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When a horizontal force is applied locally to some volume of a viscous density- 
stratified fluid, flows with high concentration of vertically oriented vorticity (vortex 
dipoles) are generated. The processes of generation and evolution with time of these 
unsteady flows in a stratified fluid are studied. A convenient way to produce and 
study these flows in the laboratory is to use a submerged horizontal jet as a ‘point ’ 
source of momentum. The main governing parameter (the ‘force’) is easily controlled 
in this case. Two regimes were studied : starting jets with dipolar vortex fronts (the 
force acts continuously) and impulsive vortex dipoles (the force acts for a short 
period of time). A conductivity microprobe, aluminium powder, shadowgraph, 
thymol-blue and other techniques have been used to measure the velocity and 
density distributions in the flows. It is found that in both regimes the flows are self- 
similar : the lengthscale of the flows increases with time as ti for starting jets and as 
ti for vortex dipoles. Detailed information about the generation mechanism, 
kinematics and dynamics of the flows is obtained. On the basis of similarity 
principles a theoretical explanation of the experimental results is given. The theory 
is in good agreement with the results obtained. 

1. Introduction and summary 
Axisymmetric vortex structures in a homogeneous fluid are a well-known 

phenomenon. They are easily formed in a viscous fluid when a force is applied locally 
to some volume of fluid. If a force acts for a short period of time, vortex rings are 
produced (see for example Batchelor 1967, photos 7.2.2 and 7.2.3). If the force acts 
continuously, a starting jet with a spherical vortex a t  its leading edge is generated 
(figure 1). Eventually this vortex travels away from the origin, forming a steady 
axisymmetric jet behind it. The steady axisymmetric jet in a homogeneous fluid was 
studied theoretically by Slezkin (1934), Landau (1944) and Squire (1951). 

The vortex dipole, a flat analogue of a vortex ring, is easily formed in a stratified 
fluid, where the vertical motion is suppressed by the force of gravity (figure 2). In 
general, it is not important what kind of physical mechanism suppresses the motion 
perpendicular to the direction of the applied force and makes the flow quasi-two- 
dimensional. It can be the force of gravity in a stratified fluid (Voropayev 1983,1987 ; 
van Heijst & Flor 1989), the Coriolis force in a rotating homogeneous fluid (Flierl, 
Stern & Whitehead 1983), the force of surface tension in a soap film (Couder & 
Basdevant 1986), or a magnetic field in a layer of mercury (Papaliou 1985; Nguyen 
Duc & Sommeria 1988). In all these cases vortex dipoles are formed easily. They are 
stable, have a long lifetime and are not destroyed in symmetric collisions (Couder & 
Basdevant 1986 ; Afanasyev, Voropayev & Filippov 1988 ; van Heijst 1989 ; 
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FIGURE 1 .  Dyed starting jet in a homogeneous fluid a t  Re = 55 (Voropayev 1985). 

(4 

FIGURE 2. Dyed starting horizontal jet in a stratified fluid: ( a )  top view, (6) side view. Re = 85, 
N = 1.2 s-l; grid in in. (Voropayev 1983). 
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Voropayev, Filippov & Afanasyev 1989). This type of collision has been described in 
detail in numerical simulations by MeWilliams & Zabusky (1982) and McWilliams 
(1984). These authors also give an explanation in terms of solitons passing through 
each other. It seems that vortex dipoles and various forms of more complicated 
vortex structures are the universal product of any irregular forcing in two- 
dimensional systems. (See for example the results of numerical calculations of two- 
dimensional turbulence by McWilliams 1984.) 

In recent years vortex dipoles, or mushroom-like currents (the name proposed by 
Ginsburg & Fedorov 1984 for these structures in the ocean), have become the subject 
of renewed interest, when they were discovered in great number on the visual and 
infrared satellite images of the upper ocean (for example, Ahlnas, Royer & George 
1987 determined 17 vortex dipoles on only one of their images). 

Two types of solutions for steady non-viscous vortex dipoles are known. The first 
one is a ‘ non-compact ’ dipole consisting of two point vortices of opposite sign - a 
steady solution of the Euler equation. The second one is a compact couple in which 
the vorticity is proportional to the stream function inside the couple and vanishes 
outside (Lamb 1932). Symmetrical and also asymmetrical compact vortex couples 
have been studied experimentally and theoretically by Flier1 et al. (1983) and Nguyen 
Duc & Sommeria (1988). 

The main aim of our research was to consider unsteady viscous vortex dipole 
dynamics in a stratified fluid. It appears that consideration of submerged horizontal 
jet flow is needed for this purpose. Now we understand that jets and vortex dipoles 
are united by the same mechanism of generation - the action of a localized source of 
momentum in a viscous fluid. 

In our experiments a jet from a thin round nozzle (diameter D )  was used as a 
‘ point ’ source of momentum. The jet was injected horizontally into a stratified fluid 
at the level of its equilibrium density (p ) .  If the mean velocity at the nozzle exit is 
U,,  the mass flux is proportional to Q, - pD2U, and the momentum flux is J ,  - 
pD2U, - Q2,/pD2 (in experiments J ,  = 4&2,/di is calculated from measured Q,). 
Because of the viscous entrainment of ambient fluid, the total mass flux &(x) in the 
jet, which forms after the source has been turned on, increases rapidly with a distance 
x from the origin: Q(x) - vpx (v is the kinematic viscosity). In the experiments Q, is 
so small that it soon becomes negligible compared to Q. Decreasing D and increasing 
U ,  so that J ,  = const. we obtain a ‘point’ source of momentum exclusively which 
exerts a force JJp per unit mass on the fluid. 

The results of the laboratory experiments and a theoretical explanation for them 
are given below. The following items are considered in this paper: 

(i) A steady horizontal jet in a stratified fluid: self-similar distributions of 
experimentally measured velocities (92.1). 

