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S1. PHASE DIAGRAM

To evaluate the phase diagram of our lattice model, we use umbrella sampling MC sim-

ulations to compute the system free energy as a function of two bulk order parameters, the

magnetization m and the staggered magnetization ms [43, 51]. These are defined as,

m =
1

N

NX

i=1

si (S1)

ms =
1

N

NX

i=1

�isi. (S2)

Note that m and ms are subject to the constraints,

m+ms  1

m�ms  1. (S3)

The order parameters m and ms can be used to identify each of the phases in our sys-

tem. At T = 0, four phases are observed, depending on the values of H and Hs: two

ferromagnetically ordered phases with (m,ms) = (�1, 0) and (m,ms) = (1, 0), denoted re-

spectively as B̄ and B; and two antiferromagnetically ordered phases with (m,ms) = (0,�1)

and (m,ms) = (0, 1), denoted respectively as A and C. Since we only consider H > 0, the

B̄ phase does not appear in our analysis.

To locate stability fields and phase boundaries for each phase, we evaluate,

�G(ms,m) = � log[P (ms,m)] + C, (S4)

where G(ms,m) is the conditional free energy of the system at fixed (Hs, H, T ) as a function

of ms and m. P (ms,m) is a function that is proportional to the probability of observing a
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FIG. S1. (a) G(ms) and (b) G(m) along the AC coexistence curve (where Hs = 0) for a system
with L = 64. The legend given in (b) applies to both panels.

given value of ms and m under the same conditions of (Hs, H, T ). The value of the arbitrary

constant C in Eq. S4, and in all subsequent equations in which it occurs, is always chosen

so that the global minimum of the corresponding free energy is zero. We also define,

�G(ms) = � log[P (ms)] + C

P (ms) =

Z 1

0

P (ms,m) dm, (S5)
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FIG. S2. G(ms,m) at the triple point for a system with L = 64. Contours are 5kT apart. Panel
(a) is a surface plot of G(ms,m) and panel (b) is a contour plot of the same data.

and,

�G(m) = � log[P (m)] + C

P (m) =

Z 1

�1

P (ms,m) dms. (S6)

3



We estimate P (ms,m) from umbrella sampling simulations using a biasing potential,

U
0
B
= s(ms �m

⇤
s
)2 + m(m�m

⇤)2, (S7)

wherem⇤
s
andm

⇤ specify the target values ofms andm to be sampled, and s and m control

the range of sampling around the target values. All our umbrella sampling simulations using

U
0
B
are carried out with a system size of L = 64 and at the state point (H0

s
, H

0
, kT/J) =

(0, 3.9875, 1). As we will see below, this point is on the AC coexistence line and is very close

to the ABC triple point. Since this point is on the Hs = 0 axis, we only need to compute

P (ms,m) for 0 < ms < 1 because P (ms,m) = P (�ms,m) under these conditions. Also,

since ms +m  1, the range of P (ms,m) is further restricted to the triangle-shaped region

bounded by ms = 0, m = 0, and ms + m = 1. We cover this region using 903 umbrella

windows with m
⇤
s
= 100i/L2 where i is an integer in the range [0, 41], and m

⇤ = 100j/L2

where j is an integer in the range [0, 41 � i]. We choose s = m = 0.0005L4
J . Trial

configurations are accepted or rejected using the umbrella potential every 1 MCS. In all

of our simulations, one MCS corresponds to L
2 attempts to flip the spin of a randomly

chosen lattice site. The simulation for each umbrella window is initialized using a perfect C

configuration. Each run is equilibrated for 2⇥ 105 MCS, after which ms and m are recorded

every 400 MCS for the next 4⇥ 106 MCS.

The time series of ms and m for all umbrella simulations are analyzed and combined

using WHAM [55, 56] to generate estimates of P (ms,m) and G(ms,m) at (H0
s
, H

0
, kT/J) =

(0, 3.9875, 1). For the WHAM analysis, we exclude every run with an umbrella sampling

acceptance rate of less than 0.04. This reduces the number of windows analyzed to 819.

