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ABSTRACT

The authors present a series of new analyses of the problem of stratified flow over a localized two-dimensional
obstacle, focusing upon the detailed dynamical characteristics of the flows that develop when the Froude number
is such that the forced internal waves ‘‘break’’ above their topographic source. Results demonstrate that when
the flow is restricted to evolve in two space dimensions, then the intensity of the Kelvin–Helmholtz-like (K–
H) perturbations that form in the downstream shear layer that separates the accelerated low-level jet in the lee
of the obstacle and the overlying region of decelerated flow increases dramatically with the governing parameter
NU/g (U and N are, respectively, the velocity and buoyancy frequency characteristic of the upstream incident
flow, while g is the gravitational acceleration). This nondimensional parameter represents the ratio of the ac-
celeration that a fluid particle feels in the wave to the gravitational acceleration and measures the importance
of non-Boussinesq effects. A marked change in the global characteristics of the flow is shown to occur with
increasing NU/g, characteristics that include the speed of downstream propagation of the so-called chinook front,
the drag exerted by the flow on the obstacle, and the intensity of the K–H instability induced pulsations of the
surface velocity field. When the flow is allowed to access the third spatial dimension, the authors demonstrate
that it develops intense three-dimensional motions in the regions where overturning of the isentropes in the
otherwise stably stratified fluid takes place. An instability of convective type first appears in the form of
streamwise-oriented vortices of alternating sign. This instability erodes the downstream propagating K–H billows,
eventually leading to the complete arrest of their continued propagation as they ‘‘dissolve’’ into fully developed
turbulent flow.

1. Introduction

It is important to study hydrodynamic flows of geo-
physical origin not only because of their many practical
connections to the understanding of atmospheric and
oceanographic phenomena, but also because such flows
often reveal the influence of fundamental hydrodynamic
interactions that may be extremely difficult to adequate-
ly investigate in the laboratory. An especially interesting
example of such flows is certainly provided by the se-
vere downslope windstorms that are observed in the lee
of major mountain ranges such as the foehn of Swit-
zerland, the bora of Yugoslavia, and the chinook of
North America. These flows have a long history of se-
rious investigation that has been reflected in the mete-
orological literature for at least 50 years. It is now rather
clear that the specific dynamical processes that underly
the occurence of this phenomenon include, primarily,
the ‘‘breaking’’ of upward-propagating internal waves
that are forced orographically and a late stage Kelvin–
Helmholtz instability of the low-level jet that appears
in the lee of the obstacle in consequence of the wave–
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mean flow interaction induced by this primary wave-
breaking event.

The first step in this sequence of events is now well
understood and is connected with the fact that, when a
density stratified fluid flows over an obstacle, a field of
internal waves is launched that propagates in the ver-
tical. If the incident flow has uniform velocity profile
(U) and constant buoyancy frequency (N), then such
waves propagate vertically without impediment so long
as their amplitude remains small. Normally, however, it
is inevitable that the wave amplitude grows with height
in consequence of the decreasing density of their en-
vironment and therefore that the waves eventually
‘‘break’’ by inverting the local density stratification. As
a result of such wave breaking, downward-propagating
waves are induced due to nonlinear scattering and/or
reflection at the wave-induced critical level (Peltier and
Clark 1979, 1983; Bacmeister and Schoeberl 1989).
When the obstacle that forces the waves is sufficiently
high relative to the natural internal vertical scale of the
flow U/N, then wave breaking may occur at a low level
within one wavelength from the surface. Both on the
basis of numerical analyses (Peltier and Clark 1979,
1983; Durran 1986; Scinocca and Peltier 1989; Laprise
and Peltier 1989a) and laboratory experiments (Rottman
and Smith 1989) it is now well understood that such
low-level wave breaking results in a resonant amplifi-
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cation of the low-level flow due to the constructive in-
terference between the upgoing and downgoing waves.
This in turn leads to a dramatic acceleration of the flow
in the lee of the obstacle and an equally dramatic in-
crease in the drag exerted by the flow on the obstacle.
In its fully developed form, at an instant of time suf-
ficiently long after the onset of breaking, the flow close-
ly resembles a hydraulic jump of the kind that may be
generated by the flow of constant density fluid with a
free surface over an isolated obstacle (Long 1953). A
simple model, based on Long’s (1953) analysis for the
steady flow of a uniformly stratified fluid over an ob-
stacle, has been suggested by Smith (1985) in which
the elevated region of mixed fluid maintained by wave
breaking is assumed to represent an internal ‘‘block’’
around which streamlines are split, and this simple mod-
el has been shown to mimic several of the properties of
the time-averaged high-drag state, though it fails to ac-
count for the intense time dependence that is actually
characteristic of this state (Peltier 1993).

The most recent numerical simulations (Scinocca and
Peltier 1989; Peltier and Scinocca 1990) of this phe-
nomenon demonstrate that a typical feature of the flow
is the eventual emergence of Kelvin–Helmholtz insta-
bility in a shear layer that develops between the low-
level high velocity jet and the overlying almost stagnant
region created by wave breaking. It appears that this
instability, once it occurs, thereafter plays a fundamental
role in controlling the global dynamics of the flow (Pel-
tier and Scinocca 1990). In most previous numerical
simulations of the downslope windstorm phenomenon,
this initial sequence of events has been described using
two-dimensional models. Several three-dimensional cal-
culations of downslope windstorms as well as other rel-
evant studies of internal gravity waves in atmospheric
and oceanic applications (Peltier and Clark 1983; Clark
and Farley 1984; Klaassen and Peltier 1985a,b,c; Win-
ters and Riley 1992; Clark et al. 1994) have demon-
strated that three-dimensional effects and instability
structures are important in these flows. For example,
numerical simulations of breaking gravity waves (e.g.,
Andreassen et al. 1994) reveal vigorous instability struc-
tures and in particular the development of streamwise
vortices of alternating sign that induce a more rapid
breakdown of the unstable wave relative to the two-
dimensional case. The appearance of streamwise vor-
tices is also a typical feature of secondary instability of
unstable stratified free shear layers. It is well known
that these layers are susceptible to a primary instability
of the Kelvin–Helmholtz type. High-density fluid is
pulled above low-density fluid in the rollup of the pri-
mary spanwise Kelvin–Helmholtz billows. This causes
the development of a secondary mode of instability that
is of convective type (Klaassen and Peltier 1985a,b,c).
Numerical simulations (e.g., Caulfield and Peltier 1994)
and laboratory experiments (Thorpe 1985, 1987; Scho-
walter et al. 1994) all demonstrate that it is precisely
the Klaassen–Peltier (K–P) instability that drives the

