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ABSTRACT

A series of new analyses of the problem of the evolution of the internal gravity wave field that is excited
when a uniformly stratified fluid flows over monochromatic topography is presented. Results demonstrate that
upward-propagating waves overturn and break when they reach sufficient amplitude. The breaking of the wave
field may occur due to either one or the other of two main effects, namely, the instability of the propagating
wave front and the instability of the wave established behind the advancing front. The analysis of the wave–
mean flow momentum transfer process reveals significant differences between these results and the predictions
of two main gravity wave drag parameterization schemes (viz., those based upon so-called saturation theory
and the spectral theory based on the critical layer absorption mechanism) regarding the dynamics of wave
breaking and the spatial distribution of the resulting momentum transfer. The vertical extent and structure of
the breaking region and, hence, the momentum transfer from the wave field to the mean flow, are shown to be
highly sensitive to the governing parameter aN/U (U and N are, respectively, the velocity and buoyancy frequency
characteristic of the upstream incident flow, while a is the wavelength of a quasi-topographic forcing). This
nondimensional parameter provides a measure of the importance of nonhydrostatic effects. When the flow is
allowed to access the third spatial dimension, the simulations demonstrate that it develops intense three-dimen-
sional motions in the regions of wave breaking. An instability first appears in the form of streamwise-oriented
vortices of alternating sign that are consistent with typical convective instability patterns observed previously
by different authors. It was observed, however, that two-dimensional coherence of the main flow is still maintained
at the coarse-grain scale although the instability does lead to the onset of small-scale turbulence.

1. Introduction

It is well understood that the breaking of upward
propagating internal waves, which occurs when the
waves achieve such large amplitude that they are able
to invert the local density stratification of the medium
through which they propagate, is a dynamically impor-
tant interaction in the atmosphere and almost certainly
also in the oceans. The transfer of momentum from the
wave field to the mean flow associated with such internal
wave breaking involves not only local mixing of the
density field but also a marked impact on the vertical
variations of horizontal velocity. The global impact of
the wave drag that is a consequence of this momentum
transfer is inferred on the basis of a reversed meridional
gradient of zonally averaged temperature in the meso-
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sphere (e.g., Lindzen 1968) as well as in a limiting of
the amplitude of the diabatically forced mesospheric
zonal circulation (Lindzen 1981). Seen from this per-
spective, the accurate representation of the momentum
flux associated with upward propagating internal waves
is also a key issue in the design of ‘‘subgrid’’ param-
eterizations for general circulation models [for an ex-
tensive recent review of the parameterization problem
see Hamilton (1999)]. One may distinguish two basic
approaches to the parameterization problem. The first
is based on the dynamical processes that occur at critical
levels, where the horizontal phase speed of a wave, c,
is equal to the mean horizontal wind speed, that is, c
5 U(z) with U the mean horizontal speed of the flow
at height z. It is well understood that there is an increased
convergence of the vertical flux of horizontal momen-
tum associated with the wave field near such critical
levels. Each component of the wave spectrum transfers
its momentum to the mean flow when and where it
becomes critical. The nonlinear interactions among
components of the wave spectrum can be taken into
account together with the background wind to define
the levels that are critical to any specific component of
an incident spectrum of waves (Hines 1997). Hines’s
approach includes the effects of the Doppler shifting of
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waves by the winds associated with the rest of the spec-
trum. Another approach to gravity wave drag parame-
terizations is based on the so-called saturation hypoth-
esis (Lindzen 1981). This has been implemented in a
number of different general circulation models (e.g.,
McFarlane 1987; Holton 1982). From the perspective
of the saturation hypothesis, wave amplitude is con-
strained by the requirement that it not be greater than
that required to induce neutral stability at the lowest
breaking level and is thereafter limited at higher ele-
vations to the saturation value by a turbulent eddy dif-
fusivity to be associated with the turbulence created by
the breaking wave itself. In the present paper we will
for the most part investigate the simplest possible cir-
cumstance in which gravity wave drag arises, namely,
that involving monochromatic waves in a uniform mean
wind (though some examples of breaking induced by
wave packets consisting of superpositions of waves will
also be discussed). A goal of the work to be reported
herein will be to provide a test of the saturation hy-
pothesis by fully resolving the hydrodynamic interac-
tions that ensue when waves break.

A very large number of recent theoretical studies have
led to the suggestion of a variety of possible instabilities
that might mediate the wave–mean flow interaction in-
duced by wave breaking under different circumstances
(see, e.g., Hines 1971; Fritts and Rastogi 1985; Dunk-
erton 1987; Klostermeyer 1991). A simplified classifi-
cation of possible gravity wave instabilities was recently
proposed by Sonmor and Klaassen (1997) on the basis
of numerical linear stability analysis. Their approach
relies upon the validity of the assumption that typical
timescales of the instability and background flow evo-
lution are widely separated and, hence, that the wavy
basic state can be considered steady for the purpose of
the stability analysis. In physical reality these timescales
are of course often comparable. It is therefore rather
clear that the development of internal wave instabilities
should be considered together with the evolution of the
parent wave and therefore direct numerical simulations
of this unsteady nonlinear process are necessary in de-
veloping a realistic picture of wave breaking. Such sim-
ulations turn out to be rather challenging, however, in
terms of the computational resources required, since
most instabilities are essentially three-dimensional and
the associated small-scale motions should be resolved
in a deep computational domain that enables simulation
of the entire process of wave field evolution with height.
In the present paper we will focus on the waves prop-
agating initially in a shearfree environment, rather than
the waves interacting with background shear, which has
been the focus of extensive recent studies by Andreassen
et al. (1994), Winters and D’Asaro (1994), Fritts et al.
(1996), Andreassen et al. (1998), Fritts et al. (1998),
and Dornbrack (1998).