The windows excluded are: j = 0 and 0  i  33; j = 1 and 0  i  28; and j = 2 and

0  i  20. These windows correspond to regions in which G(ms,m) is very large and steep,

and which make a negligible contribution to the average properties of equilibrium states

near the triple point. We estimate that the error in our computed values for G(ms,m) is at

most 1kT .

P (ms,m) provides the complete density of states as a function of ms and m, and can be

used to find P (ms,m) or G(ms,m) at nearby values of (Hs, H) by reweighting according to,

G(ms,m;Hs, H)/J = G(ms,m;H0
s
, H

0)/J �N(Hs �H
0
s
)ms �N(H �H

0)m. (S8)
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FIG. S3. G(ms) along the BC coexistence curve for an L = 64 system.

Having reweighted G(ms,m) to new values of (Hs, H), we can also obtain G(ms) and G(m)

at the same (Hs, H).

Due to the symmetry of the system Hamiltonian, the AC coexistence line lies on the

Hs = 0 axis and so the value of Hs at the ABC triple point is H
T

s
= 0. At the triple

point, G(ms,m) will exhibit three basins of approximately equal depth, one for each of the

phases A, B and C. We further note that when H > 0 and the B̄ phase can be ignored,

ms by itself serves as an order parameter to distinguish each phase, since ms ' �1 in A,

ms ' 0 in B, and ms ' 1 in C. At the triple point, G(ms) will therefore also display three

minima of approximately equal depth. In Fig. S1(a) we show G(ms) at Hs = 0 for several

H approaching the triple point, where we observe the emergence of these three minima. To

precisely locate H
T , the value of H at the triple point, we evaluate P (ms) at several values

of H and seek conditions where the areas under the three peaks in P (ms) corresponding to

each phase are equal [49, 50]. We find H
T = 3.9876 ± 0.0005. Fig. S1 shows G(ms) and

G(m) at the triple point, and Fig. S2 shows G(ms,m) at the triple point.

We locate points on the BC coexistence curve by examining the behavior of G(ms) and

P (ms) at several fixed values of Hs > 0. For a given value of Hs, we seek the value of H at

which the areas under the peaks in P (ms) for the B and C phases are equal. Fig. S3 shows

G(ms) at several points on the BC coexistence curve determined in this way, confirming

that under these conditions the minima for the B and C phases are of approximately equal

depth. The result for the BC coexistence curve is shown in Fig. 2, for which the statistical
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error in H is 0.0005. The AB coexistence curve in Fig. 2 is simply the reflection of the BC

coexistence curve about the Hs = 0 axis.

S2. LIMIT OF METASTABILITY OF THE B PHASE

As shown in Fig. S1(b), at Hs = 0 a local minimum corresponding to the B phase occurs

in G(m) in the vicinity of m ' 0.95. This minimum persists even for values of H outside of

the stability field of B, i.e. for values of H below the triple point. Under these conditions,

this minimum of G(m) corresponds to the metastable bulk B phase. As H decreases further

this minimum disappears, thus defining the limit of metastability (LOM) of the bulk B

phase. We locate the LOM of the B phase in the phase diagram by seeking the value of H

at which the local minimum for B in G(m) disappears with decreasing H at several fixed

values of Hs. The result for a system of size L = 64 is shown in Fig. 2. Note the LOM

is system-size dependent. As L ! 1, the LOM approaches the BC and AB coexistence

curves [53].