growth of streamwise longitudinal rolls of alternate
signed vorticity and it is these motions that subsequently
lead to the complete turbulent collapse of the billow
core. The K–P instability is also responsible for the
growth of the streamwise vortex streaks in the internal
wave-breaking simulations of Andreassen et al. (1994).

Most previous two-dimensional simulations of the se-
vere downslope windstorm phenomenon have focused
on the analysis of effects due to the nonlinearity of the
finite-amplitude lower boundary condition and on the
influence of nonhydrostaticity. In the present study, at-
tention will rather be focused on the importance of non-
Boussinesq effects. The numerical experiments de-
scribed in this paper demonstrate that the secondary
Kelvin–Helmholtz instability, and hence all global char-
acteristics of the flow, are extremely sensitive to
variations of the nondimensional parameter that mea-
sures the importance of non-Boussinesq effects. Since
previous three-dimensional calculations of flow evolu-
tion contained insufficient spatial resolution to resolve
finescale three-dimensional instability structures we will
also present herein a single high-resolution simulation
of the flow in three dimensions. As we will show, the
initial structure of the three-dimensional motions that
develop are fully explicable in terms of the above-men-
tioned K–P instability, which will be seen to induce the
appearence of streamwise vortex streaks. Our analyses
will therefore further extend the range of circumstances
in which this instability is shown to control the onset
of three-dimensional motions in stratified flows.

In the following sections of this paper, the equations
of motion and boundary conditions employed in the
numerical model that we employ are discussed in section
2, while section 3 contains an analysis of the main gov-
erning parameters of the flow. A number of simple the-
oretical considerations concerning the dynamics of a
wave field launched by localized topography are offered
in section 4. The new sequence of simulations that doc-
ument the importance of non-Boussinesq effects on the
severe downslope windstorm transition in two dimen-
sions are described and discussed in section 5, while
the results from our high-resolution representative three-
dimensional simulation are presented in section 6. Con-
clusions are summarized in section 7.

2. Model equations and boundary conditions

The numerical model to be employed to perform the
simulations discussed herein is essentially that described
in Clark (1977) and first employed in the context of
analyses of topographically forced internal waves in
Clark and Peltier (1977). The model is based upon the
anelastic approximation to the equations of motion (e.g.,
Batchelor 1967), which may be written in the form
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FIG. 1. The model domain.

duir 5 2] p9 2 d gr9 1 ] r K D (1)i i3 j M ijdt

] (r u ) 5 0 (2)i i

du
r 5 ] (r K ] u), (3)i H idt

in which ui (i 5 1, 2, 3) are the components of velocity
in (x, y, z) Cartesian coordinates, u is potential tem-
perature, and KM and KH are mixing coefficients for
momentum and heat. Here, p9 and r9 are pressure and
density fluctuations, respectively, such that

p 5 p (z) 1 p9(x, y, z, t) (4)

r 5 r (z) 1 r9(x, y, z, t) (5)

dp
5 2r g. (6)

dz

The overbar denotes a hydrostatic background state vari-
able, and the deformation tensor Dij is given by

2
D 5 ] u 1 ] u 2 d ] u . (7)i j j i i j i j k k3

Similar to the set of equations one obtains in the Bous-
sinesq approximation, the above set ignores variations
of density away from the height dependent background
field r(z) except where such variations are multiplied
by the gravitational acceleration g. Because the density
variations are defined as deviations from the background
density r(z), rather than from a constant, these equations
incorporate an important non-Boussinesq effect. The
connection between the thermodynamic variables p, r,
u will be herein assumed to be given by the ideal gas
equation of state, namely

p 5 rRT. (8)

Our anelastic equations are formulated in terms of po-
tential temperature u rather than absolute temperature
T, the two variables being related by the definition

2kp
u 5 T , (9)1 2p0

in which p0 is the surface pressure at z 5 0, and k 5
R/Cp 5 0.286 for dry air.

A linearization of (8) and (9) results in

p9 u9
r9 5 2 r , (10)

gRT u

in which g 5 Cp/Cy is the usual ratio of specific heats.
To parameterize turbulent eddy mixing on the subgrid
scale, the eddy mixing coefficient for momentum KM is
assumed to be representable by the first-order closure

2 1/2(cD) |def|(1 2 Ri) , if Ri # 1;
K 5 (11)M 50, otherwise.

In (11), c is a numerical constant, D is a measure of the

grid resolution [for the two-dimensional case D 5
(DxDz)1/2 and for the three-dimensional case D 5
(DxDzDy)1/3], and Ri is the local gradient Richardson
number

d lnu
22Ri 5 g (def) , (12)

dz

in which the total deformation def is defined as

1
2 2(def) 5 D . (13)O O i j2 i j

This first-order closure for the turbulent diffusion en-
hances viscous dissipation where the motion becomes
sufficiently complicated that the scale of the grid can
no longer resolve it. The eddy mixing coefficient for
heat, KH, is taken to be equal to KM so that the eddy
Prandtl number Pr 5 KM/KH is unity.