The main purpose of this paper is to more fully elu-
cidate a number of basic dynamical features of the wave
breaking process and their effects upon the basic state

of the flow for a range of values of the control param-
eters in a specially designed series of two- and three-
dimensional numerical simulations. If the incident flow
has uniform velocity profile (U) and constant buoyancy
frequency (N), then dimensional analysis (e.g., Afana-
syev and Peltier 1998) requires the flow to be governed
by three appropriately defined nondimensional param-
eters, namely,

hN aN HN
F 5 , F 5 , F 5 .y h rU U U

These nondimensional parameters represent the ratios
of different length scales (viz., height h, and wavelength
a of the (quasi) topography and density scale height H)
to the intrinsic vertical length scale of the flow U/N,
which is also the inverse vertical wavenumber of sta-
tionary hydrostatic internal waves. The nondimensional
parameter Fy is a measure of the degree of nonlinearity
(due to the finite-amplitude lower boundary condition)
to be expected of the flow. The second nondimensional
parameter Fh provides a measure of the importance of
nonhydrostatic effects. The inverse value of this param-
eter multiplied by 2p gives the angle f between the
vertical and wave crests (e.g., Gill 1982), such that

2p Ukxcosf 5 5 .
F Nh

Here kx 5 2p/a is the horizontal wavenumber of the
waves generated by the (quasi) topography of wave-
length a. Both Fy and Fh govern the dynamics of break-
ing of upward-propagating internal waves. When Fy is
large enough and Fh is not especially small [see, e.g.,
the regime diagram in Fig. 2 in Afanasyev and Peltier
(1998)] wave breaking may occur at a low level, within
one vertical wavelength of the surface. In the case of
localized topography and for such values of these pa-
rameters, the interesting phenomenon of severe down-
slope windstorm formation occurs and has been ob-
served in nature and extensively studied both numeri-
cally and theoretically (see, e.g., Peltier and Clark 1979,
1983; Smith 1985; Durran 1986; Scinocca and Peltier
1989; Laprise and Peltier 1989a,b; Afanasyev and Pel-
tier 1998). In the opposite case, when Fy is small, break-
ing begins far from the surface and it is this regime that
will be of interest to us herein. The third nondimensional
parameter, Fr 5 HN/U } g/NU, measures the impor-
tance of non-Boussinesq effects. It was shown in our
recent study (Afanasyev and Peltier 1998) that these
effects can be a significant factor in the dynamics of
severe downslope windstorms; in fact, they are deter-
minant of the intensity of the Kelvin–Helmholtz insta-
bility induced pulsations that control the strength of the
transience that is characteristic of the fully developed
flow.

The present study will be focused on the regime in
which the waves break in the middle atmosphere (Fy is
small) and non-Boussinesq effects might be important.
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The values Fy 5 0.21 and Fr 5 10 will be fixed in the
sequence of numerical experiments that we intend to
describe, while the value of f (and hence Fh) will be
varied in the range f 5 108–708. Thus, nonhydrostatic
waves (small ‘‘takeoff’’ angles) in which fluid particles
oscillate almost vertically as well as almost hydrostatic
waves (large takeoff angles) in which fluid parcels os-
cillate almost horizontally will be considered.

A few relatively recent numerical studies of upward-
propagating gravity waves have revealed several prop-
erties of the wave breaking events that are expected in
such circumstances. Two-dimensional numerical simu-
lations of hydrostatic monochromatic gravity waves per-
formed by Walterscheid and Schubert (1990), in partic-
ular, demonstrated that the breakdown of the wave oc-
cured as a consequence of convective instability driven
by the unstable density gradients established by wave
overturning. More recent simulations of waves excited
by a localized mountain in two space dimensions (Prusa
et al. 1996) and in three dimensions (Prusa et al. 1997)
have demonstrated that the waves break in a deep region
and that the altitude of the upper boundary of the break-
ing region is governed by the parameters of sponge-
layer damping employed in the numerical model, while
the amplitude of forcing has little effect on the highest
altitude at which breaking occurs. However, since an
entire spectrum of waves with different horizontal wave-
numbers and different frequences (since the amplitude
of the topography was time dependent) was excited and
then analyzed, it is hard to acquire insight concerning
the behavior of a wave in the more idealized circum-
stances that we will describe herein, when the forcing
is both monochromatic in time and periodic in the hor-
izontal direction. The latter authors (Prusa et al. 1997)
also mentioned that in their three-dimensional simula-
tions they observed the development of a spanwise in-
stability of the overturning wave, though the period of
growth of the instability was limited and its intensity
was not sufficient to make the flow significantly three-
dimensional. The development of secondary three-di-
mensional instability is a typical feature of the flow
when overturning motions of any nature occur in a strat-
ified fluid (see, e.g., Thorpe 1985, 1987; Schowalter et
al. 1994; Voropayev et al. 1993). The usually dominant
three-dimensional shear aligned convective instability
that controls the three-dimensionalization process in
Kelvin–Helmholtz billows has been extensively studied
both theoretically and numerically (Klaassen and Peltier
1985a,b,c; 1989; 1991; Smyth and Peltier 1991, 1993,
1994; Caulfield and Peltier 1994). It is this Klaassen–
Peltier (K–P) instability that drives the growth of
streamwise longitudinal rolls of alternate vorticity that
subsequently lead to the complete turbulent collapse of
the billow core. The K–P instability is also responsible
for the growth of the streamwise vortices in our recent
simulations of downslope windstorms (Afanasyev and
Peltier 1998). The results of the latter study have dem-
onstrated that intense three-dimensional motions devel-

op in the regions where overturning of the isentropes
in the otherwise stably stratified fluid takes place, name-
ly, in the region of breaking of the wave above the
mountain crest and in Kelvin–Helmholtz billows that
are themselves a typical feature of downslope wind-
storms. The three-dimensional convective instability
first appears in the form of streamwise-oriented vortices
of alternating sign. This instability then erodes the
downstream-propagating Kelvin–Helmholtz billows,
eventually leading to the complete arrest of their con-
tinued propagation as they ‘‘dissolve’’ into fully de-
veloped turbulent flow.

An important consideration in numerical (as well as
theoretical) analyses is to formulate physically mean-
ingful initial conditions and then to construct an appro-
priate numerical initialization that is true to them. Since
our aim is to study the gravity wave problem in its most
simplified form, we will assume that the fluid is im-
pulsively set into motion at t 5 0 (see, e.g., McIntyre
1972 and section 5.5.1 in Baines 1995). This gives rise
to potential (irrotational) flow at t 5 0, which is de-
scribed by the Laplace equation for the streamfunction
with appropriate boundary conditions. This formulation
of the physical problem implies that one can use the
potential flow over a given topography for ‘‘smooth’’
startup of numerical calculations in order to avoid non-
physical transients that otherwise occur in ‘‘shock’’
startup (when the flow is initialized without topography
and then the topography is suddenly introduced). An-
other approach to the formulation of the physical prob-
lem and hence to the numerical initialization is to grad-
ually increase the height of the topography (e.g., Prusa
et al. 1996) or the speed of the background flow. How-
ever, in that case the forcing is time dependent and the
flow at any given time is the result of all intermediate
states of its evolution. Since our aim is to study the
simplest possible formulation of the problem in which
the main governing parameters of the flow are fixed
during flow evolution, we have chosen to employ the
impulsive startup procedure for the purpose of the anal-
yses to be reported herein. Impulsive startup can in fact
be considered to be a limiting case of very unsteady
flow. In this respect some insight into the details of
unsteady flow evolution for forced internal wave prob-
lems has been provided by Lott and Teitelbaum (1993).
These authors studied the waves generated by a time-
dependent wind field over sinusoidal topography. In
their analysis the wind field was assumed to be char-
acterized by one accelerating phase and one decelerating
phase. When temporal variations of the incident wind
were rapid compared to the advective timescale, a/U,
the disturbance generated by the topography did not
have sufficient time to develop as an internal gravity
wave during the first accelerating phase. Following this
phase, the disturbance was localized near the ground
and the vertical scale of the disturbance for the particular
case considered by the authors was almost six times
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FIG. 1. The model domain.