(ii) A starting horizontal jet in a stratified fluid: theoretical explanation for our 
previous experimental results (Voropayev & Filippov 1985) and some new 
experimental data on the frontal vortex dipole and its characteristics (92.2). 

(iii) Experimental verification of the asymptotic solution of the two-dimensional 
Navier-Stokes equation for the low-Reynolds-number unsteady flow induced by a 
point force: a model of vortex dipole generation (52.3). 

(iv) An impulsive vortex dipole in a stratified fluid: experimental data and a 
theoretical explanation of experimental results ($3.1) ; Turner’s model of the 
entrainment into an expanding vortex dipole ($3.2). 
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- - -  
FIGURE 3. Sketch of experimental apparatus: 1, experimental tank with a stratified fluid; 2, 
horizontal nozzle; 3, water supply system with a constant-level bottle (Ah = const.) ; 4,45" mirror; 
5, two-tank system (left tank - salt water, right tank -fresh water) ; 6, side view of jet flow; 7 ,  top 
view of jet flow. 

1.1. Experimental apparatus 
The experiments with starting and steady jets were conducted in a transparent 
rectangular tank 160 x 40 x 20 em (figure 3).  A square tank 80 x 80 x 30 cm was used 
in the experiments on impulsive vortex dipoles. Density stratification of the working 
fluid (distilled water) was created by variation of its salinity in the vertical direction. 
A linear vertical density distribution was produced using the well-known two-tank 
method. The density distributions were controlled by a single electrode (platinum) 
conductivity probe (Afanasyev, Voropayev & Filippov 1990). The flow in the tank 
was generated by a horizontal jet from a thin round nozzle (nozzle diameters D = 
0.08-0.2 cm). To produce a constant volume flux through the nozzle we used a 
constant-level bottle (see 3 in figure 3). The main part of the experimental data 
discussed in this paper was obtained as a result of an analysis of motion pictures of 
the flows. For visualization of the flow we used a pH-indicator thymol-blue (Stern 
& Voropayev 1984), aluminium powder and the Schlieren technique. Longitudinal 
velocity distributions across the jet were measured using the thymol-blue technique 
proposed by Baker (1966). In these experiments were used pure saccharose to  change 
the density of distilled water and to produce a linearly stratified fluid (salt increases 
significantly the conductivity of the solution and is not acceptable here). A cross of 
two fine platinum wires (diameter 2 x em, length 10 cm) was inserted into a jet 
axis (x-axis; the origin is a t  x = 0). One wire was vertical (along the z-axis) and the 
other was horizontal (along the y-axis). An a.c. voltage with low frequency (1-3 Hz) 
was applied to the wires. I n  a weak thymol-blue solution small cylinders of coloured 
fluid form regularly around the wires and move away, making neutrally buoyant 
markers. A mirror was used to take simultaneous top and side photographs. The 
vertical and horizontal distributions of longitudinal velocity U were calculated from 
voltage frequency and marker-displacement data a t  different distances x from the 
origin. 

In some experiments ($2.3)  two-layer stratification was used: a thin upper layer 
( h  x 0.4 cm) of a light viscous fluid (aqueous glycerin, u = 2.7 x em2 s-l) lying on 
a thick layer of a heavy low-viscosity fluid (CCl,, u* = 0.5 x lop2 cm2 s-l). The low- 
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Reynolds-number flow was generated only in the upper layer by the slitted nozzle 
(0.4x0.02 cm) and was vertically uniform through the depth of the upper layer 
because the momentum flux into the lower layer was negligible ( u  % u*).  

2. Starting jet: the force acts continuously 
Some years ago we studied experimentally a jet developing in homogeneous and 

non-homogeneous fluids (Voropayev & Filippov 1985). The experiments in a non- 
homogeneous fluid were done in a linearly stratified fluid (buoyancy frequency 
N x const). When a source of momentum is turned on, a spherical vortex appears. 
Initially the vortex develops as in a homogeneous fluid because the inertia force 
exceeds the gravity force. With increasing distance, the gravity force begins to 
prevail and the initially spherical vortex becomes flat and expands horizontally, 
forming a frontal vortex dipole (see figure 2).  After that the shape of the vortex front 
does not change and the flow develops self-similarly up to a large distance x from the 
origin (in our experiments x /D x 1500) and the lengthscale of the flow increases with 
time as ti (Voropayev & Filippov 1985). 

The results of the experiments in a homogeneous fluid were explained theoretically 
by Voropayev (1985). Below we shall consider a physical model which explains our 
experimental results in a stratified fluid. This model is based on a scheme shown in 
figure 4. Suppose that the starting jet consists of two regions: the steady jet region 
and the front region moving forward with a velocity u. For our model we need 
velocity distributions in a jet region, so we consider the steady jet first. 

2.1. Steady jet in a strati$ed jluid 
When the front region is far away from the origin, the jet behind the front can be 
considered steady. First, using the technique proposed by Stern & Voropayev (1984), 
we measured the longitudinal velocity U J x )  along the axis of the jet behind the front. 
A weak disturbance was introduced into the jet. As shown by Stern & Voropayev 
(1984), a weak disturbance propagates with exactly the local velocity of the fluid a t  
the axis of the jet. We took motion pictures of the travelling disturbance from a 
shadowgraph screen and plotted the position of the disturbance with time. In  these 
flows the origin is a virtual one and is a t  some distance x ,  behind the nozzle. I n  an 
ideal jet from a point source of momentum, the mass flux Q(x)  is equal to Q, a t  some 
distance x,  from the point source. Using Schlichting’s formula Q = 8npvx we have the 
estimate x,  = &*/8npu. Small values of x, were used to correct experimental data. 
These corrected data for two experiments are shown in figure 5.  In  every experiment 
the distance ( x  + x,) of the disturbance from the virtual origin increases with time as 
(z+x,) - ti .  Thus, for x % x,, with good accuracy we can take x - ti. Summing up the 
results of our measurements over the range of governing parameters J,/p = lop2- 
1.0 cm4 s-’, N = 0.4-2.0 s-l, x = 1 4 0  cm, we have obtained the relation x = (2AuJt)i, 
where the non-dimensional force J = J,/pu2 and A = const. (figure 6). This 
dependence is equivalent to 