In Fig. 1 we present a schematic of the model domain
to be employed for the purpose of the three-dimensional
calculations to be discussed in what follows. For the
initial two-dimensional integrations the XZ section of
the domain is employed. At the inflow and outflow
boundaries open boundary conditions are applied, while
a rigid lid condition is imposed on the upper horizontal
boundary of the model. In order to simulate an un-
bounded fluid, an absorbing region (with enhanced fric-
tion) is employed in the top third of the model domain.
This is introduced to prevent the reflection of internal
waves that are incident upon the upper boundary from
below. A similar absorbing region is installed upstream
adjacent to the inflow boundary to eliminate the influ-
ence of upstream-propagating perturbations on the in-
flow fields.

The topography (hs) used in all the simulations is
two-dimensional and of the simple symmetric ‘‘bell
shaped’’ form

h
h (x) 5 , (14)s 2x

1 1 1 2a
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FIG. 2. Regime diagram in space of parameters Fy and Fh: open
circles (V) show wave breaking at low level and formation of the
modified flow (laboratory experiments by Rottman and Smith 1989);
filled circles (v) show formation of the modified flow, high drag
regime [numerical experiments by Bacmeister and Schoeberl (1989)
and by Scinocca and Peltier (1989)]; asterisks (*) show intermittent
wave breaking at low level (laboratory experiments by Rottman and
Smith 1989); crosses (1) show no wave breaking at low level [lab-
oratory experiments by Rottman and Smith (1989), numerical sim-
ulations by Bacmeister and Schoeberl (1989) and by Scinocca and
Peltier (1989)]; and exes (3) show breaking at high levels, inter-
mittent high drag (numerical experiments by Bacmeister and Schoe-
berl 1989). The solid curve represents a condition for critical steep-
ening of the streamlines obtained by Laprise and Peltier (1989b).

in which h is the obstacle height and a its half-width.
The parameters h and a are varied between different
experiments, but their ratio, h/a 5 0.1, will be kept
constant in order to ensure that the dominant response
to the topographic forcing consists of predominantly
hydrostatic waves.

In most of the experiments to be discussed in the
present paper, the upstream profiles of u and u will be
assumed to be given by

u 5 U 5 const (15)

2zN
u 5 u exp , (16)0 1 2g

from which bouyancy frequency N may be determined as

g du
2N 5 , (17)

u dz

and N 5 constant 5 0.01 s21 will be fixed in the se-
quence of experiments that we intend to describe. The
background density in the anelastic basic state then has
the simple analytic form

z
r (z) 5 r exp 2 , (18)0 1 2H

in which the density-scale height H is related to the
buoyancy frequency through the relationship

g
H 5 k ø 28.6 km. (19)

2N

The three-dimensional calculations are initialized from
the two-dimensional calculations. For the purpose of
these analyses, the flow is allowed to develop in three
dimensions only after some period of two-dimensional
evolution. This was done to avoid the introduction of
possibly spurious three-dimensional effects due to the
starting transient and also to conserve computational
resources, since the three-dimensional calculations are
extremely expensive both in terms of computer exe-
cution time and memory. The analyses that we will re-
port herein have all been performed on the CRAY J916
computer system in our laboratory in Toronto, Ontario.

3. Governing parameters

Dimensional analysis requires that a vertically un-
bounded flow with constant U and N above an obstacle
that is characterized by the two length scales h and a
be governed by these five nondimensional parameters:

(Fy , Fh, Fr, Re, Pr). (20)

The first three members of this set are all appropriately
defined Froude numbers, namely

hN aN HN
F 5 , F 5 , F 5 .y h rU U U

Previous analyses of the flows to be investigated herein

have been focused almost entirely upon the parameters
Fy and Fh. In Fig. 2, we summarize the results of several
such previous analyses by indicating qualitatively, in
the Fy–Fh plane, the characteristics of the statistical
equilibrium states obtained in the simulations. The
above three Froude numbers represent the ratios of dif-
ferent length scales (namely, obstacle height h, obstacle
half-width a, and density-scale height H) to the intrinsic
vertical length scale of the flow U/N. The latter length
scale is clearly the height to which a fluid particle may
ascend moving vertically with initial velocity U from
its equilibrium density level in the stratified fluid with
buoyancy frequency N (it is clear, for example, that
when Fy . 1, upstream blocking must occur). The
length scale U/N is also the inverse vertical wavenumber

5 lz/2p 5 U/N of stationary hydrostatic internal21kG

waves. The Froude number Fy is a measure of the degree
of nonlinearity (due to the finite amplitude lower bound-
ary condition) to be expected of the flow. An important
phenomenon, whose occurence is governed by Fy , is
the breaking of upward-propagating internal waves.
Breaking occurs when a streamline at some height lo-
cally excedes a vertical orientation, so that the flow in
this vicinity becomes locally unstable against convec-
tion. Wave breaking occurs at displacement maxima in
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the (hydrostatic) wave field that are separated vertically
by a wavelength. When Fy is small, breaking begins far
from the surface due to the influence of the upward
decrease of density in the anelastic basic state and then
descends from one displacement maximum to the one
below (e.g., Bacmeister and Schoeberl 1989). In con-
trast, when Fy $ (where is some critical value ofc cF Fy y

Fy ), breaking appears at the lowest displacement max-
imum at zc ø (3/4)lz 5 (3p /2)(U/N) (the precise height
of the lowest maximum for the non-Boussinesq flow
will be considered further in this paper and will be
shown to be of fundamental importance) and then at the
subsequent levels above (Peltier and Clark 1979). In the
latter case the flow is fundamentally different from that
for subcritical conditions. A bifurcation occurs that re-
sults in a resonant amplification of the low-level flow
in the lee of the obstacle. Linear wave theory (in the
hydrostatic limit) gives the critical value for the Froude
number at the bifurcation point to be 5 1, while thecF y

finite-amplitude solution (Miles and Huppert 1969) of
the steady-state equations originally derived by Long
(1953) gives the value 5 0.85 when the bell-shapedcF y

topography (14) is assumed to force the internal waves.
The solid curve in Fig. 2 shows the condition of critical
steepening of the streamlines that has been obtained by
solving Long’s model numerically (Laprise and Peltier
1989b). Full transient numerical simulations by Scin-
occa and Peltier (1989) of the unsteady nonlinear prob-
lem have delivered a similar value ø 0.9.cF y