TABLE 1. Parameters used in two-dimensional numerical experiments.

Experiment Dx (m) Nx Dz (m) Nz a (km) h (m) f (8)

1
2
3
4
5
6
7
8
9

23.9
25
25
25
25
28.8
35.625
35.625
35.625

200
200
200
200
200
200
200
200
200

66.7
200
100

70
50

111
200
200
200

450
300
300
300
450
450
550
550
550

4.8
5.0
5.0
5.0
5.0
5.75
7.125
7.125
7.125

200
200
200
200
200
200
200
400
600

10
19.5
19.5
19.5
19.5
35
49
49
49

10
11
12
13
14
15
16
17
18

42
42
42
68.9
71.25
71.25
71.25

215.325
215.325

200
200
200
200
200
200
200
200
200

300
200
125
200
200
200
200
200
200

300
250
400
450
550
550
550
550
550

8.4
8.4
8.4

13.8
14.25
14.25 (1, ½, ⅓)
14.24 (1, ½, ⅓)
43.065 (1, 1⁄9)
43.065 (1, 1⁄9)

200
200
200
200
200
200 (⅓, ⅓, ⅓)
200 (1, ⅔, ⅓)
200 (1, 1⁄9)
200 (1, ½)

56
56
56
70
71
71, 49, 7
71, 49, 7
84, 10
84, 10

larger than the characteristic wavelength (2pU/N) of
the related topographically forced internal wave.

In the following sections of this paper, the equations
of motion and boundary and initial conditions employed
in the numerical model will be discussed. The new se-
quence of simulations that document flow evolution for
different degrees of hydrostaticity in two dimensions as
well as the development of instabilities in three dimen-
sions is described and discussed in section 3. Conclu-
sions are offered in section 4.

2. Model equations and boundary and initial
conditions

The numerical model to be employed to perform the
simulations discussed herein is essentially that described
in Clark (1977) and first employed in the context of
analyses of topographically forced internal waves in
Clark and Peltier (1977). The model is based upon the
anelastic approximation to the equations of motion,
which may be written in the form

duir 5 2] p9 2 d gr9 1 ] rK D (1)i i3 j M ijdt

] (ru ) 5 0 (2)i i

du
r 5 ] (rK ] u), (3)i H idt

in which ui (i 5 1, 2, 3) are the components of velocity
in (x, y, z) Cartesian coordinates, and u is potential tem-
perature. Here p9 and r9 are pressure and density fluc-
tuations respectively, such that

p 5 p(z) 1 p9(x, y, z, t) (4)

r 5 r(z) 1 r9(x, y, z, t) (5)

dp
5 2rg. (6)

dz

The overbar denotes a hydrostatic background state var-
iable, and the deformation tensor Dij is given by

2
D 5 ] u 1 ] u 2 d ] u . (7)ij j i i j ij k k3

The anelastic approximation filters sound waves while
allowing for the variation of background density and
other thermodynamic fields with height. The connection
between the thermodynamic variables p, r, u will be
herein assumed to be given by the ideal gas equation
of state, namely,

p 5 rRT. (8)

Our anelastic equations are formulated in terms of po-
tential temperature u rather than absolute temperature
T, the two variables being related by the definition

2kp
u 5 T , (9)1 2p0
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FIG. 2. Contour plots of potential temperature for the simulation with f 5 19.58 (expt 5 in Table 1), (a) t 5 55, (b) 57.5, (c) 60, (d) 62.5
min.

in which p0 is the surface pressure at z 5 0, and k 5
R/Cp 5 0.286 for dry air.

A linearization of (8) and (9) results in

p9 u9
r9 5 2 r , (10)

gRT u

in which g 5 Cp/Cy is the usual ratio of specific heats.
We employed uniform viscosity KM 5 0.5–50 m2 s21

as well as a nonuniform viscosity distribution given by
the first order closure (Lilly 1962):

2 1/2(cD) |def |(1 2 Ri) , if Ri # 1;
K 5 (11)M 50, otherwise.

In (11) c 5 0.23 is a numerical constant, D is a measure
of the grid resolution [for the two-dimensional case D
5 (DxDz)1/2 and for the three-dimensional case D 5
(DxDzDy)1/3], and Ri is the local gradient Richardson
number

d lnu
22Ri 5 g (def) , (12)

dz

in which the total deformation def is defined as

1
2 2(def) 5 D . (13)O O ij2 i j

The first-order closure (11) for the mixing coefficient
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FIG. 3. Contour plots of horizontal velocity (ux) for the simulation with f 5 19.58 (expt 5 in Table 1), (a) t 5 55, (b) 62.5, (c) 70, (d)
77.5 min.

for momentum enhances viscous dissipation where the
motion becomes sufficiently complicated that the scale
of the grid can no longer resolve it, while leaving the
rest of the flow domain effectively inviscid. The mixing
coefficient for heat, KH, is taken to be equal to KM so
that the Prandtl number Pr 5 KM/KH is unity.

In Fig. 1 we present a schematic of the model domain
to be employed for the purpose of the three-dimensional
calculations to be discussed in what follows. For the
initial two-dimensional integrations the XZ section of
the domain is employed. At the inflow and outflow
boundaries periodic boundary conditions are applied
while a rigid-lid condition is imposed on the upper hor-
izontal boundary of the model. In order to simulate an

unbounded fluid, an absorbing region (with enhanced
friction) is employed near the top of the model domain.
This is introduced to prevent the reflection of internal
waves that are incident upon the upper boundary from
below. The topography (hs) used in most of the simu-
lations is two-dimensional and of the simple sinuous
form

2px
h (x) 5 h 1 1 sin , (14)s 1 2[ ]a

in which h is the height of the topography and a its
wavelength. The parameter h is kept to the constant
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FIG. 4. Contour plots of horizontal velocity (ux) for the simulation with f 5 498 (expt 7 in Table 1), (a) t 5 70, (b) 80, (c) 90, (d) 100
min.

value h 5 0.2 km while a is varied through the range
a 5 5–14 km between different experiments.