U,,(X) = AuJ /x ,  (2.1) 

where U, is the longitudinal velocity along the axis of the jet. We have obtained the 
value A = O . l Z - t O . 0 2 ,  which is practically equal to Schlichting’s value ( A  = gn) for 
a steady axisymmetric jet in a homogeneous fluid (Schlichting 1955). Longitudinal 
velocity distributions across the jet were measured a t  different distances ( x  = 5- 
20 cm) from the nozzle. Typical distributions obtained are shown in figure 7 (points 



548 S.  I .  Voropayev, Ya. D .  Afanasyev and I .  A .  Filippov 

FIQURE 4. Sketch of a starting jet in a stratified fluid: (a) top view, ( b )  side view 
A, front region, B, jet. 

10' 

x + x, (cm) 

FIQURE 5. Distance (z+z,) of the 'weak' disturbance along the jet axis from the virtual origin 
versus time ( t ) :  0 ,  N = 0 . 5 5 s - ' ,  J =  1.1 x lo4, zo = 0.2 cm; 0,  N =  0.48s-', J =  1 . 4 ~  lo4, z,= 
0.5 cm. 

are due to the digitizing of the marker profiles). Self-similar coordinates UxIAvJ, 
& Ji y / x ,  d Jiz/x ( A  = in, B = &n) are used to compare the velocity distributions in a 
stratified fluid with the velocity distribution in an axisymmetric jet in a homogeneous 
fluid. This theoretical Schlichting's distribution has the form (Schlichting 1955) 

AvJ 
x (  1 +BJr2/x2)2 ' 

U =  
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FIGURE 7. Distributions of the longitudinal velocity in a jet in a stratified fluid: (a) in the horizontal 
plane ( z  = 0), (b) in the vertical plane (y = 0). Symbols: experiments with N = 0.7 s-l and a, 
Re = 99, Ri = 0.24, x = 5 cm; 0 ,69 ,0 .25 ,  10 cm; +, 96, 2.27, 15 cm; 0, 50, 14.34, 20 cm. ----, 
Schlichting's distribution (2.2) in a homogeneous fluid. 
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FIGURE 8. Streakline photographs of a jet in a stratified fluid at N = 0.7 s-', Re = 145, visualized 
with aluminium powder, exposure 6 s .  ( a )  Top view ( z  = 0): ( b )  side view (y = 0). The black 
horizontal line at the left is the nozzle. 

r = (y2+z2)i  being the distance from the jet axis. I n  figure 7 one can see that the 
velocity distributions in a stratified fluid are self-similar, vertical and horizontal 
distributions differ very little and (2.2) is a good approximation for both of them. We 
should note that these results are not obvious. On the streak pictures (figure 8) one 
can see that the flow is different in the horizontal and vertical planes. (The slow flow 
towards the source at  large distances from the jet axis in figure 8 is a compensative 
flux due to the finite dimensions of the experimental tank ; note that the velocity 
measurements presented in figure 7 were made in a narrow cone near the axis of the 
jet where the influence of the backward compensative flow is negligible.) The vertical 
velocity is practically absent (except for the immediate vicinity of the orifice) but the 
horizontal velocity (lateral) is present. From these pictures only one may expect that 
the velocity distributions in the horizontal ( z  = 0) and vertical ( y  = 0) planes will be 
different, but the measurements demonstrate that this is not so (figure 7) .  

We can introduce the Reynolds and the Richardson numbers of the jet, choosing 
the velocity on the jet axis U,  = AvJ/x  as the velocity scale of the flow, and the cross- 
width of the jet H = z/& J: as the lengthscale of the flow, 

Re = HU,/v = AJ$/& z J:, 

Ri = H 2 N 2 / g  = N2x4/u2A2BJ3. 

As one may expect, the Reynolds number is constant along the jet but the 
Richardson number increases rapidly with the distance x from the origin. Data 
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shown in figure 7 were obtained in experiments where Ri varied by a factor of 60 but 
one can see that velocity distributions are approximately the same. (A theoretical 
explanation of this result on the basis of the NavierStokes equations for the 
asymptotic case Re 4 1, ReRi 2 1 is given in Voropayev 1989.) For further analysis 
we shall use (2.2) as an approximation of the longitudinal velocity distribution in a 
steady jet in a stratified fluid. 

2.2. Front region of a starting jet: empirical model 
The front region as a whole moves with a velocity which is less than the local velocity 
of the fluid in a jet behind the front. So the fluid from the jet always flows into the 
front region. This fluid then spreads horizontally, forming a vortex dipole. We shall 
consider the details of the fluid motion in this dipole below in 52.3. Here, it is 
essential to know only that its shape is similar at any instant of time. Observations 
demonstrate (see figures 2, 9) that the front region looks like a flat disk with a 
streamlined shape and moves with a velocity 

U = dZ/dt, (2.5) 

where z is the distance of the front-region centre from the origin. The results of 
measurements (Voropayev & Filippov 1985) show that the horizontal cross-width of 
the front region (UZ) and the distance Z increase with time accurately as ti. Hence we 
can say that the lengthscale of the flow varies in a similar manner, and using (2.1) 
we have 

2R = az, (2.6) 

D = pu,, (2.7) 

H = 2yz, (2.8) 

where H is the mean vertical thickness of the front region, and a, p, y are non- 
dimensional coefficients which do not depend on Z. We want t o  calculate the values 
of these coefficients. The agreement between the theoretical and experimental values 
of a, p, y will be a criterion for our model correctness. 