The second Froude number Fh 5 aN/U in the list (20)
provides a measure of the importance of nonhydrostatic
effects. Since the horizontal and vertical wavenumbers
of the steady wave field launched by the obstacle are
related by

2 2 2 2k U k Uz x5 1 2 (21)
2 2N N

and the dominant horizontal length scale of the wave
field is determined by the obstacle width kx ; a21, it is
clear that when Fh is large (kxU/N → 0) the wave field
consists of freely propagating waves with kz ø kG 5 N/
U. In contrast, when Fh is small, the right-hand side of
(21) becomes negative, which means that the distur-
bance is trapped in the vertical and evanescent [the so-
called potential flow regime; see, e.g., Gill (1982)]. Note
that when Fh ; 1 the scale of the forcing (mountain
halfwidth) matches the wavelength of the wave field
(Peltier and Clark 1979) and, as a result, a steady pattern
of nonhydrostatic ‘‘lee waves’’ is established behind the
obstacle.

The third Froude number, Fr 5 HN/U } g/NU, is the
ratio of the gravitational acceleration to the acceleration
of a fluid particle in the wave and measures the im-
portance of non-Boussinesq effects. Previous numerical
simulations (Bacmeister and Schoeberl 1989) of the
flow for subcritical Fy show that, for smaller Fr, the
typical time of flow evolution decreases, while the scales

of upward- and downward-propagating waves appear to
be independent of Fr. The dependence of major flow
characteristics on Fr for Fy . will be the main focuscF y

of the analyses to be presented in the work to be reported
herein and this has not been previously discussed.

It appears that flow characteristics in the supercritical
regime also significantly depend upon the Reynolds
number of the flow, which we may define as

21 2Uk UGRe 5 5 . (22)
K NKM M

Using (11) and scaling deformation as def ; U/ 521kG

N, it is clear that in the regions of the flow where Ri
, 1, the Reynolds number can be estimated as

2U
Re ø . (23)

2 2N c DxDz

The last parameter in the set (20) is the Prandtl number
Pr 5 KM/KH, which is the ratio of diffusivities of mo-
mentum and heat. As mentioned previously, in all of
the analyses that follow, this will be taken to be equal
to unity.

4. The height of the critical steepening level

Following Peltier and Clark (1979), consider the lin-
ear solution for the free stream deflection z(x, z) in the
hydrostatic limit, which has the functional form

2a h z
z(x, z) 5 exp cosk zG2 2 1 2x 1 a 2H

ahx z
2 exp sink z. (24)G2 2 1 2x 1 a 2H

The condition for instability of the wave is ]z/]z . 1.
In the limit H k z, it is found that the first steepening
level occurs where kGzc 5 3p /2 and x 5 0. To next
highest order, one may construct a solution of

]z
(x, z) 2 1 5 0 (25)

]z

in the form

3p
1/2k z 5 2 e k z , x 5 0, (26)G c G 12

where e 5 (2kGH)21 5 (2Fr)21 is a small parameter and
kGz1 is of order of unity. Substitution of (26) into (25)
immediately gives

1/23p 3p
k z 5 2 . (27)G c 1 22 2Fr

The graph of (27) is shown in Fig. 3a. It is therefore
clear that for smaller Fr the level of wave breaking, to
which we may refer as a wave-induced critical level,
descends. Numerical solution of (25) also shows that
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FIG. 3. Characteristics of wave breaking for different values of
(Fr)21: (a) normalized height of breaking level. The solid curve rep-
resents the dependence (27). (b) Nondimensional downstream shift
of the wave breaking region. The solid curve represents the numerical
solution of (25). (c) Virtual origin of the modified flow regime. The
solid curve represents the estimate of two-way delay obtained from
(27) and (32). Asterisks denote the experiments with the relatively
high Reynolds number.

TABLE 1. Parameters used in numerical experiments.

Experiment U (m s21) Dx (m) Dz (m) c Fr F21
r Re

1
2
3
4
5
6
7
8
9

0.5
1.0
1.0
1.0
1.0
1.0
2.0
4.0
5.0

20
50
30
50
40
40

100
200
250

10
25
10
25
20
20
50

100
125

0.23
0.23
0.23
0.115
0.10
0.01
0.23
0.23
0.23

560
280
280
280
280
280
140
70
57

0.0018
0.0036
0.0036
0.0036
0.0036
0.0036
0.0071
0.014
0.017

240
150
550
600

1200
1.23105

150
150
150

10
11
12
13
14
15
16
17

6.0
10.0
15.0
20.0
20.0
20.0
30.0
50.0

300
500
400
400
400
400
300
200

150
250
250
250
250
250
200
150

0.23
0.23
0.23
1.15
0.69
0.23
0.23
0.92

47
28
19
14
14
14
9.3
5.6

0.021
0.036
0.053
0.071
0.071
0.071
0.11
0.18

150
150
420

30
84

760
2800

990

the point at which critical steepness is achieved shifts
downstream as Fr decreases (Fig. 3b).