Four simulations were performed for topography pre-
sented by the sum of two or three waves:

n 2px
h (x) 5 h 1 1 sin 1 a , n 5 2, 3,Os i i1 2[ ]ai51 i

with random phases (ai) and different wavelengths [e.g.,
a 5 14.25(1, ½, ⅓) km]. Thus the periodic boundary con-
ditions were satisfied for all waves in the computational
domain of length equal to the wavelength of the longest
wave. The wave amplitudes were either taken to be equal
each other [e.g., h 5 200(⅓, ⅓, ⅓) m] or were varied with

wavelength [e.g., h 5 200(1, ⅔, ⅓) m] to approximate
either a white or a red spectrum, respectively.

In all of the experiments to be discussed in the present
paper, the upstream profiles of u and u will be assumed
to be given by

u 5 U 5 const (15)

2zN
u 5 u exp , (16)0 1 2g

from which the buoyancy frequency N may be deter-
mined as
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FIG. 5. Contour plots of potential temperature for the simulation with f 5 718 (expt 14 in Table 1), (a) t 5 80, (b) 85, (c) 95,
(d) 100 min. An arrow shows a typical S-shaped feature of the unstable wave front where the wave overturns clockwise.

g du
2N 5 , (17)

u dz

The background velocity U 5 15 m s21 and N 5 con-
stant 5 0.02 s21 will be fixed in the sequence of ex-
periments that we intend to describe. The background
density in the anelastic basic state then has the simple
analytic form

z
r(z) 5 r exp 2 , (18)0 1 2H

in which the density scale height H is related to the
buoyancy frequency through the relationship

g
H 5 k ø 7.1 km. (19)

2N

The three-dimensional calculations are initialized from

the two-dimensional calculations. For the purpose of
these analyses, the flow is allowed to develop in three
dimensions only after some period of two-dimensional
evolution. This was done to avoid the introduction of
possibly spurious three-dimensional effects due to the
starting transient and also to conserve computational
resources, since the three-dimensional calculations are
extremely expensive both in terms of CPU time and
memory. The analyses that we will report herein have
all been performed on the Cray J916 computer system
in our laboratory in Toronto.

3. Results and interpretation of two- and
three-dimensional simulations

In what is to follow we will focus successively upon
the detailed processes involved in the breaking of two-
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FIG. 6. Hovmöller plots of horizontal velocity (ux) averaged at different horizontal levels for the simulation with f 5 568 (expt 12 in
Table 1).

dimensional internal waves, the three-dimensionaliza-
tion of such breaking wave dominated flow, and finally
upon the wave–mean flow interaction process itself.

a. Two-dimensional instability

A series of two-dimensional simulations has been
performed for different values of the nondimensional
parameter Fh (Table 1). Accordingly, the angle (f )
between the vertical and the wave crests has been var-
ied in the range f 5 108–708. In all of our numerical
experiments the upward propagation and subsequent
breaking of gravity waves were observed. Although
the breaking process was qualitatively different for

waves characterized by different values of the angle
f, some typical common features of the process could
be isolated in all cases. The standard scenario for flow
development is the following. First, the wavefront
propagates upward, leaving in its wake an initially
steady wave field. The wave field established behind
the advancing front thereafter becomes unstable upon
the development of typical S-shaped structures in the
streamfunction. These S-shaped structures may
achieve significantly supercritical amplitude before
they finally break due to the onset of intense convective
instability, consistent with the stability analysis by
Winters and Riley (1992). In addition to this, the prop-
agating wave front itself becomes unstable though the
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FIG. 7. Altitude of the wave front breaking region for different
values of the angle f.

FIG. 8. Altitude of the critical steepening level (20) as a function
of wavelength (km) for the wave of different amplitudes h 5 200,
400, 600 m.

appearance of an instability differs significantly from
that of the established wave. Some S-shaped structures
also develop at the front but these exibit both coun-
terclockwise and clockwise rotation (e.g., see the
S-shaped feature indicated by an arrow in Fig. 5b). The
feature shown in Fig. 5b is most probably induced by
strong shear at the front itself, which results in the
observed clockwise overturning (see Figs. 2d and 5b)
in contrast to the case of the steady wave field behind
the advancing front, where the overturning exibits only
a counterclockwise sense of rotation. Wave front break-
ing is usually more intense than the breaking of the
established wave in terms of the amplitudes of the per-
turbations that developed thereafter. The instability of
the wave front is most probably a consequence of
steepening of the wave front (increasing vertical gra-
dients) due to nonlinear effects. Note that this form of
instability necessarily develops when the wave front
reaches the sponge layer at the top of the computational
domain. In this case, breaking occurs at the lower
boundary of the sponge. Since the sponge smooths all
perturbations to the background state by design, it ar-
tificially sharpens the wave front, thus inducing the
instability.

The altitude of such wave front breaking strongly
depends on the degree of hydrostaticity of the wave. In
the case of a nonhydrostatic wave that propagates almost

vertically (expts 1–5 in Table 1), overturning and break-
ing of the wave occurs at relatively low altitude (12–
14 km when f 5 19.58, see Figs. 2, 3). The breaking
wave transfers significant momentum to the mean flow,
causing significant deceleration. A narrow jet with neg-
ative velocity forms as a result of this interaction. The
jet can be clearly seen in contour plots of horizontal
velocity in Fig. 3. This jet is of course associated with
a double critical layer with positive and negative values
of vertical shear on its upper and lower flanks. This
critical layer significantly inhibits further upward prop-
agation of the wave so that only very weak wave activity
is observed in the overlying region. Note, however, that
weak, wavelike perturbations are transmitted that there-
after propagate upward and finally break at higher al-
titude. This secondary breaking occurs, for example,
near an altitude of 60 km when f 5 19.58 (see, e.g.,
Fig. 4, about 10 vertical wavelengths higher than the
primary breaking level at 15 km). Since the amplitude
of perturbations increases with altitude as ez/2H, one can
estimate the ratio of amplitudes of the primary wave
and the secondary perturbation transmitted through a
critical level, as , where Dzc is the difference be-Dz /2Hce
tween the altitudes of breaking of these waves. For the
case shown in Fig. 4 the difference is 40 km, which
gives a ratio of amplitudes equal to approximately 17.
In terms of ‘‘wave activity’’ (see, e.g., Scinocca and
Peltier 1994), which is to leading order quadratic in the
disturbance amplitude, the secondary disturbance is 300
times weaker than the primary wave. Such a weak trans-
mission of waves through the critical layer is most prob-
ably due to the fact that this layer can be itself subject
to wavelike motion as a whole and is not completely
homogeneous along its length.

