibits a non-
monotonic approach to the equilibrium value, possibly
arising from the time separation between the vibrational
and configurational degrees of freedom [17,18]. Figure 4
also confirms that a stable equilibrium has been attained
at large t for runs A, B, and C. Figure 5 shows the time
dependence of 〈ρ〉 and 〈U〉, where the time has been scaled
by τ̄ . Figure 6(a) shows a similar plot for the time depen-
dence of τρ. Figures 5 and 6(a) demonstrate that in all
cases, equilibrium thermodynamic properties and equilib-
rium relaxation times are established on a time scale of
10τ̄ or less.

To test if the present results agree with previously re-
ported results for ST2 water, fig. 7 compares our results
for 〈ρ〉 and 〈U〉 from runs A, B and C with results for
ST2 water based on the data set generated for ref. [12].
The data reported in ref. [12] was obtained from constant-
(N,V, T ) molecular dynamics simulations with N = 1728.
To conduct this comparison, we use the values of 〈ρ〉 and
〈U〉 evaluated at t = trun (green open symbols in fig. 1).
The agreement between the two data sets is excellent, and
again confirms that we have obtained equilibrium proper-
ties using our swarm relaxation strategy. Note in fig. 7
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Fig. 3. Relaxation times τρ (black) and τU (red) for ST2 runs
A, B, and C (panels top to bottom). Horizontal lines indicate
the values of τ̄ρ (black) and τ̄U (red). Note that each value of
τx is plotted at the value of t corresponding to t0 at the end of
the relaxation cycle from which τx is computed.

that the error for our data points (±2sx) is much smaller
than the symbol size. The scatter in the data points taken
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from ref. [12] is larger, indicating that the estimates ob-
tained here are of higher precision than those reported in
ref. [12].

In the case of run D, as expected, the swarm does not
reach equilibrium on the time scale of our simulations.
In fig. 2 we see that both Cρ and CU remain very far
from zero throughout the simulation time. Figure 4 shows
that both 〈ρ〉 and 〈U〉 continue to vary with t even at
the largest t. It is apparent that a much longer simula-
tion would be required to bring run D into equilibrium.
Our results from run D confirm that the swarm relaxation
strategy used here is able to clearly distinguish between a
liquid and a glassy state.

3.2 TIP4P/2005 water nanodroplet

As a second test case, we present molecular dynamics sim-
ulations of an isolated nanodroplet of N = 360 water
molecules, surrounded by vacuum. In this case, the wa-
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Fig. 5. (a) 〈ρ〉 as a function of t/τ̄ for ST2 runs A, B and C,
plotted relative to the corresponding value of ρ̄. (b) The same
as in (a) but for 〈U〉, and comparing both our ST2 runs (A, B
and C) and TIP4P/2005 runs (E and F).

ter interactions are modelled using the TIP4P/2005 po-
tential [19]. These simulations are also used in a study of
water nanodroplets over a wide range of N and T [20]. In
the present simulations, we focus on T = 180K, where T is
controlled using a Nose-Hoover thermostat [21,22]. We use
a cubic simulation cell of linear dimension L = 10nm, with
periodic boundary conditions. The liquid nanodroplet oc-
cupies less than 2% of the total volume of the simulation
cell. Since the diameter of the nanodroplet is significantly
smaller than L/2, we directly evaluate all electrostatic in-
teractions among molecules separated by a distance of less
than L/2, and ignore interactions beyond this distance.

First, we conduct a SLR of this 180K nanodroplet last-
ing 2700 ns, to compare to our swarm runs. The initial
configuration for this SLR is an equilibrium configuration
taken from a single long nanodroplet simulation conducted
at 250K. The potential energy U is recorded every 40 ps
during the SLR at 180K. From the time series for U over
the last 288 ns of the SLR, we evaluate the autocorrelation
function using the definition in eq. (3), but where the en-
semble average is replaced by an average over the choice
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of time origin t0. This autocorrelation function, plotted in
fig. 8, exhibits a fast initial decay, due to large fluctuations
which occur on a time scale of less than 40 ps, followed by
a slower relaxation to zero. Since it is the slower relaxation
to zero that we wish to characterize, we coarse grain the
time series by averaging our data for U over successive,
non-overlapping time windows of 200 ps. The autocorre-
lation function for the coarse-grained time series is also
shown in fig. 8. As desired, the coarse-grained time series
yields an autocorrelation function that better spans the
full range of decay from 1 to 0 within the time domain
studied here. Figure 8 shows that the relaxation time τ̄
for our SLR is on the order of 1 ns, confirming that this
run is long enough for measuring equilibrium properties.