To estimate a typical time that would be required for
a wave packet to reach the critical level and for a re-
flected wave to return to the ‘‘ground’’ (two-way group
delay), one needs the vertical component of the group

velocity. This may be estimated on the basis of the
following conventional wave equation for linear dis-
turbances in a stratified fluid:

2] 1
2w 1 w 1 w 1 N w 5 0, (28)xx zz z xx21 2]t H

in which w is the vertical velocity perturbation. For
disturbances of the form

w ; exp[i(k x 1 k z 2 vt)], (29)x z

the dispersion relation is simply, as is well known,

2 2N kx2v 5 . (30)
1

2 2k 1 k 2x z 24H

From (30) one may obtain the vertical component of
the group velocity as

]v 2vkzc 5 5 . (31)gz ]k 1z 2 2k 1 k 2x z 24H

Since the steady disturbance launched by the obstacle
has v 5 kxU, we have

1/22 2c k U k U 1gz x x5 1 2 1 . (32)1 2 1 2[ ]U N N 2Fr

From (32) and (26) one can estimate the two-way group
delay using the appropriate value of the dominant hor-
izontal length scale of the waves, which is deter-21kx

mined by the horizontal scale of the obstacle, a. The
estimate for kx ø a21 (the value employed in the nu-
merical simulations of Bacmeister and Schoeberl 1989),
is shown in Fig. 3c.
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FIG. 4. Contour plots of potential temperature for two simulations (lines 6, 14 in Table 1):
U 5 1.0 m s21, t 5 120 (a), 240 (b), 360 (c), 480 min (d).

FIG. 5. As in Fig. 4 but U 5 20 m s21, t 5 60 (a), 120 (b), 180 (c), 240 min (d).
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Fig. 6. Hovmöller plot of surface horizontal velocity for three simulations (lines 2,14,16 in
Table 1): (a) U 5 1.0 m s21, (b) U 5 20 m s21, (c) U 5 50 m s21.
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FIG. 6. (Continued)

FIG. 7. Nondimensional speed of the modified flow front (chinook
front) propagation for different values of (Fr)21. Different symbols
indicate different Re values: (V) Re , 420, (*) 420 , Re , 550,
(1) Re . 750.

5. Results and interpretation of the
two-dimensional simulations

The dimensional parameters h, a, N, and U in our
numerical experiments are chosen so that the nondi-
mensional Froude numbers are Fy 5 1 and Fh 5 10.
The parameter Fr may then be varied by changing the
inflow velocity U. The eddy diffusion coefficient c in
(11), as well as grid scales Dx, Dz, are varied and thus
the Reynolds number also changes from experiment to
experiment.

Several numerical solutions of the initial value prob-

lem have been constructed for different values of Fr and
Re (Table 1). In all experiments, a typical picture of
formation and subsequent evolution of the basic flow
structure (accelerated low-level jet and decelerated over-
lying mixed layer) was observed (Figs. 4, 5). The down-
stream region of modified flow has a well-defined sharp
front (the so-called chinook front) that propagates down-
stream with almost constant speed (Fig. 6). The chinook
front propagation speed is obviously an important global
property of the flow and it is a characteristic that can
be measured easily as the slope of the line separating
regions of high and low velocity in a sequence of typical
Hovmöller diagrams (Fig. 6) that presents the temporal
variation of the horizontal velocity field across the entire
lower boundary of the domain of the evolving flow.
Results for the velocity of chinook front propagation
deduced from such data are shown in Fig. 7. On the
basis of these tests, it is clear that, as increases (U21Fr

increases, and thus non-Boussinesq effects become
more important), the ratio of chinook front speed (Uf )
to the inflow velocity (U) rises from an almost constant
value at low to a very high value at high .21 21F Fr r

A further interesting global characteristic of the flow
is clearly the wave drag Dw exerted by the flow on the
obstacle. An ad hoc empirical hydraulic theory proposed
by Smith (1985) suggests the scaling Dw ; U 3/N. The
normalized values of drag are shown in Fig. 8a (original
values of the drag are also shown using a logarithmic
scale in Fig. 8b). The estimated values of the wave drag
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FIG. 8. Drag as a function of the parameter (Fr)21: (a) in nondi-
mensional form and (b) in dimensional form in log–log coordinates.

FIG. 9. Characteristics of pulsations of the surface velocity as func-
tions of the parameter (Fr)21: (a) nondimensional values of the max-
imum surface velocity; (b) nondimensional phase velocity; and (c)
nondimensional horizontal wavelength. Different symbols denote dif-
ferent ways of determination of the wavelength: (V) the values ob-
tained from the spatial spectra of the perturbations, and (*) l 5 cphT,
where the period T of pulsations is obtained from the temporal spectra.

are taken when the flow has fully developed in the sense
that the drag has reached a level of statistical equilibrium
in which it has ceased to grow. Although these values
of drag show an unsurprisingly large scatter, it is clearly
observed in Fig. 8a that a rather abrupt transition occurs
from a larger to a smaller value as the parameter 21Fr

increases. Thus, with increasing the power law for21Fr

the drag remains the same, but the coefficient of pro-
portionality decreases abruptly by about 40%.

The question arises as to why this previously unrec-
ognized and rather dramatic transition occurs. As we
will demonstrate, it appears that the answer lies in the
dynamics of the Kelvin–Helmholtz (K–H) instability
that developes in the shear layer that forms on the in-
terface between the low-level jet and the overlying de-
celerated region that characterizes the new ‘‘mean flow’’
in the lee of the obstacle that is induced by wave break-
ing. A comparison of Figs. 6a and 6c suggests that the
amplitude of the K–H-related perturbations is signifi-
cantly more intense for larger U. The numerical data do
indeed support this interpretation. For example, the ratio
of the amplitude of the pulsations of surface velocity
to the inflow velocity increases with (Fig. 9a), as21Fr

does the phase velocity of the downstream-propagating
pulsations (Fig. 9b), which begins to rise from a constant
value of unity for $ 0.02 (this phase velocity is21Fr

measured as the mean slope of the streaks of anoma-
lously high velocity in the Hovmöller diagrams). With-
out providing any detailed demonstration of the fact,
we simply note that there is no obvious dependence of
the phase velocity on the Reynolds number, while the