Considering the simulations in the sequence from
small to larger angles it will be observed (e.g., f 5
718, Fig. 5) that the primary breaking of the wave front
occurs at successively higher elevations. As the wave
becomes more strongly hydrostatic, its front breaks at
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FIG. 9. Contour plots of potential temperature for the simulation with f 5 19.58 (expt 5 in Table 1), (a) t 5 42.5, (b) 50, (c) 57.5, (d) 65
min.

higher elevation and several distinct negative velocity
jets (critical layers) thereafter form at different altitudes
(Fig. 6) due to the breaking of the wave established
below the front. Thus the region over which breaking
occurs for hydrostatic waves is much deeper than that
for nonhydrostatic waves, and the altitude of the upper
boundary of this region, which is determined by wave
front breaking, increases with the angle f (Fig. 7).

One can easily estimate the height of the critical
steepening level at which the wave is supposed to break
according to the saturation theory. The condition for
instability of the wave is ]z/]z . 1 where z(x, z) is the
free stream deflection (see Peltier and Clark 1979). For

a steady linear wave z(x, z) has the following functional
form:

1/22z N 1
2z(x, z) 5 h exp cos kx 1 2 k 1 .

2 21 2 1 2[ ]2H U 4H

In the limit of large H, a solution of

]z
(x, z) 2 1 5 0

]z

takes the form
1/22N

z 5 22H ln kh 2 1 . (20)c 2 21 2[ ]U k
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FIG. 10. As in Fig. 9 but for horizontal velocity (ux) at (a) t 5 15, (b) 17.5, (c) 20, (d) 22.5 min.

TABLE 2. Parameters used in three-dimensional numerical experiments.

Experiment Dx (m) Nx Dz (m) Nz Dy (m) Ny a (km) h (m) f (8) KM (m2 s21)

1
2
3
4
5
6
7

25
25
25
25
25
42
42

200
200
200
200
200
200
200

100
100

50
70
70

200
200

300
300
450
300
300
250
250

100
25
25
50
50
50
50

50
50
50
50
50
50
50

5
5
5
5
5
8.4
8.4

200
200
200
200
200
200
200

19.5
19.5
19.5
19.5
19.5
56
56

0.5
50

50

The graph of zc as a function of horizontal wave length
when the amplitude of the topography is 200 m as shown
in Fig. 8. It is interesting to note that, in all our sim-
ulations, the lower boundary of the breaking region is

found to be significantly lower than that given by the
estimate (20). For hydrostatic waves the lowest breaking
altitude is determined by the breaking of regular waves
established below the front (which breaks at high alti-
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FIG. 11. Maximum values of cross-stream velocity (uy) vs time of
three-dimensional simulation for two experiments: (V) expt 6, (*)
expt 7 (Table 2). Solid lines indicate the period of exponential growth.

FIG. 12. Isosurfaces of the streamwise component of vorticity: vx 5 62 3 1023 s21 (expt 7 in Table 2), t 5 97.5 min (27.5 min of three-
dimensional simulation initialized from two-dimensional initial conditions).

tude), while for nonhydrostatic waves the lowest break-
ing altitude is determined by breaking at the wave front
itself.

Another interesting phenomenon that we have ob-
served in our simulations concerns the instability of
small-amplitude waves that develops at the lower
boundary. Typical results for flow evolution at low lev-
els (z 5 0–5 km) from a two-dimensional simulation
(expt 5, Table 1) is shown in Figs. 9 and 10. The series
of contour plots of potential temperature (Fig. 9) dem-
onstrate the development of instability that is clearly
identifiable as a parametric subharmonic instability

(PSI) (see, e.g., Klostermeyer 1991; Thorpe 1984b) both
on the basis of the fact that it originates in subharmonic
waves (Fig. 9a) of frequency v1, which is half the fre-
quency v of the primary wave as well as its finite-
amplitude form (localized overturning motions) (Figs.
9c,d). One can easily show that the observed instability
is indeed PSI by estimating the angle at which the sub-
harmonic waves are inclined. Since the primary wave
is at an angle f to the vertical, and frequency can be
related to the angle via a simplified dispersion relation

v 5 N cosf,

one can obtain the angle f 1 for the subharmonic waves
in the form

1
f 5 arccos cosf1 1 22

using the dispersion relation of the same form and as-
suming v1 5 v/2. In our particular case f 5 19.58,
hence f 1 5 61.98 (subharmonic waves are more hori-
zontal, as one would expect). Direct measurement of
the angle f 1 from the horizontal velocity field shown
in Fig. 10 gives the value f 1 5 62.58 6 18, which is
in very good agreement with the theoretical result. PSI
is initiated from the very beginning of the simulations
and evolves to its finite-amplitude form during about
10 buoyancy periods. Our simulations show that the
growth rate of this instability depends on the hydros-
taticity parameter as well as on nonlinearity parameters.
For waves with the same amplitude (200 m) the insta-
bility develops relatively quickly and assumes its most
intense finite-amplitude form when the waves are non-
hydrostatic. For the angles f . 508 the instability be-
comes dynamically insignificant. However, the series of
simulations (expts 7, 8, 9 in Table 1) of the waves with
the same angle f 5 498 but with different amplitude
(h 5 200, 400, 600 m) shows that while negligible at
smaller amplitude, the instability develops for larger-
amplitude (h 5 400, 600 m) waves and becomes more
intense with larger amplitude. Note that this instability
does not totally destroy the coherence of the primary
wave field, however, probably because of the highly
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FIG. 13. Contour plots of cross-stream component of velocity (uy) at different y–z planes: (a) x 5 0.63, (b) 0.84, (c) 1.05, (d) 1.26 km
(expt 7 in Table 2), t 5 100 min.

localized spatial structure of the subharmonic distur-
bances. As a consequence, the onset of PSI does not
prevent breaking of the primary wave at higher altitude
at later times.