We then conduct two swarm relaxation runs of the
N = 360 TIP4P/2005 water nanocluster, labelled E and
F in table 1. To initialize run E, we select one equilib-
rium configuration from the SLR conducted at 180K,
and generate M = 1000 copies, where we use the same
spatial coordinates for the molecules in the system, but
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Fig. 7. Comparison of our results for 〈ρ〉 and 〈U〉 for ST2
runs A, B and C (open green circles) with ST2 data taken
from ref. [12] (filled symbols). The error for the green circles
is smaller than the symbol size in both plots. Panel (a) shows
isotherms of P versus ρ from ref. [12] for T = 400 K (black),
290 K (red), and 250 K (blue). Panel (b) shows isotherms of U
versus ρ from ref. [12] for the same T as in (a). In (b) we also
show the parametric curves (green dashed lines) for 〈ρ〉 and
〈U〉 for runs B and C as they evolve from their starting values
at A to their equilibrium values.

select their velocities (both translational and rotational)
randomly from a Maxwell-Boltzmann distribution appro-
priate for T = 180K. To initialize run F, we proceed in
the same way as for run E, except that the initial con-
figuration is an equilibrium configuration obtained from
a separate SLR conducted at T = 220K. We choose this
approach to test the use of an “isoconfigurational” [23]
set of microstates to initialize a swarm relaxation run. We
anticipate that there may be many situations where a sin-
gle configuration of a complex system is available, either
near or away from the state we wish to equilibrate. In
this case, an isoconfigurational set is a convenient way to
initialize a swarm relaxation run, compared to generating
M independent configurations from scratch. Also, runs E
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E (red) and F (blue). Note that ∆t = t − t0. For runs E and
F, we choose t0 = 10ns. Results for CU both with (solid line)
and without (dashed line) coarse-graining are shown.

and F will allow us to compare the time to recover the
ensemble-average properties at T = 180K when starting
from a single equilibrium microstate (E), versus an out-
of-equilibrium microstate (F).

For runs E and F, our swarm relaxation simulations
run for trun = 24ns. Figure 9 shows the time dependence
of 〈U〉 obtained for E and F, as well as the successive re-
laxation cycles of CU . Figure 9 demonstrates that 〈U〉 for
both E and F is in a steady state when t > trun/2. We
note that despite the fact that the initial configuration
used for run E is from the equilibrium portion of a SLR
at the same conditions, its value of U is well outside, and
above, the error estimate for Ū . This occurs because σU is
much greater than sU , and so it is likely that a randomly
chosen single configuration from equilibrium will fall out-
side of Ū ± 2s̄U . We also note that when calculating CU

from our swarm runs, we coarse grain the time series of
U values for each run in the same way as described above
for the SLR. The values of τ obtained from the succes-
sive relaxation cycles are shown as the solid symbols in
fig. 6(a), where we have used τ̄ = 1.8 ns for run E, and
τ̄ = 1.9 ns for run F, evaluated by averaging the values of
τ from runs E and F for trun/2 < t < trun.

In fig. 8 we plot CU as obtained from runs E and F,
when t0 = 10ns, and using both the original and coarse-
grained time series for U . We find that the autocorrelation
functions obtained from the SLR for T = 180K and from
the swarm runs E and F agree within error, confirming
that the equilibrium relaxation time τ̄ is the same in all
cases.

By time averaging over the last 288 ns of the SLR at
T = 180K, we obtain Ū = −50.66 ± 0.03. Here the error
has been evaluated as 2σ/

√
Nτ , where σ is the standard

deviation of the time series for U , and Nτ = (288 ns)/τ̄ ,
with τ̄ = 1.8 ns. That is, we have made the (optimistic)
assumption that successive independent configurations are
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Fig. 9. Time dependence of 〈U〉 (black curve) for TIP4P/2005
runs E and F (panels top to bottom). The black horizontal
lines identify Ū and Ū ± 2s̄U . The lower section of each panel
shows log CU (evaluated from the coarse-grained times series
for 〈U〉) over successive relaxation cycles, as described in the
text. The red circles are values of 〈U〉 (with error ±2sU ) at
the beginning of each relaxation cycle. The green open circle is
〈U〉 at t = trun. The green filled circle (displayed arbitrarily at
t = 26 ns) is Ū from our SLR, evaluated with error as described
in the text.