S3. CHEMICAL POTENTIAL OF BULK PHASES AND METASTABLE PHASE

BOUNDARIES

We estimate the chemical potential of each bulk phase at a given value of (Hs, H), relative

to its value at the triple point, using,

µ̄A(Hs, H) = �kT

N
log

 Z �0.9

�1

dms

Z 1

0

dm exp[��G(ms,m;Hs, H)]

!
� µ̄

0
A (S9)

µ̄B(Hs, H) = �kT

N
log

 Z 1

�1

dms

Z 1

0.9

dm exp[��G(ms,m;Hs, H)]

!
� µ̄

0
B (S10)

µ̄C(Hs, H) = �kT

N
log

 Z 1

0.9

dms

Z 1

0

dm exp[��G(ms,m;Hs, H)]

!
� µ̄

0
C, (S11)

where µ̄0
A is chosen such that µ̄A(HT

s
, H

T ) = 0, and similarly for µ̄0
B and µ̄

0
C. The integrals in

the above relations sum over a region of the (ms,m) plane which encompasses the minimum

of the basin for the corresponding phase, and in which the system is a single homogeneous
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FIG. S4. Chemical potentials of bulk phases as a function of H at fixed Hs. Solid lines end at
the limit of metastability for the bulk phase in a system with L = 64. In (a) Hs = 0, and in (b)
Hs = 0.02. Note that when Hs = 0, µA = µC .

phase. In Fig. S4 we plot µ̄A, µ̄B and µ̄C as a function of H at Hs = 0 and Hs = 0.02. These

lines terminate at the value of H for the LOM of each phase for our L = 64 system, i.e.

where the local minimum in G(ms,m;Hs, H) ceases to exist.

Although the chemical potential is always well defined within the stability field of each

phase, for a metastable bulk phase it is only defined when a local minimum is observed in

G(ms,m;Hs, H). However, for the purpose of analyzing the nucleation behavior predicted

by Eq. 1, it would be useful to have an approximate way to assign a value to the chemical

potential for a phase that is beyond its LOM. We find that it is possible to do so in our
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lattice model because the dependence of µ̄ on Hs and H is very close to linear for all three

phases; see Fig. S4. As a simple approximation, we therefore model the chemical potential

for each phase, relative to the triple point, using the expressions:

µA(Hs, H)/J = �(Hs �H
T

s
)mA

s
� (H �H

T )mA (S12)

µB(Hs, H)/J = �(Hs �H
T

s
)mB

s
� (H �H

T )mB (S13)

µC(Hs, H)/J = �(Hs �H
T

s
)mC

s
� (H �H

T )mC
. (S14)

In these relations, we use the value of ms and m for each phase at the triple point to fix

the rate of change of µ with Hs or H, since ms = �(@µ/@Hs)H,T and m = �(@µ/@H)Hs,T .

At the triple point, the average value of ms and m for the A phase is m
A
s

= �0.959

and m
A = 0.0413; for the B phase is m

B
s
= 0 and m

B = 0.924; and for the C phase is

m
C
s
= �m

A
s
and m

C = m
A. We compare µ̄ and µ for each phase in Fig. S4, and find that

these two approaches give nearly indistinguishable results. The metastable extensions of

the coexistence boundaries shown in Fig. 2 are estimated by finding the intersection of the

surfaces defined in Eqs. S12-S14.

Note that since m
C = m

A, then �µAC = µC � µA does not depend on H and is constant

at fixed Hs. In contrast, �µAB = µB � µA decreases linearly with H at fixed Hs. These

observations are relevant for understanding the behavior of the CNT estimates for n⇤
AB and

n
⇤
AC plotted in Fig. 11.

S4. SURFACE TENSION

The surface tension (or interfacial free energy) � between two coexisting phases can

be estimated from the height of the free energy barrier that separates the two successive

minima corresponding to the coexisting phases in a plot of G(ms) or G(m) [50, 52, 53].

This approach provides a direct estimate of the surface tension because the free energy is

evaluated as a function of an order parameter which is a continuous reaction coordinate

connecting a free energy minimum, where the system is a single homogeneous phase, to a

free energy maximum, where the systems consists of two coexisting phases separated by an

interface. The thermodynamic work of formation of the interface is thus computed directly.

As shown in Figs. S1 and S3, the top of this free energy barrier is flat for a system in
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FIG. S5. (a) Snapshot of BC coexistence at Hs = 0 and H = 3.987 in a system with ms ' 0.5. (b)
Snapshot of AC coexistence at Hs = 0 and H = 3.96 in a system with ms ' 0. L = 64 for both
(a) and (b).

which two phases coexist, indicating the range of ms or m values where two flat interfaces

separate the two phases in our periodic system. Example snapshots of coexisting phases in

our L = 64 simulations are shown in Fig. S5.