amplitude of pulsations does increase with Re (for given
).21Fr

It is well known that a stably stratified parallel flow
is potentially unstable if the gradient Richardson number
Ri 5 N 2(du/dz)22 , 0.25 for some z (Miles 1961; How-
ard 1961). Although the exact critical value of Ri may
differ from 0.25 in the present case, in which the basic-
state flow is not a one-dimensional parallel flow and
has a proximate lower horizontal boundary, we never-
theless expect that instabilities should appear for suf-
ficiently small Ri and that in general their growth rate
should increase dramatically as Ri decreases. The Rich-
ardson number characteristic of the flow should clearly
scale as Ri ; N 2L2/U 2. If one chooses a characteristic
vertical scale, L, to be proportional to the height of the
wave-induced critical level, the minimum Richardson
number in a shear layer would be expected to vary as

1/22
Ri 5 c 1 2 , (33)min 1 1 2[ ]3pFr

where the coefficient c1 may be determined on the basis
of numerical experimentation. Previous related numer-
ical calculations (e.g., Peltier et al. 1978), where tem-
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FIG. 10. Contour plots of potential temperature for the simulation with U 5 30 m s21 (line
15 in Table 1) at (a) t 5 60, (b) 90 min.

FIG. 11. As in Fig. 10 but plots of horizontal velocity.
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FIG. 12. Contour plots of potential temperature for two-dimensional simulations at (a) t
5 130, (b) 160, (c) 170, (d) 180 min. The three-dimensional calculations were initialized
from the two-dimensional calculations with U 5 15 m s21 (line 11 in Table 1) at time t 5
120 min. The X–Z sections of the flow at y 5 30Dy are shown.

FIG. 13. As in Fig. 12 but for three-dimensional simulations.
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FIG. 14. Isosurfaces of the streamwise component of vorticity: vy 5 61.4 1023s21, t 5 150 min. The green surface represents the poten-
tial temperature isosurface u 5 312.

FIG. 15. Contour plot of potential temperature in Y–Z plane at x 5 12 km, t 5 155 min.
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FIG. 16. Contour plots of streamwise component of vorticity (vx) at different Y–Z planes.
Region of wave breaking (a) x 5 6, (b) 7.2, (c) 8.4, (d) 9.6 km.

porally and spatially averaged flows were employed for
the determination of Ri for a flow with U 5 5 m s21

(Fy 5 1, Fh 5 10, Fr 5 1.8 3 1022, Re → `), give a
value for c1 that is very slightly greater than 0.25. Since
Kelvin–Helmholtz instabilities feedback negatively
upon the mean flow in the sense that the vertical shear
is sharply diminished by the wave–mean flow interac-
tion process (e.g., Peltier et al. 1978; Klaassen and Pel-
tier 1985a), the value of c1 for undisturbed flow would
clearly be less than the value obtained from data taken
at a time when the wave is present in the flow. The
source of noise out of which the Kelvin–Helmholtz-like
perturbations grow is found in the region of intense
wave breaking above the obstacle in which the fluctu-
ations are of convective type, a fact that is confirmed
by detailed linear stability analysis (Peltier and Scinocca
1990). There is also some indication that the intensity
of perturbations is modulated (see Fig. 6) in the time
range 100–250 min (that is consistent with the two-way
group delay) for different Fr. It seems that the excitation
of Kelvin–Helmholtz-like perturbations is of subcritical
type for (Fr)21 # 0.04, while for larger values of (Fr)21,
in the supercritical regime, the perturbations become
dynamically active in the sense that they determine their
own temporal scale. It is notable that there is no obvious
dependence of the horizontal wavenumber of the un-
stable fluctuations upon Fr (Fig. 9c). The instability be-

comes the dominant characteristic of the flow for suf-
ficiently large (Fr)21, in which regime the flow in the
lee of the obstacle consists of several very large-am-
plitude rolls (Figs. 10, 11), which are typical charac-
teristics of a mature Kelvin–Helmholtz instability. Since
the perturbations govern the exchange of horizontal mo-
mentum between the low-level high velocity flow and
the overlying low velocity flow, it is clear that when
the perturbations are stronger, the upper layer will ac-
celerate. Thus, the speed of downstream propagation of
the region of modified flow would be expected to in-
crease. In contrast, the drag exerted by the flow on the
obstacle would be expected to decrease, since the dif-
ference of velocities between the upstream and down-
stream regions also decreases.

The height of the wave-induced critical level in these
numerical simulations was also measured as the unper-
turbed height of the isotherm for the mean value of
temperature in the mixed region produced by wave
breaking. The results for this parameter are shown in
Fig. 3a, together with the estimate (27) obtained on the
basis of linear theory. Though all points obtained in the
numerical simulations lie below the theoretical curve,
it will be observed that the height nevertheless does
decrease with (Fr)21. The downstream shift of the break-
ing region for larger (Fr)21 is also noted in the exper-
iments (Fig. 3b).
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FIG. 17. As in Fig. 15 but region of K–H roll formation: (a) x 5 12, (b) 13.2, (c) 14.4, (d) 15.6 km.

FIG. 18. As in Fig 15 but region of mature K–H roll: (a) x 5 24, (b) 26.4, (c) 27.6, (d) 29.6 km.
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FIG. 19. Temporal behavior of the maximum value of the y component
of velocity. The velocity is in nondimensional units (uy/U).

FIG. 20. Hovmöller plots of surface horizontal velocity for (a) two-dimensional and (b) three-
dimensional simulations. The x component of velocity averaged in y direction is shown for the three-
dimensional case. Time range 120–180 min (0–60 min of three-dimensional calculations).