b. Three-dimensional instability

To study the modification of the above-described two-
dimensional flows when the flow is allowed to access
the third spatial degree of freedom, we employ two-
dimensional experiments 3, 4, 5 (f 5 19.58) and ex-
periment 11 (f 5 568) (Table 1) in order to initialize
the evolution of the three-dimensional flows (expts 1–7,

Table 2). The flow was first allowed to develop in three
dimensions only after some time of two-dimensional
integration, a time by which wave breaking had yet to
commence. Prior to overturning, our three-dimensional
results duplicate two-dimensional results to high ac-
curacy because spanwise instabilites show negligible
growth. The growth of spanwise instability onsets as
the waves begin to overturn. The characteristics of the
instability thereafter reveal dependence on the degree
of nonhydrostaticity as with other characteristics of the
flow as described above. The first three-dimensional run
(expt 1, Table 2) for the nonhydrostatic wave shows that
three-dimensional motions do occur and evolve in the
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FIG. 14. Contour plots of potential temperature at at different y–z planes: (a) x 5 5.25, (b) 5.46, (c) 5.67, (d) 5.89 km (expt 7 in Table
2), t 5 97.5 min.

flow. The perturbations appear in the wave breaking
region and their initial growth is close to exponential.
After approximately 15 min of three-dimensional sim-
ulation, the amplitude of fluctuations of cross-stream
velocity, which is an indicator of three-dimensional mo-
tions, becomes comparable with the velocity (U) of the
background wind. The typical spanwise scale of these
perturbations was, however, almost the same as the scale
(Dy) of our computational grid in the y direction. Since
the clear identification of the spanwise scale of the per-
turbation is obviously a problem of numerical resolu-
tion, we performed two additional simulations with in-
creased spanwise and vertical resolution (expts 2, 3,

Table 2). However, the scale of the perturbation always
remained the same as the grid scale for all values of Dy
5 25–100 m. Thus, we were unable to isolate the actual
physical scale of the perturbations in the cross-stream
direction. Since these perturbations are, most probably,
of convective type (similar to the previously described
K–P instability), the analogy with Rayleigh–Taylor in-
stability suggests that the growth rate of the instability
monotonically increases with decreasing wavelength in
the absence of dissipative processes (viscosity and dif-
fusivity). Thus it is expected to be impossible to nu-
merically resolve the fastest growing shortest wave-
lengths when viscosity is very small. Note that in sim-
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FIG. 15. Spectrum of cross-stream velocity (uy) at altitude 33 km
(expt 17 in Table 1), t 5 102.5 min. FIG. 16. Rate of change of momentum for different times in the

horizontal layer at altitude of 22 km for the simulation 12 (Table 1).
Solid and dotted curves represent left and right sides of (22), re-
spectively.ulations 1–3 the nonuniform distribution of viscosity

(11) with coefficient c 5 0.23 was employed. It is useful
to define the Rayleigh number of the flow as

4 2h N
Ra 5 ,

K KM H

where h is the amplitude of the overturning wave. Using
(11) and scaling deformation as def } U/h one may
approximate the Rayleigh number as

6 2h N
Ra 5 (21)

4 4 2c (DxDz) U

in the regions of the flow where Ri , 1. For typical
values of the parameters in (21) the Rayleigh number
is extremely large, with values in the range 108–109.
These large values of the Rayleigh number imply that
the instability is expected to evolve vigorously and to
have an unresolvably small initial wavelength that is
consistent with the results of our simulations. To study
the evolution of the instability in the flow with different
values of the diffusivity parameters, we employed a
uniform value of viscosity KM 5 0.5 m2 s21 in exper-
iment 4 and KM 5 50 m2 s21 in experiment 5. We may
define the Reynolds number of the flow as

U(U/N )
Re 5 .

KM

The values of the Reynolds number for experiments 4
and 5 are 4.5 3 104 and 450, which can be characterized

as high and moderate, respectively. The corresponding
value of the Rayleigh number for experiment 4 is still
very high (Ra ø 109) while for experiment 5 it is four
orders of magnitude less (Ra ø 105). Experiment 4 gave
similar results as those obtained in the previous exper-
iments as one might expect. In experiment 5 the insta-
bility was characterized by negligible growth, it being
strongly suppressed by viscous diffusion. Thus, in the
case of the nonhydrostatic wave, our results are incon-
clusive concerning the spanwise scale of the three-di-
mensional instability that develops as the wave breaks.

It turned out, however, that it was possible to obtain
some insight into spanwise structure of the instability
in the simulations of the waves characterized by higher
degrees of hydrostaticity (f 5 568). Experiment 6 (Ta-
ble 2) with large Rayleigh number (nonuniform KM, c
5 0.23) gave a result similar to that obtained for non-
hydrostatic waves, namely, the amplitude of three-di-
mensional instability grows exponentially (Fig. 11) dur-
ing the first 10 min of three-dimensional simulation until
it saturated at the level of background velocity U, while
the spanwise scale of the instability remained unre-
solved. However, experiment 7 with a smaller value of
the Rayleigh number revealed well-resolved spanwise
structure of the instability, though in this case the growth
rate of the instability was lower (Fig. 11). The instability
grows approximately exponentially, ux } eg t, during the
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FIG. 17. Hovmöller plot of vertical flux of the horizontal momentum (ru9w9) averaged at different horizontal levels for the simulation
with f 5 568 (expt 12 in Table 1).

first 5–15 min (1–3 buoyancy periods T 5 2p/N ø 5
min) after which the instability saturates. The growth
rates for the instability estimated from the data shown
in Fig. 11 are g 5 0.014, 0.029 s21 (in nondimensional
form g /N 5 0.68, 1.5) for Ra 5 105, 109 respectively.