We define the interfacial free energy � such that the height of the barrier in �G(ms) or

�G(m) is 2L��; the factor of 2L accounts for the two interfaces that occur in a system with

periodic boundaries. Fig. S3 shows that for the coexistence of B and C in a L = 64 system at

the triple point conditions, 2L��BC = 25 ± 1, and exhibits little observable variation along

the BC coexistence curve in the range of H and Hs studied here.

In Fig. S6 we show G(m) for various H at Hs = 0. For any H, �BC may be estimated

from the di↵erence between the G(m) curve and a common-tangent line bounding the G(m)

curve from below, at a value of m corresponding to a coexisting system of B and C, e.g.

m = 0.5. Further, at fixed Hs, if G(m) is computed at one value of H = H1, it can be found

(up to an irrelevant constant C) at a new value H = H2 using,

G(m;H2)/J = G(m;H1)/J �N(H2 �H1)m+ C. (S15)

As a consequence of the form of Eq. S15, �BC is independent of H at fixed Hs. Also, since

we have observed that �BC varies little on the BC coexistence curve (Fig. S3), along which

Hs is changing, we conclude that �BC is approximately constant for all H and Hs studied

here.

Note that we obtain the same value of �BC (within error) when we analyze the height
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of the barrier observed in either G(ms) in Fig. S3, or G(m) in Fig. S6. This confirms that

our estimate of the surface tension does not depend on the choice of m or ms as the order

parameter to distinguish between the B phase and either of the A or C phases.

Furthermore, the symmetry of the system Hamiltonian ensures that �AB = �BC. That is,

the A and C phases are structurally identical in that both are antiferromagnetic “checker-

board” phases. The only di↵erence is that in the C phase the spins are aligned with a positive

staggered field, while in the A phase they are anti-aligned. Thus the average structure of the

interface of either the A or C phase with the all-up B phase is the same; in either case, the

interface is the boundary between a checkerboard phase and an all-up phase. The equality

�AB = �BC is numerically confirmed at the triple point in Fig. S1(a), where we see that the

heights of the two free energy maxima in G(ms), which directly measure �AB and �BC, are

equal. Since we have also shown that �BC is independent of H and Hs, we can conclude that

�AB = �BC throughout our phase diagram. We thus use the value 2L��AB = 2L��BC = 25,

or �AB/J = �BC/J = 0.195 (per unit lattice site of interface) in all of our analysis.

We next estimate �AC as a function of H along the Hs = 0 axis for H < HT . In Fig. S1(a)

we plot G(ms) on the AC coexistence curve at H = 3.94, a point at which the B phase is

unstable for a system of size L = 64. From the height of the free energy barrier separating

the minima corresponding to the pure A and C phases, we find 2L��AC = 96± 1. We also

directly estimate �AC for other values of H from the G(ms) curves in Fig. S1 that are flat

near ms = 0, and plot the results in Fig. S7.

To estimate �AC as a function of H along the entire AC coexistence curve we use ther-

modynamic integration. That is, we choose as a reference value H0 = 3.94 where we already

know �AC from the direct calculation described above. We then use thermodynamic inte-

gration to estimate the change in the interfacial free energy as we move the system to a

di↵erent value of H. On the AC coexistence curve, the free energy of the pure A and C

phases is the same. Under these conditions, the AC surface tension is the di↵erence between

the free energy of a system containing an AC interface and the free energy of a pure phase,

either A or C, since the conversion of part of the system from A to C to create the coexisting

system makes no bulk contribution to the free energy change. The change in the AC surface

tension on moving from H0 to H is thus given by the di↵erence between the change in the

free energy of a system containing an AC interface, and the change in the free energy of the
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pure phase:

2L�AC(H)� 2L�AC(H0) = �Gcoex(H)��GA(H). (S16)