On the basis of the Hovmöller diagrams it is obvious
that the propagation of the chinook front begins after
some considerable time following the initialization of a
simulation. This ‘‘virtual origin time’’ of the onset of
the modified flow regime was also measured (Fig. 3c),
and the results are in agreement with our estimate based
upon the two-way group delay and therefore consistent
with the resonant hypothesis of modified flow formation
proposed by Peltier and Clark (1979, 1983), which ex-
plains the flow amplification by a resonant interaction
of upward- and downward-propagating waves.

6. Three-dimensionalization of the severe
downslope windstorm transition

To study the modification of the above-described
downslope windstorm states when the flow is allowed
to access the third spatial degree of freedom we employ
a two-dimensional experiment with U 5 15 m s21 (line
11, in Table 1) in order to initialize the evolution of the
three-dimensional flow. The flow was first allowed to
develop in three dimensions only after 60 min of two-
dimensional integration, a time by which wave breaking
had yet to commence (Figs. 12, 13). A comparison of
potential temperature fields in an X–Z section from the
three-dimensional flow with the potential temperature
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FIG. 21. Temporal behavior of the maximum value of the x component of velocity in
nondimensional units, ux/U (upper curves), and the downstream position of the velocity
maximum in nondimensional units, y/a (lower curves). Thin curves represent the two-
dimensional simulation, while thick curves represent the three-dimensional simulation for
the time range 120–180 min.

field from the two-dimensional flow shows that both
fields are essentially identical just subsequent to com-
mencement of three-dimensional integration. Further-
more the y component of velocity and x (streamwise)
component of vorticity, both of which are indicators of
three-dimensional motions, remain negligible (at the
noise level) during the initial 25-min period of three-
dimensional integration. These data allow us to con-
clude that the flow remains stable to three-dimensional
perturbations at this stage of its evolution. A second
three-dimensional simulation was next initialized after
t 5 120 min of two-dimensional integration, at the time
when wave breaking and subsequent formation of K–
H billows has just begun (Fig. 13). In this case, three-
dimensional motions in the form of streamwise-oriented
patches of vorticity of alternating sign develop intensely
within the flow (Fig. 14). Diagnostic analyses of data
from vertical cross sections (Y–Z planes) of the flow
demonstrate that streamwise vortices originate in a re-
gion of wave breaking, where the streamlines locally
achieve (and excede) a vertical orientation. This region
lies between the mountain crest and a distance of ap-
proximately one half-width of the mountain down-
stream.

The results of the present numerical simulations as
well as the results of relevant laboratory experiments
(Voropayev et al. 1993) concerning the evolution of
instabilities in an overturned linearly stratified fluid al-
low us to propose the following scenario for the de-
velopment of three-dimensional instability for this case.

The vertically oriented density interfaces become hy-
drostatically unstable and, as a result, horizontal intru-
sions appear at different levels, forming horizontal lay-
ers. Thus, the system turns out to consist locally of
alternating horizontal layers of relatively denser and
lighter fluid. These layers in turn become unstable re-
sulting in the formation of arrays of mushroomlike con-
vective structures (thermals) in the cross-stream (y axis)
direction. These structures can be clearly seen in Y–Z
sections of potential temperature (Fig. 15). Thus, the
convective instability creates a streamwise component
of vorticity, which, in combination with streamwise ve-
locity, creates streamwise oriented patches of vorticity
of alternating sign. Because there are several unstable
layers in this region of the flow, the convective elements
appear and grow coherently at different horizontal levels
creating a multilayered structure of vortices (Figs. 16–
18). A similar mechanism for the generation of stream-
wise vortex streaks involving convective instability also
operates in Kelvin–Helmholtz billows where the over-
turning motion carries heavy fluid above light fluid.
Since the fluid is perturbed already in the wave-breaking
region, the perturbations continue to grow in a coherent
manner on the K–H billows, which themselves originate
in the wave-breaking region. Since there are typically
five vortex pairs in the spanwise direction within the
model domain (Fig. 16), the dominant spanwise wave-
length ly of the perturbation can be estimated as ly ø
0.9 km or lyN/U ø 0.6 in nondimensional units. This,
as might be expected, is of the same order as the typical
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FIG. 22. Contour plots of x component of velocity at the surface: (a) t 5 175, (b) 180 min.

FIG. 23. As in Fig. 22 but for y component of velocity.
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vertical wavelength of the breaking waves. The ratio of
ly and the typical wavelength lKH of K–H perturbations,
which in our case is lKH ø a, is then ly/lKH ø 0.06.
This value is consistent with the experimental results
by Thorpe (1985) and Schowalter et al. (1994), with
prior theoretical predictions of Klaassen and Peltier
(1985b) and with the results from high-resolution sim-
ulations of breaking Kelvin–Helmholtz waves (Caul-
field and Peltier 1994). The streamwise vortices growing
on a spanwise billow are transported downstream to-
gether with the billow and subsequently erode it through
the triggering of three-dimensional turbulent motions.

Comparison of the snapshots of potential temperature
in Fig. 12 shows that the K–H billows are almost com-
pletely destroyed at some distance downstream in the
three-dimensional case, while the billows remain co-
herent to arbitrary distance downstream in the two-di-
mensional flow. Figure 19 presents the temporal be-
havior of the maximum value of the y component of
velocity (uy) in the entire computational domain. On
this basis it will be noted that the growth of three-di-
mensional instability ceases at t ø 50 min when the
amplitude of the cross-stream velocity is uy/U ø 1.8 in
nondimensional units. Three-dimensional integration
was aborted at t 5 180 min (60 min of 3D integration)
because by that time the scale of the turbulent motions
had become comparable to the grid scale and we had
thus reached the limit of our ability to further resolve
the turbulent cascade. In these simulations of the process
of threee-dimensionalization, the streamwise vortices
were found to be essentially absent from the so-called
braid region between the adjacent billow cores (see Fig.
14). This characteristic of the streamwise vortex streaks
clearly provides an additional argument in support of
the hypothesis that the vortices are created by the shear-
aligned convective instability mechanism of Klaassen
and Peltier (1985a), rather than by the alternative mech-
anism that is responsible for the creation of streamwise
vortex streaks in unstable unstratified shear layers (e.g.,
Metcalfe et al. 1987; Klaassen and Peltier 1991; Smyth
and Peltier 1994). It is interesting to note that stream-
wise vorticity is significantly weaker below the cores
of K–H billows than above the cores (e.g., Fig. 18).
This may be understood to be a consequence of the
stabilizing action of high-velocity parallel low-level jet
flow.