These values can be compared with the results of
stability analysis (Thorpe 1984a) for static instability of
a viscous and diffusive flow with the density profile

2N
r 5 r 1 2 z 1 A sin(Kz) ,1 0[ ]g

which can be taken to represent (locally) the overturning
gravity wave. Thorpe’s analysis shows that growth rates

depend on Rayleigh and Prandtl numbers as well as on
a parameter, r 5 N 2/gKA, that describes the shape of
the density profile. When r , 1 the density profile con-
sidered is locally unstable (dr1/dz , 0) to overturning
convective instability. In his Fig. 6 Thorpe presents
growth rate for different values of r as functions of Ra.
Thorpe’s results were extended by Sonmor and Klaassen
(1997) to higher Rayleigh numbers (the largest value
considered by Thorpe was Ra 5 105) and presented in
their Fig. 17. Since in our case the wave breaks at an
altitude of approximately 36 km, its amplitude is ap-
proximately 10 times that of its minimal breaking am-
plitude [which is achieved at the height zc (20)]. Thus,
the growth rates of convective instability obtained in
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FIG. 18. The difference between the momentum (per unit length) horizontally averaged at
different altitudes and the momentum of the background wind, r(z)U, normalized by the value
of the background momentum, r0U at the ground, as the function of time, for two simulations:
(a) expt 7 (Table 1), altitude 10.4 km (solid line), 18 km (streak line); (b) expt 14, altitude 10
km (solid line), 22 km (streak line).

our simulations might be compared with those delivered
by linear stability analysis for the value of inverse am-
plitude r 5 0.1 and the values of Rayleigh number Ra
5 105, 109. Though direct comparison is not possible
since the values of the growth rate for r 5 0.1 are not
provided in Sonmor and Klaassen (1997) (the value of
the Prandtl number is also different), our values are still
in qualitative agreement with the values given in their
Figs. 17 and 19. The three-dimensional perturbations
have the typical form of an array of streamwise vortex
tubes of alternating sign (Figs. 12, 13). The instability
is highly localized in the region of wave breaking be-
tween 34 and 36 km and is very intense. In Fig. 14 one
will observe significant perturbations of the (initially
uniform in the spanwise direction) potential temperature
field caused by the instability. Since there are typically
three vortex pairs in the spanwise direction within the
model domain, the dominant spanwise wavelength ly

of the perturbation is estimated to be ly ø 0.7 km or
lyN/U ø 1 in nondimensional units. The growth of
three-dimensional perturbations finally leads to devel-
opment of fully three-dimensional turbulence with a
spectrum (Fig. 15) with a ‘‘23’’ slope that is typical
for the spectra of internal gravity waves (see, e.g., Smith
et al. 1987). Note, however, that the mean flow remains
essentially two-dimensional.

c. Wave–mean flow interaction

Gravity waves force the mean flow through the Reyn-
olds stress associated with the divergence of the vertical
flux of horizontal momentum of the waves. The balance
of horizontal momentum is given by the well-known
Reynolds averaged relation

]U ]
r 5 (ru9w9), (22)

]t ]z

where u9, w9 are the fluctuations of the horizontal and
vertical components of velocity. A typical example of
the time evolution of the instantaneous horizontally av-
eraged rate of change of momentum [left-hand side of
(22)] at some altitude is shown in Fig. 16 in comparison
with the Reynolds stress divergence [right-hand side of
(22)]. The agreement is entirely satisfactory within the
accuracy of the averaging procedure and finite-differ-
ence numerical evaluation of derivatives. The diver-
gence of momentum flux causes deceleration and ac-
celeration of the mean flow in layers at different alti-
tudes (e.g., Fig. 6). While the effect of acceleration is
not particularly strong, the velocity in decelerated re-
gions reaches very high negative values. Note that under
the assumption that linear waves propagate into pre-
existing undisturbed mean flow, the waves would be
unable to drive the mean wind beyond the initial phase
speed of the waves (in our case the initial wave is sta-
tionary, hence c 5 0). The process of adjustment in the
phase speed of the wave motion in a region of decel-
erated mean wind is an essentially nonlinear process
and has been called self-acceleration (see, e.g., Fritts
and Dunkerton 1984). An important influence on the
wave–mean flow interaction is also wave transience.
During the propagation of the wave front, wave tran-
sience forces the mean flow, causing transient buildup
of the mean wind. As has been noted previously by
Walterscheid and Schubert (1990), and supported by the
present simulations, the major part of the mean wind
buildup is a consequence of wave transience. It is clear
that wave transience has an important influence in the
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FIG. 19. Normalized horizontal momentum (as in Fig. 18) as the function of height, z (km)
for four simulations: (a) expt 7 (Table 1), (b) expt 14, (c) expt 15, (d) expt 16. Solid lines represent
momentum profiles at t 5 80, 100 min.

overall process of wave-mean flow momentum transfer.
Ultimately, breaking of the nonlinear transient waves
leads to dramatic irreversible changes in the mean flow.
Figure 17 shows a Hovmöller diagram for momentum
flux averaged in the horizontal for every instant of time.
The altitude–time dependence of the momentum flux is
consistent with that of the horizontal velocity shown in
Fig. 6. The intense initial breaking of the wave in a deep
region between the altitudes of 10 and 40 km at about
80 min generates a structure of alternating decelerated
and accelerated layers. The transfer of momentum at
low levels is most probably a consequence of reflections
and/or backscattering of the upward-propagating waves
from the turbulent breaking region. The reflected down-
ward propagating waves in the lower layer can be seen
in the momentum flux diagram of Fig. 17 after about
130 min of simulated time. Note that, in the layers where
the deposition of momentum takes place, the velocity

(hence horizontal momentum) changes at an approxi-
mately constant rate after the onset of wave breaking,
indicating a constant rate of momentum deposition at
these levels. Figure 18 illustrates the typical time de-
pendence of the horizontal momentum for two simu-
lations (f 5 498, 718). The difference between the mo-
mentum (per unit length) horizontally averaged at two
different altitudes and the momentum of the background
wind, r(z)U, normalized by the value of the background
momentum, r0U at the ground, is shown. Two levels at
which the momentum transfer achieves its maximum
values were chosen.

The dynamics of momentum transfer illustrates the
dependence on the degree of hydrostaticity of the waves,
as might be expected on the basis of the different char-
acteristics of the breaking process for different values
of the angle f. Figures 19a,b show typical vertical pro-
files of the normalized horizontal momentum for two
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FIG. 20. Normalized horizontal momentum (as in Fig. 18) as the function of height, z (km) for
two simulations: (a) expt 17 (Table 1), (b) expt 18. Solid lines represent momentum profiles at
t 5 100, 125 min.

simulations (f 5 498, 718). Inspection of these results
clearly demonstrates that the region in which the wave
transfers negative momentum to the mean flow is lo-
calized in the narrow layer between 10 and 20 km when
f 5 498 but extends to 40 km for the more hydrostatic
wave with f 5 718.