Following papers by Abramovich & Solan (1973) and Voropayev (1985), we shall 
use an integral model to describe the front-region motion (figure 4). Let us consider 
the front region as a liquid volume V moving forward with the velocity 0. The jet 
which flows into the rear of the front region has a velocity distribution (2.2) and 
transports some momentum and mass into the front region. The equations of 
conservation of mass and momentum for liquid volume V are 

F 
( l+k)-= 2n U(U-U)rdr-- I" P 

d(  UV) 
dt 

(2.10) 

(k = 0.5 is the virtual-mass coefficient). 
The drag force F and the additional mass influx Q will be defined below. The 

condition which determines the distance ( ro)  from the jet axis where the velocity in 
a jet ( U )  is equal to the front-region velocity (0) is 

U(r,,z) = D(z). (2.11) 

yo = (l-/$)iz/&/$Ji. (2.12) 

Using (2.2), (2.5), (2.7), (2.11), we have 
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FIGURE 9. Front region and par t  of the je t  behind it, side view: ( a )  shadowgraph picture, (6) 
thymol-blue visualization; 1, platinum wire (z = 17 cm, y = 0 ) ,  N = 1.5 s-l, Re = 104; scale in cm. 
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FIGURE 10. (a) Vertical profiles of salinity in the starting jet and (b) time variation of salinity at 
a point. A, front region; B, jet; (a) x = 5 em, y = 0; ( b )  2 = 5 cm, y = 0,  z = 1 cm. Re = 170. The 
straight lines in (a) show the undisturbed profile. 

Fluid particles with r > ro move slower than the front region and never enter it. Thus 
an estimate for the mean value of the front-region thickness is 

H = 2r0. (2.13) 

Hence the coefficient y in (2.8) is determined and we shall look for a and /3. Using 
(2.13) we can write the following estimate for the liquid volume: 

V = 2nR2r0. (2.14) 

Consider now a flat liquid disk with radius R and height H ,  intruding horizontally 
into the linearly stratified resting fluid. In general the drag force F in (2.10) is the sum 
of the wave (F,) and the viscous (F,) drag forces. 

Typical 'instantaneous ' salinity profiles across the front and jet regions of the flow 
are shown in figure lO(a). One can see that the fluid particles in the front region are 
displaced from the plane z = 0. By contrast, the fluid particles in the jet region are 
sucked towards the plane z = 0. The displacement is small and decreases rapidly with 
distance from the origin. Thus the density distribution in the flow when x is not small 
are practically the same as in the ambient fluid. The time record shown in figure 10 ( b )  
demonstrates that there are no significant internal waves in the flow. Small changes 
in the salinity on this record are due to the small displacement of fluid particles in 
the jet and front regions from their equilibrium levels. Hence the amplitudes of the 
internal waves are very small and the wave drag (F,) is negligible. 

The viscous drag on a disk is determined mainly by the friction on its horizontal 
surfaces and we can use the estimate 

(2.15) 

(Lamb 1932). The leading edge of the starting jet, intruding into the 

F x F, = cvpRO, 

where c = 
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FIGURE 11. Measured (symbols, N = 0.5-2.5 5-l) and calculated (from (2.17), (2.18), solid lines, 
A = 0.3) a (0)  and /l (0) for different J = Re2. Crosses show the results of a three-dimensional 
numerical simulation by Voropayev & Keelov (1991). 

resting fluid, splits up into two symmetric 'half-jets' which then wrap into spirals, 
forming the disk-like shape of the front region. On the outer boundary of these half- 
jets the initially quiescent ambient fluid forms a viscous boundary layer. Some fluid 
from this boundary layer entrains into the front region, giving the additional influx 
Q in the mass conservation equation (2.9). The total flux Q in a steady round jet 
increases linearly with the distance x from the origin : Q = 8nvpx (Schlichting 1955). 
One can interpret the steady jet as a free boundary layer and estimate the term Q 
using this formula. In our case the distance x must be measured from the splitting 
point and i t  is equal to the arclength of the disk-likc front region : x z xR. For two 
'half-jets' we have the estimate 

Q z h8x2vpR. (2.16) 

In a self-similar flow h must be a constant. I ts  value is equal to the portion of fluid 
which enters from the boundary layer (on the outer boundary of the front region) 
into the front region ( A  < 1). In  our model the value of h is not known but must be 
found from a comparison of calculated and measured values for a and p. 

Thus the system of governing equations is closed. Not taking into account the exact 
initial conditions (nozzle size, flux rate Q* a t  the nozzle exit) one can look for 
solutions in the self-similar form (2.6), (2.7). Recall that we have already determined 
the coefficient y in (2.8). Integrating (2.9), (2.10), and using (2.1), (2.2), (2.5), (2.11), 
(2.12), (2.14)-(2.16) for solutions in the form (2.6), (2.7) we have two algebraic 
equations for a and p:  

(3$/8n;) a2 $( 1 - ,&) J: = 2( 1 - ,&)* + han, 
(2 x 3%/&) (1  + k) a'$( 1 -/$)tJ: = (24/3) ( 1  -3p+2@) -cap. 

(2.17) 

(2.18) 

The results calculated from (2.17), (2.18) and experimental values of a and p are 
shown in figure 11. The experimental values of a and p were determined by using the 
data from our previous experiments (Voropayev & Filippov 1985). In  that paper we 
obtained the relation z - for the starting jet in a stratified fluid (N + 0). 
This small but systematic difference of the power from t puzzled us but we were 
unable to explain it.  The difference is important, and now we shall show how it arises. 
The self-similar regime for a jet in a stratified fluid originates not from the origin but 
a t  some small distance (z*) from it where z ( x , )  z 1 (a = H2P/t? - x4/J3 is the 
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Richardson number of the front region). When z < x* the stratification does not play 
any significant role, the flow develops as in a homogeneous fluid and the front region 
has a spherical form. At z > x* the front region flattens and transforms to a disk. Its 
rear entrance widens horizontally and an additional influx Q becomes important. The 
dynamics of the flow changes so that a increases and ,l3 decreases compared with the 
homogeneous fluid (see Voropayev 1985). When all experimental points were 
corrected using small values of x* they lay exactly on the curves - ti. Using data 
corrected in this way, experimental values of a and /? were determined. 