separated by τ̄ in the SLR. This value of Ū is plotted
as the solid green circle in both panels of fig. 9, which
demonstrates that the equilibrium value of U obtained
from the swarm runs E and F, and the SLR, all agree
within error. Our results also show that the equilibrium
values of τ (fig. 6) and 〈U〉 (fig. 5(b)) in runs E and F are
established within a run time of 10τ̄ , regardless of whether
our swarm runs are initiated from an equilibrium or out-
of-equilibrium configuration.

4 Computational efficiency

The above results indicate that all investigated test cases
attain equilibrium within a time less than 10τ̄ . This time
scale is physically reasonable: when the equilibrium we
seek to attain is more slowly relaxing than the state point
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from which our swarms are launched, it is not surprising
that the time scale to reach equilibrium is dominated by
the time scale for relaxation within equilibrium. We define
τ̄ as the time to relax an equilibrium autocorrelation func-
tion to 1/e, and so full decorrelation requires several τ̄ ; e.g.
5τ̄ is required for an exponential autocorrelation function
to decay to less than 0.01, and longer would be required
for a stretched exponential. Hence our test swarms reach
equilibrium in less than two full decorrelation times of the
equilibrium system.

For our swarm relaxation strategy to be both accurate
and efficient, the runs need to be stopped at a time tstop
that is longer than the time required for the system to at-
tain equilibrium, but not much longer. That is, if each run
only contributes one microstate to the ensemble averages,
then continuing the runs in the equilibrium time regime
is a waste of computing resources. Based on the results
shown above, tstop = 10τ̄ would be a good choice, but τ̄
is not known in a priori. However, a reliable estimate for
tstop can still be made due to the fact that we can monitor
τ as a function of t during the simulations. In the present
context, by τ we mean the time-dependent relaxation time
for the most slowly relaxing observable of interest.

In particular, it is reasonable to assume that the ap-
proach of τ to τ̄ (from below) is approximately exponential
in t. If we also assume that τ = τ̄ for t > 10τ̄ , then the
function τ(t) will lie above the linear curve t/10 from t = 0
to some time t ≤ 10τ̄ , and will lie below t/10 for t > 10τ̄ .
The time at which the curves for τ(t) and t/10 cross thus
provides a way to estimate (an upper bound on) τ̄ . We see
in fig. 6(a) that such a crossing is observed in each case
studied here.

We therefore propose the following procedure to deter-
mine tstop: let τmax(t) be the largest value of τ observed
so far in a swarm run of length t. We define tstop as the
smallest t satisfying t > 10τmax(t). This procedure allows
tstop to be identified using only information that is avail-
able at time t. We use τmax(t) instead of τ(t) in order to
make the estimate of tstop a conservative one. In fig. 6(b)
we plot τmax(t) for each state point, from which we obtain
estimates for tstop from the crossing time of the curves for
τmax(t) and t/10. These values of tstop are tabulated in
table 1. In all cases, we find tstop is larger than 10τ̄ , but
not too much larger; tstop/τ̄ ranges between 12 and 14.

Next, we compare the efficiency of our swarm relax-
ation strategy relative to a SLR. Let us denote the time
separation between independent microstates during a run
as nτ̄ , leaving open for the moment what a good choice
of n should be. A SLR that generates K independent mi-
crostates will run for a wall-clock time of tSLR = nτ̄K.
Here we ignore the equilibration time of a SLR, by as-
suming that this is a small fraction of the total run length.
Using the swarm relaxation approach, and the procedure
described above to determine tstop, each run will termi-
nate after approximately 13τ̄ . Using M processors con-
currently, subject to the constraint M ≤ K, the swarm
approach will generate K independent microstates in a
wall-clock time of tswarm = 13τ̄K/M . The swarm strategy
is thus faster, in terms of wall-clock time, than a SLR by
a speedup factor of fspeedup = tSLR/tswarm = nM/13. The

total computational cost for a swarm run relative to a SLR
increases by a factor of fcost = Mtswarm/tSLR = 13/n.