The change in the free energy of a system containing an AC interface on moving from H0

to H is given by,

�Gcoex(H)/J = �N

Z
H

H0

mcoex(H
0) dH 0

. (S17)

Here mcoex(H) is the average magnetization of a system containing an AC interface as a

function of H. To estimate mcoex(H), we evaluate m as a function of H for a coexisting

system of A and C phases along the Hs = 0 coexistence curve. We constrain this coexisting

system to remain within the range of ms consistent with the occurrence of a pair of system-

spanning AC interfaces by applying a simple square-well biasing potential that prevents the

system from sampling microstates with |ms| > 0.1. In Eq. S16 we chose A to represent the

pure phase. Its free energy change on moving from H0 to H is given by,

�GA(H)/J = �N

Z
H

H0

mA(H
0) dH 0

, (S18)

where mA(H) is the average magnetization of the pure A phase as a function of H. To

estimate mA(H), we evaluate m as a function of H for the homogeneous A phase along the

Hs = 0 coexistence curve.

The result for �AC is shown in Fig. S7. We show snapshots of the coexisting A and C
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phases at di↵erent values of H in Fig. S8. We note the complexity of the AC interface.

Depending on H the interface may contain a significant wetting layer of B between the A

and C regions. Approaching the triple point �AC decreases but remains more than twice the

value of �AB at the triple point. Given the emergence of the wetting layer of B as H ! H
T ,

the behavior of �AC makes sense: In this regime the AC interface can be approximated as

the superposition two interfaces, one AB and the other BC. Since �AB = �BC, it therefore

seems likely that the condition �AC � 2�AB holds under all conditions studied here.

In order to compare the behavior of our lattice model to the predictions of CNT, it is

useful to have an analytic model of the dependence of �AC on Hs and H throughout the

phase diagram. By an argument analogous to that used above to establish that �BC is

independent of H at constant Hs (see Eq. S15), it can be shown that �AC is independent

of Hs at fixed H. To model the dependence of �AC on H, we notice empirically that �
2
AC

is approximately linear in H between H = 2 and 4. We fit a straight line to our data for

�
2
AC in this range and obtain �fit/J = (19.299 � 4.739H)1/2, shown in Fig. S7. We use �fit

to compute the CNT estimate of n⇤
AC plotted in Fig. 11.

We note that our quantitative estimates for � should be considered preliminary. All of

our estimates for � are based on square systems with L = 64, and assume an interface that

is, on average, flat and oriented parallel to a lattice axis. A more detailed and accurate
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FIG. S8. Snapshots of AC coexistence when L = 64 and Hs = 0 for various H = {1.0, 3.0, 3.5, 3.9},
from left to right.

analysis is possible by monitoring system-size e↵ects, the influence of the system shape and

boundary conditions, as well as considering the influence of the orientation of the interface

to the lattice axes [52]. That said, for the purposes of this work, it is su�cient that we have

shown that �AB < �AC throughout the range of the phase diagram studied here.

Fig. S9 compares our direct numerical evaluation of Ḡ(n) at state point (f) in Table I

with the CNT predictions for GAB and GAC as defined in Eq. 1 and calculated using the

corresponding values of µ and � given in Table I. These values of µ and � are estimated for

each phase or interface as described above. The shape of the curve for Ḡ(n) is similar to

GAB for n < nc, and to GAC for n > nc, confirming the qualitative predictions of the CNT

analysis in Section II. However, significant quantitative di↵erences occur at all values of n.

These di↵erences likely arise from several sources. For example, the CNT expression in Eq. 1

for the nucleation barrier is known to deviate significantly from the numerically computed

barrier even for simple lattice models such as ours [54]. Also, as noted above, we have used

values of the surface tension as estimated for flat interfaces that are aligned with a lattice

axis. At small n, where the interface is strongly curved, we expect this approximation to

introduce significant deviations, which will manifest at larger n as an o↵set between the

predicted and the observed curves.

