
Application of solving a linear system : 1- D Poisson Equation
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or AE = b

with A a tri diagonal matrix

Best to find routine specialized for tridiagonal matrices
→ avoid storing all the zeros

show -14 , Q1

→ faster
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Eigenvalue Problems

Many physics problems , especially from QM
,
can be

expressed as eigenvalue problems
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like system of linear eq=s , except RHS is unknown

and solutions exist only for certain -1 's (eigenvalues )

- solutions are eigenvectors

① can be rewritten as (A- II ) I = 0

For non - trivial solution (Ñ=o ) , this implies
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Finding all roots for an N - degree polynomial
is hard for large N .



Rather than solving the difficult polynomial problem ,
iterative methods are used

.

e. g. See Jacobi method for symmetric matrices

( which employs
"

Givens rotations
"

)

or a general method based on QR decomposition .

Let Ao = A

Ak = QKRK Q - orthogonal (bunch of
Givens rotations )

R - upper triangular
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similarity transformation

Ak converges to an upper triangular matrix

- eigenvalues of an upper triangular matrix

are the diagonals

LAPACK : Different routines for different types
of matrices

.



Application : Time - Independent Schrodinger Eq
' in 1-D
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Each eigenvalue will have an associated eigenvector Ñ ,
the components of which are 4cx ;) - the eigenfunction
sampled at discrete points .



Notes on A- 4 Q2 show code for A- 4 Q2

For harmonic potential
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For 3D problems , having N
>

gridpoints makes

the problem difficult
.

Alternative : write wavefunctions as a linear

combination of basis function

415 = § as 4pct )
The 4pct) 's are known functions that solve part of

the problem .
E. g. atomic wavefunctions when 41T )

is for a molecule
.

Goal is to find coefficients ap that solve the S.E.
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Define elements of two matrices
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Schrodinger Equation becomes
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