As for the choice of n, many simulation studies con-
sider microstates to be independent if they are separated
by as little as τ̄ ; see, e.g., ref. [24]. However, this choice al-
most certainly underestimates the error in a SLR, relative
to the error evaluated in a swarm run. As discussed above,
complete decorrelation requires several τ̄ , e.g. n = 5. Since
the swarm approach produces completely independent mi-
crostates, for a direct comparison we should consider a
SLR from which only completely independent microstates
have been harvested. Hence, for comparing the two ap-
proaches, we choose n = 5. As shown above, a practi-
cal value for both K and M is 1000. With these choices,
the swarm approach is faster than a SLR by a factor of
fspeedup = 385, in exchange for a total computational cost
that increases by a factor of fcost = 2.6.

The above estimates for fspeedup and fcost are approx-
imate, and can be expected to vary substantially for dif-
ferent systems, different parameter choices (such as for n),
and as the strategy for implementing a swarm approach
is varied to best suit a particular physical system and/or
computing facility. Although our results are thus difficult
to generalize, they do show for a few practical, real-world
cases that a swarm relaxation strategy can shorten the
time to obtain results by a factor of several hundred, in
return for an increased computational cost of about a fac-
tor of 3.

5 Discussion

In addition to a dramatic decrease in the time required to
obtain results, another significant advantage of the swarm
relaxation approach is the quality of the results, including
their error estimates, and the ease with which they are
evaluated. All the microstates that contribute to the final
results in a swarm approach are, by construction, com-
pletely independent. The quality of the estimates for equi-
librium properties is thus very high, since they are formed
as pure ensemble averages. While we have focussed here
on bulk average properties such as ρ and U , all observ-
ables available from a SLR can be readily computed from a
swarm ensemble, including structural measures such as ra-
dial distribution functions, and quantities such as the spe-
cific heat that are based on fluctuations occurring within
the ensemble. Also, since there is no need to estimate the
time separation between independent microstates, as in a
SLR, the evaluation of statistical error is straightforward
and robust. A swarm approach is therefore a good choice
for studies requiring high-precision results, with rigorously
defined error.

We emphasize that the swarm relaxation strategy does
not resolve the fundamental physical challenges associated
with the equilibration of complex systems. Users of the
present approach must still be watchful for the effects of
metastable states, and of slowly relaxing collective degrees
of freedom. The approach does provide opportunities for
checking for these effects, for example, testing for the pres-
ence of distinct metastable states by looking for divergent
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behavior in subsets of the swarm trajectories. If the pres-
ence of a slow degree of freedom is suspected, it would
be best to check swarm results against a test case using a
SLR, especially if the system under study is new.

Regarding the definition of the autocorrelation func-
tions used here, there are of course other choices that
may serve just as well, or even better, for assessing the
relaxation of the system to equilibrium. In particular, the
time decay of the intermediate scattering function has long
been used as a benchmark for quantifying relaxation in
bulk liquids and glasses [2]. When available, such addi-
tional measures of decorrelation can be used in a swarm
approach to check for subtle, slowly relaxing degrees of
freedom. Here, we have focussed on the autocorrelation
functions obtained from the time series for the same ob-
servables (e.g., ρ and U) used to compare the swarm re-
sults to a SLR. We do so for simplicity, and to show that
when M is large enough, any observable can be used to
monitor the time evolution of τ as the system approaches
equilibrium.

We have shown that M = 103 is sufficient to make
our strategy both efficient and straightforward to imple-
ment. Smaller values of M may also be used, at the cost of
decreased precision in the estimates for equilibrium prop-
erties and for characteristic time scales such as τ . In par-
ticular, if the behavior of τ as a function of t (see fig. 6(a))
is too noisy, then reliable estimates for tstop become dif-
ficult to obtain. Tests using sub-ensembles of our swarm
runs suggest that M = 250 is an approximate lower bound
for obtaining accurate equilibrium properties, while simul-
taneously ensuring that a useful estimate for tstop can be
made from the behavior of τ(t).

In situations where M ∼ 103 computing processors
are not available for concurrent use, the swarm strategy
can still be implemented, since the individual runs are
independent and can run asynchronously. Furthermore,
the computational workload in a swarm approach takes
the form of a large number of short runs. Our experience
when running asynchronously on a shared facility is that
excellent throughput is achieved, since the runs fill usage
gaps between larger and longer computing jobs.