In (2.17), (2.18) h is a free parameter. I ts  value ( A  = 0.3) was chosen by fitting of 
the experimental and calculated values of a and p. It turns out that the exact value 
of the drag force coefficient c (and the virtual-mass coefficient k) does not enter very 
sensitively in the calculations ; thus the drag force influence on the flow dynamics is 
negligible. The momentum flux transported by the jet into the front region goes 
mainly to the acceleration of the initially quiescent fluid entrained into the front 
region. The calculated and experimental values of a and ,8 as functions of J = Re2 are 
shown in figure 11. Knowing p we can verify the relation (2.13). In  our previous 
experiments (Voropayev & Filippov 1985) the thickness H of the front region was not 
measured. Using the simple technique proposed by Gartner (1983) we have made 
these measurements and the results are shown in figure 12 in a non-dimensional form 
(the values of ro for different z a n d  J were calculated using the relation (2.12) and the 
graph in figure 11). 

Introducing the Reynolds number of the front region 

Re = 2RO/v = apAJ (2.19) 

and using (2.1), (2.5)-(2.7), (2.13), we can write some useful estimates: 

x = (2E/a ) i  (I@, (2.20) 

R = ($xE)i(vt) i ,  (2.21) 

l7 = (Re/2a)i ( v / t ) i ,  (2.22) 

= 8@(1-@) (vt);. (2.23) 

From (2.20), (2.22) we have a simple estimate for the ‘age’ of the flow : 

t = Z/20. (2.24) 
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Thus our model gives all integral characteristics of the starting jet if the main 
governing parameter J = Re2 is known. Below, on the basis of the analytical solution, 
we shall consider a model of vortex dipole generation in a viscous fluid and study the 
internal structure of the unsteady dipole. 

2.3. A model of vortex dipole generation : experimental veri$cation of 
the analytical solution 

For simplicity consider the plane flow of a viscous incompressible fluid induced by a 
momentum source which starts a t  time t = 0 and thereafter exerts a force I , / p  (units 
of length3/time2) per unit mass on the fluid in a direction 8 = 0 in polar coordinates 
( r ,e) .  The source is a t  the point r = 0. The governing equations are 

wt+uwr+-vuB = v -wee+-(rwr) ,  , 
r (:2 r l )  

(2.25) 

rw = (rv)r-u8, (2.26) 

1 
r 

u = - $ &  v = - $ r  (2.27) 

where o is the vorticity and the stream function. Initially the fluid is at rest. The 
motion a t  infinity is absent. The integral balance of forces acting in the direction 
8 = 0 on a fluid contained in a circle of radius R with its centre at the origin (r  = 0) 
must be added to the governing equations ; 

5 = Jr 5,”; (u cos 8-v  sin 8) r dr  d8 
P 

+ R  Jr [u(u cos 8 - v  sin 8 )  - 
P 

(urr, cr8 are the stresses). Stokes’ solution for (2.25)-(2.28) is (Cantwell 1986; 
Afanasyev & Voropayev 1989)t: 

(2.29) 

where 

El(z)  = ePztt-’dt J: 
is an integral exponent. 

helpful for a better understanding of the real flow evolution. 
Though this asymptotic solution is obtained for a linear approximation, it is very 

In experiments some passive tracer is used to  visualize the flow : it is usually a dye. 

t Our numerical values of coefficients in (2.29), (2.30) are two times greater than those given by 
Cantwell (1986). It seems that there is an arithmetic error in the formula (5.1) in his paper. 
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3 
1 = 9  

3 
14 24 

t = 9  14 24 
FIGURE 13. Plane starting jet, the source of momentum acts continuously: (a) calculations with the 
stream function (2.29) for v = 2.7 x love cma s-l, Z / p  = 2.8 cm3 ( b )  experiment in a layer of 
viscous ( v  = 2.7 x om2 s-') 
viscosity, I / p  = 2.8 cm3 s - ~ .  Scales in cm, time ( t )  in 8. 

Equations of motion for marked particles with the stream function (2.29) have the 

cma s-l) fluid lying on a heavier fluid with low (v* = 5 x 

(2.31) 

(2.32) 

Integrating these equations numerically one can calculate the trajectory of a marked 
particle starting at  t = to from the point (r0, O0). 

In our experiment a dyed fluid is injected continuously from a thin slitted nozzle 
(of width d = 0.02 cm). In computations the marked particles were injected discretely 
from several points on the arc ro = &!, -$ < Bo < $7c at small time intervals. The end 
points of all injected particles at time t give the theoretical distributions of 'dyed' 
fluid shown in figure 13 (a). For comparison photos of the real flow in a thin layer of 
viscous fluid are shown in figure 13 ( b ) .  In spite of essential simplifications, the model 
correctly reproduces the general features of the flow - its spiral structure - and is in 
quite good agreement with the observations. Certainly, the three-dimensional 
numerical simulation in a stratified fluid (Voropayev & Neelov 1991) gives more 
realistic information about the real flows, but that is not a primary task of our paper. 