S5. IDENTIFYING LOCAL FLUCTUATIONS OCCURRING WITHIN THE A

PHASE

Here we focus on the A phase, and develop a definition for identifying local regions that

deviate in structure from that expected in the A phase.

In the perfect A phase, all sites satisfy si = ��i. In the perfect C phase, all sites satisfy
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si = �i. In the perfect B phase, all sites satisfy si = 1. We therefore define a local fluctuation

occurring within the A phase as any contiguous cluster of sites for which si = �i or si = 1.

The one exception to this definition is a single site at which si = 1 and for which all 4 nn’s

have si = �1. Half of the sites in the perfect A phase have this property, and we exclude

them from our definition of a fluctuation. An example system configuration is shown in

Fig. S10, and illustrates our cluster definition.

The number of sites in a cluster is denoted by n. The number of sites in the largest

cluster in the system is nmax. The composition of a cluster is defined as f = n̄/n, where n̄

is the number of sites in the cluster that correspond to the C phase. We define n̄ = 2ndown,

where ndown is the number of cluster sites for which si = �1. The reason for this definition

of f is that cluster sites satisfying si = 1 may also satisfy si = �i, and so it is ambiguous

if these sites belong to the fraction of sites inside the cluster that belong to the C phase

or to the B phase. Since cluster sites with si = �1 unambiguously belong to the C phase,

and since the fraction of si = �1 sites in the perfect C phase is 1/2, we estimate the total

number of C sites within a cluster to be 2ndown. The quantity f therefore characterizes the

cluster composition in terms of how much of the cluster is taken up by the C phase: f = 0
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FIG. S10. Example L = 64 system configuration. (a) White sites satisfy si = �1. Black sites
satisfy si = 1. (b) Black sites satisfy the definition for belonging to a fluctuation. White sites do
not. (c) Green sites satisfy si = �1 = ��i. Blue sites satisfy si = 1. Red sites satisfy si = �1 = �i.
(d) Same as (c), except that all blue sites in (c) totally surrounded by green sites are rendered as
green in (d); and all blue sites in (c) totally surrounded by red sites are rendered as red in (d).

is a pure B cluster, while f = 1 is a pure C cluster.

We note that cluster sites with si = 1 on the cluster perimeter are always considered part

of the cluster, even though half of them (on average) might reasonably be associated with

the surrounding A phase. For computational e�ciency, we do not apply this correction,

which if implemented would decrease the values of n and nmax from those used here.

For visualization purposes, we render system configurations as shown in Fig. S10(d). The

rules we use to assign a color to each site are stated in the figure caption. In the resulting

color scheme, the A phase is green, the B phase is blue, and the C phase is red.

S6. 2D UMBRELLA SAMPLING SIMULATIONS TO FIND G(nmax, f)

G(nmax, f) is estimated from 2D umbrella sampling simulations using the biasing potential

given in Eq. 6. We choose n = 0.0005 and f = 500. For each choice of (L,Hs, H, T ) we

conduct 900 simulations for n
⇤
max = 100i where the integer i 2 [0, 99], and for f

⇤ = j/10

where the integer j 2 [0, 8]. Each run is initiated from a perfect A configuration, into which

a seed cluster is inserted. The seed cluster is a square of sites with si = 1 of a size chosen to

be closest to n
⇤
max. At the centre of the seed cluster there is a square region with si = �i of a

size chosen so that the seed cluster has a value of f closest to f
⇤. This system is equilibrated

for 5 ⇥ 104 MCS, and then the time series of nmax and f is recorded every 100 MCS for

106 MCS. Trial configurations are accepted or rejected using the umbrella potential every

1 MCS. One MCS corresponds to L
2 attempts to flip the spin of a randomly chosen lattice

site. Our time series for nmax and f are analyzed using WHAM to evaluate P (nmax, f) and
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G(nmax, f). We estimate that the error in G(nmax, f) is not more than 1kT . We exclude

from the WHAM analysis any run for which the acceptance rate for the umbrella sampling

is less that 0.1, which occurs in a few cases when the local variation of G(nmax, f) is very

steep. Our system size for these 2D umbrella sampling runs is L = 128 or 200, as indicated

in the legends or captions of the figures.