We also note that the swarm approach can be mod-
ified by extending each run so as to produce a sequence
of independent configurations, appropriately separated in
time. In this case, observables are evaluated from a com-
bination of ensemble and time averaging. The balance be-
tween the two kinds of averaging can be tuned to best fit
the available computing resources, bearing in mind that
such a hybrid approach does not minimize the wall-clock
time, and complicates the error analysis, relative to a pure
swarm strategy.

Finally, we point out the conceptual connections be-
tween our work and studies of physical aging in glassy
systems. The swarm procedure used here is the same as
that commonly used in simulations to study the aging of
material properties in a glass subjected (e.g.) to a jump
in T . The only difference is that here the destination equi-
librium state can be reached, and that the characteristic
time scales are much shorter than those normally studied

in aging. In particular, we draw the reader’s attention to
Dyre’s recent analysis of the Narayanaswamy theory for
physical aging, in which the “material time” is unambigu-
ously related to the system’s mean-square displacement in
configuration space [25]. The variation of τ with t shown
in fig. 6 is a proxy measure of the material time in our
test systems as they approach equilibrium. It would be
interesting for future work to assess the swarm relaxation
strategy within the framework of Dyre’s analysis.

To summarize, the practicality of the swarm relaxation
strategy rests on two observations: i) the time required to
generate independent microstates during a single long run
is comparable to the time required to bring a single short
run into equilibrium. ii) When the swarm is large enough,
the attainment of equilibrium can be confirmed within a
time that is not much longer than the equilibration process
itself. So long as these two observations hold, the present
strategy is an effective way to “trade processors for time”.
When computational facilities having 103 or more proces-
sors are available, and when time is of the essense, the
swarm relaxation strategy is an effective way to rapidly
generate high-quality results with robustly defined statis-
tical error.
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Appendix A. Fluctuations of the
autocorrelation function

Here we show that the fluctuations of the autocorrelation
function Cx(t0, t) have a standard deviation σC = M−1/2,
when Cx approaches zero.

Let X(t) represent the discrete set of M random
variables {x(i, t)} for various i at fixed t. Similarly, let
δX(t) represent the discrete set of M random variables
{x(i, t) − 〈x(t)〉}. The variance of X(t) can be written in
a number of ways:

Var[X(t)] = σ2(t)

=
〈

[x(i, t) − 〈x(t)〉]2
〉

=
〈

[δX(t)]
2
〉

=
〈

[X(t)]
2
〉

− 〈X(t)〉2 . (A.1)
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In this notation

Cx(t0, t) =
〈δX(t0) δX(t)〉

σ(t0)σ(t)
. (A.2)

The fluctuations of Cx are quantified by Var[Cx(t0, t)] =
σ2

C . Using standard identities for the variance, we have

Var[Cx(t0, t)] = Var

[ 〈δX(t0) δX(t)〉
σ(t0)σ(t)

]

=
Var[〈δX(t0) δX(t)〉]

σ2(t0)σ2(t)

=
Var[δX(t0) δX(t)]

M σ2(t0)σ2(t)
. (A.3)

Using the last equality of eq. (A.1) we can write

Var [δX(t0) δX(t)] =
〈

[δX(t0)]
2
[δX(t)]

2
〉

−〈δX(t0) δX(t)〉2 . (A.4)

For sufficiently large ∆t, δX(t0) and δX(t) become inde-
pendent, and Cx → 0. In this case, the first term on the
right-hand side of eq. (A.4) reduces to

〈

[δX(t0)]
2
[δX(t)]

2
〉

=
〈

[δX(t0)]
2
〉 〈

[δX(t)]
2
〉

= σ2(t0)σ2(t), (A.5)

and the second term vanishes,

〈δX(t0) δX(t)〉2 = 〈δX(t0)〉2 〈δX(t)〉2 = 0, (A.6)

because by definition 〈δX(t0)〉 = 〈δX(t)〉 = 0. Combining
eqs. (A.3)–(A.6), we obtain,

Var[Cx(t0, t)] = M−1. (A.7)

Therefore, the standard deviation σC of fluctuations of Cx

as Cx → 0 is
σC = M−1/2. (A.8)
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