3. Impulsive vortex dipole 
In these experiments a strong horizontal jet was injected for a short period of 

time (At) into a density-stratified fluid at  the level of its equilibrium density. The jet 
transports the horizontal momentum P* = 4Q2, At/nD2p into the fluid. In a density- 
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FIGURE 14. Formation of the vortex dipole in a stratified fluid, top view : N = 1.5 s-', At = 5 s ,  
Re = 4QJrrvpD = 720; scale in cm, time ( t )  in s (Voropayev 1987). 
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FIGURE 15. Vertical profiles of horizontal velocity (approximately) and salinity in the vortex 
dipole: (a) in a jet-like flow before the vortex dipole is formed ( t  < to ) ,  (b) in the centre of the vortex 
dipole after it is formed ( t  > to ) ,  At = 4 s, Re = 530. 

stratified fluid the vertical motion is suppressed by gravity, and thus the flow rapidly 
becomes horizontal. The front region of the flow moves with a velocity 0 which is less 
than the local velocity U,  of the fluid in the flow behind the front. The vorticity 
generated by the source of momentum is transported by the jet-like flow into the 
front region and is concentrated here, forming two flat vortices of opposite sign - 
a vortex dipole (see figure 14). The formation process finishes in a time of 
approximately to x At/( 1 -/?), when the main part of the moving fluid enters the 
front region. Here, 

0 < /? < 1,  /?(Re) = U/U, ,  Re = 4Q,/nDvp 

is the initial Reynolds number of the jet-like flow. 
The vortex dipole formed moves forward and its horizontal dimension increases 

through the entrainment of ambient fluid. Vertical profiles of salinity in the flow 
before and after the vortex dipole is formed are shown in figure 15. Note that the 
density distributions in the flow before and after the vortex dipole is formed are 
similar to the density distributions in the steady jet region and in the front region of 
the starting jet respectively (see figure 10). Note also that the fluid in a vortex dipole 
is hardly mixed in a vertical direction. 

The observations demonstrate that  after the vortex dipole is formed its shape is 
similar a t  any instant of time. For simplicity we shall consider a vortex dipole as a 
liquid disk of thickness H ,  diameter 2R, moving with a velocity 0 = dZ/dt (Z is the 
distance of the centre of the disk from the origin). 

3.1. Vortex dipole characteristics : scaling analysis 
Using a standard hypothesis (Turner 1964b, 1986; Escudier & Maxworthy 1973) the 
equation of mass balance for the dipole is 

U R 2  - Q 
dt p ' 

n- - - 

where Q = napHRD, and a is the entrainment coefficient. 
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PIN (cm4) 

FIGURE 16. Vortex dipole thickness H versus PIN: momentum P was varied by variation of Q * l p  
(0.5-3.0 em3 s-l) and At (1-8 s ) .  Symbols denote experimental points with different values of P 
(5MOO om4 s-l) and N (0.5-2.5 s-l). Each symbol represents a particular value of Q*. Solid line is 
(3.4) with y = 1.4. 

The momentum conservation equation is 

H R 2 0  -F 
(1+k)7Cdt=-, 

P 
(3.2) 

where k = 1 is a virtual-mass coefficient, and F = cupR0, similar to (2.15), is the 
viscous drag force applied on the horizontal boundaries of the dipole. For solving 
(3.1), (3.2) data on the dipole thickness H arc needed. In  general, H can depend on the 
kinematic momentum P = PJp, the buoyancy frequency N ,  time t and viscosity u .  
On dimensional grounds 

(3.3) 

where 70 = Nt, T* = u#t/@ are dimensionless times. In our experiments we used a 
strong jet to exert a large momentum for a short period of time on the fluid. Typical 
values of the governing parameters are: P x lo2 em4 s-', N x 1 s-', At x 5 s, t 5 
lo2 s. When t > to the dipole is formed and T~ % 1. By contrast, 7* < 1 when t is not too 
large ( t  5 @/u,@). Thus, we assume a complete similarity of the function f ( ~ ~ ,  7*) with 
respect to parameters T ~ ,  T* : f ( 7 ,  % 1, 7* 4 1) = const. (see, for example, Barenblatt 
1979). 

The vortex dipole thickness H was measured using a simple technique proposed by 
Gartner (1983). Observations demonstrate that after the dipole has been formed 
( t  > t o )  its thickness R does not vary with time, hence f ( ~ ~ ,  T * )  = const. = y and 

H = y&$. (3.4) 

The results of our measurements (figure 16) for to  6 t 5 @/u# give a mean value 
y x 1.4. 

Substitution for H and for 0 permits (3.1) to be integrated to give 

2R = UZ. (3.5) 

In the model the coefficient u is not known; its value must be obtained from the 
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FIQURE 17. Vortex dipole diameter (2R) for different distances (z) from the origin : symbols denote 
experimental points with different values of P (50-400 om4 s-l) and N (0.5-2.5 8-l). Solid line is (3.5) 
with u = 0.46. 
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FIGURE 18. Measured zeXp and calculated z (from (3.7) with u = 0.46, y = 1.4) distances of the 
vortex dipole centre from the origin : each symbol denotes different t (1CL350 s )  but the same 
P (5Cra00 cm4 9-l) and N (0.5-2.5 8-l). 

experiment. The results of our measurements (see figure 17) are in good agreement 
with the estimate (3.5) and give the mean value a x 0.46. 

Substitution for H ,  R and F ,  permits (3.2) to  be integrated to  give 

-z+(-) 4p4 arctanh[&yz] = 
c v ~  t 

acv a ( k +  1) yT& 

For integration we have used the initial condition that for t = 0 (5 = 0) ,  momentum 
Y is applied to the fluid. Expanding (3.6) we obtain the estimate 

Z;.[ l2 ]:,,,. 
a2( 1 + k) 7" (3.7) 
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FIGURE 19. The motion of the tracer particles (polystyrol spheres) into the vortex dipole 
P = 125 cm4 5-l;  (a) t = 32 s ,  ( b )  125 s. Scale in cm. 

The calculated results from (3.7) versus experimental values of z are shown in 
figure 18. 

Thus, during the intermediate asymptotic regime (intermediate times) the dipole 
develops self-similarity, its diameter 2R and the distance z from the origin increase 
with time as ti, and the dipole thickness H remains constant. Note that the Reynolds 
number of the flow Re = 2 R o / v  N t-4 - E-’ decreases with time. By contrast, the 
Richardson number Ri = H2N2/l? N tg N $ rapidly increases. 