It is also interesting to consider how the three-di-
mensional instability influences the flow fields at the
surface. This issue is clearly of great practical interest
concerning the impacts that natural flows of this kind
might be expected to cause. The comparison of Hov-
möller diagrams (Fig. 20) for the horizontal velocity in
the case of two-dimensional flow with that for the x
component of velocity averaged in y direction from the
three-dimensional simulation shows that high-velocity
pulsations (white streaks of anomalous velocity in the
gray-scale diagrams), which are the surface manifes-
tations of individual K–H rolls, do not propagate in

coherent quasi-two-dimensional form as far downstream
in the three-dimensional case as they do in the two-
dimensional case. This is clearly a consequence of the
erosion of the coherence of the two-dimensional K–H
rolls by the three-dimensional instability. However, the
amplitude of the pulsations is notably larger in the three-
dimensional flow. This may be explained with the help
of Bernoulli’s constraint. The K–H rolls with their em-
bedded streamwise vortex tubes create an effective up-
per boundary for the low-level jet flow, so that high
surface velocity correlates with ‘‘shallow’’ regions un-
der the tubes. Since there are no longitudinal tubes in
the two-dimensional flow, it is not suprising that pul-
sations are less intense in this case. The results presented
in Fig. 21 demonstrate that the amplitude of individual
pulsations is about 15% larger in three dimensions than
in the two-dimensional flow, while the frequency of the
pulsations is basically the same. The lower curve in Fig.
21 shows the way in which the velocity maximum lo-
cated at a point on the surface under a particular K–H
roll moves at some constant speed downstream (that is
indicated by a constant slope of the curve in this par-
ticular time interval) until a new K–H roll appears on
the lee slope of the mountain. The process then repeats,
creating the sawtoothlike shape of the curve. Contour
plots of the longitudinal velocity (Fig. 22) and the cross-
stream velocity (Fig. 17ii) at the surface again show that
the Chinook front propagating downstream becomes
nonuniform in the cross-stream (y axis) direction as a
consequence of the erosion of the K–H rolls by the
three-dimensional instability. Furthermore, a high ve-
locity streak representing a K–H roll propagating down-
stream also becomes highly variable in the cross-stream
direction (Fig. 17i), as time increases and localized
regions of extremely high cross-stream velocity (uy ø
620 m s21, uy/U ø 61.3) appear (Fig. 23b) as the three-
dimensional instability matures. It is also worth noting
the existence of regions of negative longitudinal velocity
at the leading edge of the high velocity flow (black spots
in Fig. 22). Similar flow reversals were observed in the
Doppler lidar measurements of a windstorm near Boul-
der, Colorado (Neiman et al. 1988), and were, correctly
now according to us, attributed to the hydraulic jump
that marks the leading edge of the chinook front. These
regions also become highly nonuniform in the cross-
stream direction even when the topography is perfectly
two-dimensional.

7. Conclusions

The numerical simulations described herein provide
clear evidence that Kelvin–Helmholtz instability plays
a fundamental role in the global dynamics of stratified
flow over topography in both two and three spatial di-
mensions. Rather than simply being of importance to
the small-scale turbulence that is engendered within
such flows, the onset of Kelvin–Helmholtz instability
entirely governs the intermittency that is an observed
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characteristic of the flow in the lee of the topographic
maximum. Our two-dimensional simulations show that
properties of this instability are extremely sensitive to
variations of the governing parameter NU/g, which mea-
sures the importance of non-Boussinesq effects. As this
parameter increases, the breaking level descends and a
local Richardson number characteristic of the low-level
flow decreases below its critical value. This results in
a dramatic increase of the intensity of the low-level K–
H instability. This, in turn, drives a marked change in
flow characteristics: the speed of downstream propa-
gation of the chinook front and the intensity of K–H
instability induced pulsations of the surface velocity
field increase while the drag exerted by the flow on the
obstacle decreases.

Three-dimensional simulations initialized from two-
dimensional initial conditions show that such severe
downslope windstorm flows become convectively un-
stable to a higher-order instability during the onset of
wave breaking. This higher-order instability originates
in the wave-breaking region over the mountain where
the otherwise stably stratified fluid becomes overturned
and then evolves into the low-level K–H rolls where
this evolving instability first appears in the form of
streamwise-oriented vortices of alternating sign. The
physical mechanism that supports the instability is that
first analyzed by Klaassen and Peltier (1989) in the con-
text of their analyses of the onset of turbulence in Kel-
vin–Helmholtz waves. The maturation of this three-di-
mensional instability eventually erodes the K–H rolls
and thereby arrests their downstream propagation. How-
ever, the amplitude of the high velocity pulsations that
characterize the surface trace of the K–H rolls is sig-
nificantly higher in three-dimensional flow compared to
the amplitudes that this component of the flow is able
to reach in two spatial dimensions. The horizontal ve-
locity field at the surface becomes strongly three-di-
mensional sufficiently far downstream where regions in
which the cross-stream component of velocity comes to
be of the same order as the streamwise component.
These analyses may also be interpreted to mean that the
results of previous two-dimensional simulations remain
useful in application to flows over two-dimensional to-
pography within several mountain halfwidths down-
stream of the mountain crest.
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