
1 LIBRARIES

1.1 Why use libraries?

In the most simple case, libraries are made up of general code that may be referenced/used by many unrelated
programs. This way, you can remove the need to duplicate code by maintaining a single, multipurpose library. Other,
more specialized, uses exist as well.

1.2 Types of libraries

There are two types of libraries I will be focusing on:

1. Static libraries (.a [Linux/OSX], .lib [Windows]) : All of the library code is included in the compiled program.
Programs do not require the library to exist in the same location at all times.

2. Shared libraries (.so [Linux], .dll [Windows], .dylib [OSX]) : Library code is referenced from the compiled program
at runtime. Programs required that a library exist in the same location at all times, but that library may change.

1.3 Creating a library

I will be focusing on compiling libraries using FORTRAN and gfortran on Linux. These examples may be generalized
to other languages and gnu compilers (e.g., gcc). Look up documentation for any other compilers/languages.

To generate a static library

1. Compile all files using the -c flag (producing $(FILE).o)

2. Use the command ar with options crs to generate the static library

or, in code

gfortran -c $(FILES).f90

ar crs lib$(LIBRARY).a $(FILES).o

this will produce the file lib$(LIBRARY).a to be linked later. To generate a shared library you only need to call
gfortran using the -shared flag. In code,

gfortran -shared $(FILES).f -o lib$(LIBRARY).so

noting that library names start with lib by convention. Of course, any other options may be included in these calls.

1.4 Linking libraries

If you are using a static library it is possible to simple include it as a file when you compile your code

gfortran -o $(OUTPUT) $(CODE) $(LIBRARY)

however, the more conventional way to include libraries is to link them. This is done through the -L, which points to
the directory containing the libraries, and -l flags, which has the library names.

gfortran -o $(OUTPUT) $(CODE) -L/path/to/library -l$(LIBRARY)

where the “lib” portion of the library name may be dropped. However, in order to run code using shared li-
braries you must ensure that the directory is included in the dynamic linker path. This is done by including it
in LD LIBRARY PATH as so

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/library

2 LAPACK

A widely-used and maintained example of a library is LAPACK (Linear Algebra PACKage) which provides routines
to perform common linear algebra problems. The user guide can be found here:

NetLib: LAPACK User Guide

1

http://www.netlib.org/lapack/lug/

2.1 Installing LAPACK

Like most libraries, LAPACK’s user guide describes how to install the library. To install LAPACK use the commands

wget "http://www.netlib.org/lapack/lapack-3.8.0.tar.gz"

tar -xvzf lapack-3.8.0.tar.gz

cd lapack-3.8.0

cp make.inc.example make.inc

make

and the provided Makefile will handle the rest.

• For specific architectures or requirements make.inc may be edited to suit your needs.

• An error may occur during the testing portion of the Makefile, this will not affect your use of the package. If you
want to run all tests without this error you may run the command ”ulimit -s unlimited” and the error should
no longer appear.

2.2 LAPACK Naming Conventions

The LAPACK routine names may seem cryptic at first glance; however, they follow a naming scheme which may be
split into 3 parts:

• Part X : Data type

S : Real (Single precision)
D : Double precision
C : Complex
Z : Complex*16

• Part Y : Matrix type. Many types are supported, allowing for efficient calculations. Ensure you use the correct
form for your problem

GE : General form
GB : General band
BD : Bidiagonal
DI : Diagonal
HE : Hermitian
Etc.

• Part Z : Computation to perform. There are a large number of these, so the user guide should be used as
reference. Here are a couple useful examples

EV : Calculates eigenvalues and, optionally, either left or right eigenvectors of a matrix.
ES : Calculates eigenvalues and, optionally, the Schur form of a matrix.
SV : Computers the solution to a system of linear equations A ∗X = B
Etc.

These names are then constructed by concatenating each part, XYZ. E.g., CGEEV calculates the eigenval-
ues/eigenvectors (EV) for complex (C), general form (GE) matrices. A complete list can be found online at the
LAPACK Index

2.3 Using LAPACK routines

While some routines have similar arguments, I would suggest that you use the LAPACK Index entry for your specific
routine to make sure you use it correctly.

2.4 Compiling with LAPACK

As with other libraries, LAPACK can be included in one of two ways:

1. By embedding the static library file when compiling

gfortran -o $(NAME) -f $(FILE) $(ARCHIVE)

2

http://www.netlib.org/lapack/explore-html/index.html
http://www.netlib.org/lapack/explore-html/index.html

2. By linking the library when compiling

gfortran -o $(NAME) -f $(FILE) -L/path/to/library -llapack -lrefblas

Two example Fortran programs have been included to show how this is compiled and used:

• testSGESV.f90 solves a system of equations of a real-valued, general, matrix

• testQM.f90 takes in some magnetic field and determines the eigenvalues and eigenvectors of a simple Hamiltonian

3

	LIBRARIES
	Why use libraries?
	Types of libraries
	Creating a library
	Linking libraries

	LAPACK
	Installing LAPACK
	LAPACK Naming Conventions
	Using LAPACK routines
	Compiling with LAPACK