3.2. Kinematical model of entrainment into an expanding vortex dipole 
In  order to understand better the fluid particles’ motion into the vortex dipole, we 
have performed some experiments with the tracer particles. Small polystyrol spheres 
were introduced into the resting stratified fluid before the start of the experiment. 
The spheres’ density was approximately equal to the fluid density at  the nozzle level. 
In experiments, successive photographs of the flow with the tracer particles were 
taken (two of these fourteen photographs are reproduced in figure 19). The positions 
of the spheres were plotted graphically, using the coordinates (7 = r / R ,  0 )  and are 
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FIQURE 20. Trajectories of four tracer particles in coordinates (7 = r/R(t), 0): (a) calculations, 
( b )  experiment ; time t in s from the beginning of the experiment. 

shown in figure 2 0 ( b ) .  Here, R is the radius of the dipole and ( r ,O)  are polar 
coordinates at  rest relative to the centre of the dipole. For clarity the positions of 
only four tracer particles are plotted. One can see that ambient fluid enters the 
vortex dipole, forming two typical spirals. 

In order to explain the results shown in figure 20(b ) ,  we used a simple kinematic 
model similar to that proposed by Turner (1964~)  for spherical thermals. The basic 
assumption is that at  any instant of time the motion inside the vortex dipole is 
similar to the steady inviscid flow induced by two vortices, while the outside flow is 
the potential flow around a cylinder. For this model the external ($,J and internal 
(I@~) stream functions are 

$e = -U(r-R2/r)sin0, r > R, (3.8) 

sine, r < R, 2URJ,(ar/R) $. = - 
aJ&) 

(3.9) 

where 0 is the dipole velocity in the direction B = 0 and a = 3.83 . . . is the first zero 
of the Bessel function J,. The stream function $i describes a flow with vorticity 
distribution w = (a/R)2 ki (Batchelor 1967). 
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The dimensional analysis (see above) and the experimental results (see figure 17) 
demonstrate that R(t) = (;a) ~ ( t )  and hence = dZ/dt = (2/a) dR/dt (a = 0.46). In 
the coordinate system (7 = r /R,  0) the particle velocities for a flow with the stream 
functions (3.8), (3.9) are 

3 dt = -~[t,,+(l-J)cos,],\ 3at 

(3.10) 

(3.11) 
- - - -- 2 Jl(a7)sin0, 
dt 3014 Jo(a)  

These equations were integrated numerically. The initial values for to ,  v0,  0, were the 
same as those in the experiment with the tracer particles. For comparison, the 
calculated trajectories of four particles, corresponding to the experimental 
trajectories of four polystyrol spheres in figure 20 ( b ) ,  are shown in figure 20(a).  The 
stagnation points are marked by crosses. The qualitative agreement is quite 
satisfactory and the model describes correctly the main feature of the flow, its spiral 
character. 

4. Conclusions 
Summarizing the results presented above we can say that localized action of a 

horizontal force on a stratified fluid produces two typical flows: starting jets and 
impulsive vortex dipoles. Both of these flows develop in self-similar regimes and their 
lengthscales increase with time as ti and ti respectively. The characteristics of the 
flows depend mainly on one governing parameter: for starting jets it is the non- 
dimensional force J and for impulsive vortex dipoles it is the kinematic momentum 
P exerted on the fluid. An interesting feature of the flows considered is that the 
Richardson number increases with distance N ii? and a buoyancy force rapidly 
overcomes the inertia force. This reflects the fact that  the flow velocity decreases and 
its vertical dimension increases (steady and starting jets) or remains constant 
(impulsive dipole) with distance. For comparison, note that gravity-current-type 
intrusions, by contrast, travel at a constant Richardson number (Simpson 1987). 

The next natural step in our studies is the investigation of more complicated 
vortex structures, which appear as a result of vortex dipole interactions with each 
other and with a vertical barrier. At present we are continuing our preliminary 
experiments (Afanasyev et al. 1988) and two papers on this fascinating topic have 
been prepared (Voropayev 1990 ; Voropayev & Afanasyev 1991). 

It is a pleasure to thank Professor G. I. Barenblatt, for numerous helpful 
discussions on this subject and Dr M. H. Rozovskii for assistance with performing 
the numerical calculations. Our thanks are also due to Mr I. V. Kat'kov for 
assistance with photography. 



Horizontal jets and vortex dipoles i n  a stratijied jluid 

R E F E R E K C E S  

565 

ABRAMOVICH, S. & SOLAN, A. 1973 The initial development of a submerged laminar round jet. 
J .  Fluid Mech. 59, 791-801. 

AFANASYEV, YA, D. & VOROPAYEV, S. I. 1989 On the spiral structure of the mushroom-like 
currents in the ocean. Dokl. Akad. Nauk SSSR 308, 17S183. 

AFANASYEV, YA, D., VOROPAYEV, S. I. & FILIPPOV, I .  A. 1988 Laboratory investigation of flat 
vortex structures in a stratified fluid. Dokl. Akad. Nauk SSSR 300, 704-707. 

AFANASYEV, YA, D., VOROPAYEV, S. I. & FILIPPOV, I. A .  1990 Conductivity microprobe for fine 
structure measurements in stratified flows. Okeanologiya 30, 502-504. 

AHLNAS, K . ,  ROYER, T. C. & GEORGE. T. H. 1987 Multiple dipole eddies in the Alaska coastal 
current. J .  Qeophys. Res. 92, 4147 .  

BAKER, D. T. 1966 A technique for the precise measurements of small fluid velocities. J .  Fluid 
Mech. 26, 573-575. 

BARENBLATT, G. I. 1979 Similarity, Self-Similarity and Intermediate Asymptotics. New York : 
Consultant Bureau. 

BATCHELOR, G. K.  1967 An Introduction to Fluid Dynamics. Cambridge University Press. 
CANTWELL, B. J .  1986 Viscous starting jets. J .  Fluid Mech. 173, 159-189. 
COUDER, Y. & BASDEVANT, C. 1986 Experimental and numerical study of vortex couples in two- 

ESCUDIER, M. P. & MAXWORTHY, T. 1973 On the motion of turbulent thermals. J .  Fluid Mech. 61, 

FLIERL, G. R.,  STERN, M. E. & WHITEHEAD, J .  A. 1983 The physical significance of modons: 
Laboratory experiments and general integral constraints. Dyn. Atmos. Oceans 7 ,  233-263. 