An important question, clearly, concerns the way in
which the results for monochromatic waves will change
when several interacting waves of different wavelengths
(which may also be of different amplitude) are present
in the domain. This question obviously deserves sepa-
rate detailed study; however, we have made a prelimi-
nary attempt to approach this problem here. Two sim-
ulations (expts 15, 16 in Table 1) were performed with
a spectrum consisting of three waves. The waves with
the angles (f 5 78, 498, 718) represented nonhydros-
tatic, intermediate, and hydrostatic parts of the spec-
trum. In the first simulation the amplitudes of the waves
were assumed to be equal to each other (a white spec-
trum) and 200 m in total amplitude to enable comparison
with the monochromatic simulations. In the second sim-
ulation the amplitudes were varied with wavelength (red
spectrum), the longest wave having the largest ampli-
tude. This (red) form of the spectrum should be more
relevant to understanding the breaking of a spectrum of
waves generated by real topography for which the typ-
ical vertical scales are proportional to horizontal scales
in first approximation. The horizontal momentum pro-
files for these two simulations are shown in Figs. 19c,d
for the same moments of time as the profiles for mono-
chromatic waves (Figs. 19a,b). Comparing Figs. 19d and
19b it is clear that spatial structure, that is, the altitudes
of peaks of negative momentum and the total vertical
extent of the momentum transfer region, are very similar
in both cases, which allows us to suggest that the longest

(hydrostatic) wave having the largest amplitude domi-
nates in determining the spatial structure of the con-
trolling critical layers. Shorter waves are effectively ab-
sorbed by these layers (especially at the low levels).
Since the total amplitude of the waves is two times larger
than the amplitude of the monochromatic wave, the
peaks are larger, which demonstrates that shorter waves
also contribute to the momentum transfer process. In
the simulation in which all waves were assumed to have
the same amplitude, the nonhydrostatic part of the spec-
trum was found to dominate and this resulted in a narrow
region of momentum transfer confined to a lower level
(Fig. 19c).

To consider a limiting case of wave–wave interaction
that forms the basis of Hines’s (1997) parameterization
scheme we return now to an even simpler configuration
consisting of a very long wave and a short wave, a
configuration where Hines’s mechanism is expected to
work well. Two simulations (expts 17 and 18 in Table
1) were performed with the waves (f 5 108, 848) that
differ by a factor of 9 in wavelength and of different
amplitudes. In the first simulation the amplitude of the
short wave is 9 times less than the amplitude of the long
wave, while in the second simulation it is only 2 times
less. It is clear in both simulations that breaking of the
short wave is spatially localized at maxima of the long
wave at lower altitudes, while at higher altitudes, where
the short wave acquires an amplitude large enough to
break on its own without the ‘‘help’’ of the wind due
to the long wave, the breaking is more spatially uniform.
This behavior is consistent with Hines’s theory. The
horizontal momentum profiles (Fig. 20) for these two
simulations are qualitatively similar to the three-wave
profiles in Figs. 19c and 19d, respectively, which once
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more indicates the relative domination of shorter or lon-
ger waves in these two cases.

4. Discussion

The numerical simulations described herein provide
clear evidence that the dynamics of internal gravity
wave breaking strongly depends on the degree of hy-
drostaticity (represented by the nondimensional param-
eter Fh) of the wave. In general, the transfer of mo-
mentum from the breaking wave to the mean flow takes
place inhomogeneously in space and results in the for-
mation of one or more horizontal jets of low (or neg-
ative) velocity at different altitudes. The breaking of the
wave field occurs due to two main effects, respectively
involving the instability of the wave front itself and the
instability of the wave established behind the advancing
front. The altitude at which the wave front breaks in-
creases with increasing hydrostaticity of the wave, thus
leading to a deeper region in which the waves effectively
transfer momentum to the mean flow.

Our three-dimensional simulations initialized from
two-dimensional initial conditions demonstrate that
such an overturning primary wave becomes convec-
tively unstable to a higher-order instability. This higher-
order instability is a shear-aligned instability of con-
vective type that first appears in the form of streamwise-
oriented vortices of alternating sign. The spanwise
lengthscale of the perturbations turns out to be very
sensitive to the degree of diffusion of momentum and
heat, which can be expressed in an appropriate Rayleigh
number (the value of the Prandtl number Pr 5 1 was
fixed in our numerical experiments).

It is useful to consider the results of our simulations
in comparison with the two main gravity wave drag
parameterization schemes mentioned in the introduc-
tion. Although our simulations show that a monochro-
matic wave propagating through a region of uniform
wind will break due to its intrinsic degree of instability,
as one would expect in the context of saturation theory
based on the hypothesis that a wave necessarily breaks
when its amplitude is supercritically steepened, the char-
acter of the instability and the spatial distribution of the
breaking region are highly variable in our simulations.
Our results demonstrate both that the lowest breaking
level is always lower than the critical steepening level
and that breaking of the unsteady wave front is a dy-
namically important process. Neither the instability of
the front nor the instability of the wave established in
the region behind the advancing front can be charac-
terized as simple gravitational convective instabilities
but rather are most probably enhanced by shear with
convective instability acting at later stages. Another fea-
ture of our results is the strong dependence of the spatial
distribution of momentum transfer on the hydrostaticity
of the wave. The region in which the waves deposit
their momentum can be localized for nonhydrostatic
waves or significantly diffused in the vertical for hy-

drostatic waves. Note that almost all of the momentum
that enters the computational domain from the lowest
boundary is transferred to the mean flow, only a small
fraction (about 2%) escaping to the upper boundary of
the domain where it is dissipated by Rayleigh friction
in the ‘‘sponge.’’ Thus it is hardly surprising that sat-
uration theory gives the correct value of total momen-
tum transferred to the mean flow by the waves generated
at the lower boundary. This may be acceptable for gen-
eral circulation models that at present have rather crude
vertical resolution. However, our results suggest that the
fine structure of the flow can be significantly different
from that predicted by saturation theory, a fact that may
be important for the next generation of large-scale cir-
culation models.

Although an extensive study of the wave breaking
process for a complete spectrum of waves is obviously
needed (and is currently under way), our present sim-
ulations with three waves have allowed us to draw some
preliminary conclusions. In accord with Hines’s (1997)
gravity wave drag parameterization theory based on crit-
ical layer absorption, we note that the waves are indeed
absorbed at critical layers induced by other waves, rep-
resenting different parts of the spectrum. However, in
our simulations these critical layers are created as a
result of wave breaking, permanently changing the mean
flow, rather than being describable as critical layers that
exist due to the presence of linear nonbreaking waves
associated with the rest of the spectrum. This point
would appear to be of fundamental importance and de-
serves further detailed investigation.
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