S7. 1D UMBRELLA SAMPLING SIMULATIONS TO FIND G(nmax)

To estimate nc and n
⇤ over a wide range of Hs and H, we conduct 1D umbrella sampling

simulations in which nmax alone is constrained. In this approach, we directly compute

G1(nmax) using,

�G1(nmax) = � log[P1(nmax)] + C, (S19)

where P1(nmax) is proportional to the probability to observe a microstate with a given value

of nmax. We find n
⇤ from the maximum in G1(nmax). We also monitor f during these runs,

which allows us to compute � and thus to find nc from the maximum in �.

To proceed, we use a biasing potential,

U
00
B
= n(nmax � n

⇤
max)

2
, (S20)

where n = 0.002. Trial configurations are accepted or rejected using the umbrella potential

every 1 MCS. Each run is initiated from a perfect A configuration, into which a seed cluster

is inserted. The seed cluster is a square of sites with si = 1 of a size chosen to be closest

to n
⇤
max. We carry out runs using L = 64 or 128, as indicated in the legends or captions

of the figures. For each choice of (L,Hs, H, T ), we conduct simulations for each value of

n
⇤
max = 50i where the integer i 2 [0, 24] when L = 64, and i 2 [0, 80] when L = 128. Each

simulation is equilibrated for 5⇥104 MCS, and then the time series of nmax is recorded every

100 MCS for 106 MCS. These time series are analyzed using WHAM to evaluate P1(nmax)

and G1(nmax). We exclude from the WHAM analysis any runs for which the acceptance rate

for the umbrella sampling is less than 0.1. As shown in Fig. 12, we use these 1D umbrella

sampling runs to evaluate nc and n
⇤ for Hs in the range [0.01, 0.10] and H in the range

[3.7, 4.0].
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FIG. S11. Ḡ(n) for L = 64 and Hs = 0.04. H = 3.70 to 3.97 in steps of 0.01, from top to bottom.

S8. HEIGHT OF THE NUCLEATION BARRIER

An example of the data used to find the locus along which �G
⇤ = 20 is shown in Fig. S11.

Here we show Ḡ(n) for several values of H at Hs = 0.04. We obtain G
⇤ from the maxima

of these curves, and by interpolation identify the value of H at which �G
⇤ = 20. The locus

of points in the (Hs, H) plane at which �G
⇤ = 20 is shown in Fig. 2.

S9. FINDING nc FROM �

Fig. S12(a) reproduces the data for GB and GC from Fig. 9(a), in which the crossing of

these two curves identifies nc. Fig. S12(b) shows � as a function of nmax for the same three

cases shown in Fig. S12(a). We find that the maximum of � corresponds within error to the

value of nc obtained by finding the intersection of GB and GC. Based on this correspondence,

all values of nc reported in this work are computed by finding the maximum of �. This

definition allows us to estimate nc from both 1D and 2D umbrella sampling simulations.

S10. ADDITIONAL PLOTS OF G(nmax, f)

We present in Figs. S13 and S14 surface and contour plots of G(nmax, f) over additional

values of H between 3.960 and 3.985.
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FIG. S12. (a) GB and GC for Hs = 0.01 and L = 200. From top to bottom H = {3.96, 3.981, 3.985}
(b) � for Hs = 0.01 and L = 200. From left to right H = {3.96, 3.981, 3.985}.
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FIG. S13. G(nmax, f) for Hs = 0.01 and L = 200. Panels (a) through (j) correspond respectively
to H = {3.96, 3.965, 3.97, 3.975, 3.98, 3.981, 3.982, 3.983, 3.984, 3.985}. Contours are 2kT apart.
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FIG. S14. G(nmax, f) for Hs = 0.01 and L = 200. The white line is hfi. Panels (a) through (j)
correspond respectively to H = {3.96, 3.965, 3.97, 3.975, 3.98, 3.981, 3.982, 3.983, 3.984, 3.985}.
Contours are 2kT apart.
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