GARTNER, V. 1983 Visualization of particle displacement and flow in a stratified salt water. Exps 
Fluids 1, 55-56. 

GINSBURG, A. I. & FEDOROV, K. N. 1984 The evolution of a mushroom-formed current in the 
ocean. Dokl. Akad. Nauk SSSR 274, 481484. 

HEIJST, G. J.  F. VAN 1989 Experiments on coherent structures in two-dimensional turbulence. In  
Proc. 5th. European Phys. Soc. Liquid State Conf. on Turbulence, pp. 11Ck111. Moscow, Inst. for 
Problems in Mech., USSR Acad. Sci. 

HEIJST, G. J .  F.  VAN & FLOR, J. B. 1989 Laboratory experiments on dipole structures in a 
stratified fluid. Mesoscale/Synoptic coherent structures in geophysical turbulence. In  Proc. 
20th Zntl Liege Colloqu. on Ocean Hydrodynamics. Oceanography Series, vol. 50, pp. 591408. 
Elsevier. 

dimensional flows. J .  Fluid Mech. 173, 225-251. 

54 1-552. 

LAMR. H. 1932 Hydrodynamics, 6th edn. Cambridge University Press. 
LANDAU, L. D. 1944 New exact solution of Kavier-Stokes equations. Rep. USSR Acad. Sci. 43, 

28e-288. 
MCWILLIAMS, J.  C. 1983 Interaction of isolated vortices 11. Geophys. Astrophys. Fluid Dyn. 24, 

1-22. 
MCWILLIAMS, J.  C. 1984 The emergence of isolated coherent vortices in turbulent flow. J .  Fluid 

Mech. 146, 2143.  
MCWII,I.IAMS, J .  C. & ZABUSKY, J.  N. 1982 Interactions of isolated vortices I. Geophys. Astrophys. 

Fluid Dyn. 19, 207-227. 
NCUYEN Duc, J.-M. & SOMMERIA, J.  1988 Experimental characterization of steady two- 

dimensional vortex couples. J .  Fluid Mech. 192, 175-192. 
PAPALIOU, D. D. 1985 Magneto-fluid mechanic turbulent vortex street. In 4th Beer-Sheva Seminar 

on MHD JIOWS and turbulence. AIAA Progress series, vol. 100, pp. 152-173. 
SCHLICHTINO, H.  1955 Boundary Layer Theory. McGraw-Hill. 
SIMPSON, .J. E. 1987 Gravity Currents: In  the Environment and the Laboratory. Ellis Horwood. 
SLEZKIN, K. A. 1934 On the case when the equations of motion for viscous fluid can be integrated. 

SQUIRE, H. B. 1951 The round laminar jet. &. J .  Mech. Appl. Maths 4, 321-329. 
STERN, M. E. & VOROPAYEV, 6. I. 1984 Formation of vorticity fronts in shear flow. Phys. Fluids 

Sci. Papers Moscow State Univ. 2, 115-121. 

27, 848-855. 



566 

TURNER, J. S. 1964a The flow into an expanding spherical vortex. J. Fluid Mech. 18, 195-208. 
TURNER, J .  S. 19643 The dynamics of spheroidal masses of buoyant fluid. J. Fluid Mech. 19, 

481490.  
TURNER, J .  S .  1986 Turbulent entrainment : the development of the entrainment assumption, and 

its application to geophysical flows. J. Fluid Mech. 173, 431471.  
VOROPAYEV, S.  I. 1983 Free jet and frontogenesis experiments in shear flow. Tech. Rep., Woods 

Hole Oceanographic Znst., WHOI-83-41, pp. 147-159. 
VOROPAYEV, S. I. 1985 A theory of self-similar development of a jet in a density homogeneous 

fluid. Izv. Akad. Nauk SSSR,  Fiz. Atmos. Okeana 21, 1290-1294. 
VOROPAYEV, S. I. 1987 Modeling of vortex structures in shear flow using a jet of variable impulse. 

Morskoy Hydrof. Zh. 2, 33-39. 
VOROPAYEV, S. I. 1989 Flat vortex structures in a stratified fluid. Mesoscale/Synoptic coherent 

structures in geophysical turbulence. In Proc. 20th Intl Liege Colloqu. on Ocean Hydrodynamics. 
Oceanography Series, vol. 50, pp. 671-690. Elsevier. 

VOROPAYEV, S. I. 1990 Self-similar structures in 2-D turbulence : experimental and theoretical 
study of vortex multipoles. In  Proc. 3rd European Turbulence Conference, Stockholm, Sweden (in 
press). 

VOROPAYEV, S. I. & AFANASYEV, YA, D. 1991 Two-dimensional vortex dipole interactions in a 
stratified fluid. J. Fluid Mech. (submitted). 

VOROPAYEV, S. I .  & FILIPPOV, I. A. 1985 Development of a horizontal jet in a homogeneous and 
stratified fluids: Laboratory experiments. Izv. Akad. Nauk SSSR,  Fiz. Atmos. Okeana, 21, 
964-972. 

VOROPAYEV, S. I., FILIPPOV, I. A. & AFANASYEV, YA, D. 1989 Self-similar coherent structures in 
2-D turbulence : vortex dipoles, quadrupoles and other structures. I n  Proc. 5th European Phys. 
SOC. Liquid State Conf. on Turbulence, Suppl. issue, pp. 22-23. Moscow, Inst. for Problems in 
Mech., USSR Acad. Sci. 

VOROPAYEV, S. I. & NEELOV, I. A. 1991 Laboratory and numerical modeling of vortex dipoles 
(mushroom-like currents) in a stratified fluid. Okeanologiya 31. 68-75. 

8. I .  Voropayev, Ya. D .  Afanasyev and I .  A .  Filippov 




