
Fehlberg Method (Embedded RK formula)
- 5+4 order accuracy , variable time step , only 6 fu calls

Generally , RK(4 -1m) - m orders higher than 4 -

requires more than m additional f ' calls
,

but not more than m -12 .

Feldberg discovered an RK5 with 6 f= calls

k
,
= hf (yn ,

✗ n)

Kz = hf (yn + bz , K , , ✗n + azh)

K
>

= hf (yn + bz , k, + bzz.kz , ✗ n + a
>
h)

:

Kb = hf (yn + bank , + bbzkz -1 - - - + basks , Xu + ash)

Yn+ ,
=

Yn + C
,
K
,
+ Czkz + czkz + Caley + C-

g- ks + Celeb

= y(✗ + h) + 0146) RKJ

that also yield a 4th order method CRK4) with the

-

f ' callssame

*
= yn + cfki-CFkz-cjkz-cfky-c.tk, + Cj KsYn -11
= ycxth) + 0145) RK4

The ai 's and bij 's are the same for both , but the

Ci 's and 4.* 's are different
.

The parameters commonly used nowadays are due to Cash and Karp
(see e.g. Numerical Recipes)

We get an RK5 (5th order method] AND

an estimate of the error
.

6

* -

s =yn+ ,
- yn+ ,

= < (Ci - CF) ki - 0145)
5--1

with only 6 f-= calls
.
More efficient than RKY - based

step halving /doubling .

As before
,
if stepsize Incurrent produces tcurreut

we want stepsize knew that produces / Anew I = C-

1
""

b- h5 → knew = Incurrent / E- n=5

bcurre.at '
In = 0.2

In Numerical Recipes notation

ho = Sh
, (Ig)

" "

with 5=0.9

Practical implementation issues regarding so , the desired
accuracy

- currently an absolutely value

- different for every component of 5
- different components may differ orders of magnitude
- not general for different problems

better : want solution
"

good to one part in 106
"

set so -_ c- y with c- = co
- b

- relative error
tolerance

but what if y
oscillates (and y=o

sometimes) ?

set do = C- Y scale

In NR code

→
co
-30

yscaleci) = lyci) / + / hdydxci) / + Tiny
if

I = 1
, . . . n → for each vector dimension

- if I yci) / = 0 , yscaie is set by the derivative

knew -_ Sh / 1° /
""

use largest relative
t ' min / i =L , . . - u) error -1, over all

so

= Sh (min / c- yscace /)
""

components
i
E-

= sh(max /I / j
""

i
c- yscale

use largest jerri to control step size

c- yscaleli)

Alternatively , may
want to limit global error

(error at final integration point) ,

global error limit = Nso = tf - ti so
I

•

•

. want so ~ h (target error at a step should
scale with h)

choose So = Eh dyydx as in NR 's yscale

But then our formula ho=h , /÷
,
/
"5

needs to

change (since global error ~ Och "))

to ho =L , / Io /
" "

1
,

Note that
'
14 = 0.25

and 45 = 0-2 are not too different
.

NR takes a pragmatic , general , and conservative

approach (not increasing or decreasing h too much per step) .

When increasing step size (s, < So)

0-20 (yields smaller ho than

use ho= S h
, / If / with exponent of 0.25)

but ho £ 5h
, (upper limit on stepsize increase)

When decreasing step size (s ,
> so)

(yields smaller ho than
use ho = S h

, / Io /
"25

with exponent of 0.20)
1
,

but ho 7 0.1 h
,

lower limit on stepsize
decrease

Also check that h does not become

too small
,
ie
,
check that ✗ + h I ✗

These aspects of the implementation are

not rigorous , but are experience - based ,

practical steps to produce robust code

that will solve most problems .

User must supply derius function that

returns dydx (f- (§ , x))

and initialize § .

Part of Project 2 deals with using NR code

to solve a physics problem .

Appendix - Details on global error

S
,

- error estimate at each step - class)

I
,
= C 45

So - desired local error : do = c- tidy

sit - approx . global error :

did = Ws
,
-

¥
noch

") =D h
"

S§ - desired global error :

s! ± c- hd§-aN ~ c-hd¥I = ELI

h"D = sid
hn"eoD=s§

⇒ ¥-4
,

= sit
It

hnew -
- h / II.)

""

- h(:÷÷)""=hfa×j
"

=h(÷
,

)
""

