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Planar motion produced when a viscous fluid is forced from an initial state of rest is 
studied. We consider a vortex dipole produced by the action of a point force 
(Cantwell 1986), and a vortex quadrupole produced by the action of two equal forces 
of opposite direction. We also present results from an experimental investigation into 
thc dynamics of the interactions between vortex dipoles as well as between vortex 
dipoles and a vertical wall in a stratified fluid. Theoretical consideration reveals that 
the dynamics of two-dimensional vortex-dipole interactions are determined by two 
main governing parameters : the dipolar intensity of the vorticity distribution 
(momentum) and the quadrupolar intensity of the vorticity distribution of the flow. 
Wc document details of different basic types of interactions and present a physical 
interpretation of the results obtained in terms of vortex multipoles : dipoles, 
quadrupoles and their combinations. 

1. Introduction 
Various irregular quasi-two-dimensional flows associated with the term ‘two- 

dimensional turbulence ’ are induced by a system of forces applied to  a fluid. The 
stratified ocean, where gravity suppresses motion in the vertical direction, is a 
typical geophysical example of a nearly two-dimensional system where various 
natural factors act as irregular forces. These forces generate vortex motions of 
different horizontal scales. Noticeable among them are the mesoscale (3CL100 km) 
vortex structures : vortices, eddies, rings. The interactions of these structures with 
each other and also with coastal ridges strongly influence the instantaneous fields of 
velocity, temperature and salinity in the ocean and determine oceanic ‘weather ’. I n  
the last few years examples of a new form of mesoscale vortex structure, named the 
mushroom-like current (Fedorov & Ginzburg 1989), have been observed in great 
numbers in visual and infrared satellite images of the upper ocean. A typical 
mushroom-like current is a system of two vortices of opposite sign (vortex dipole) 
which can be considered as the simplest compact vortex structure which has 
momentum. It is clear that for some volume of fluid to acquire a momentum, some 
localized external (or internal) force must be applied to the fluid. The action of a 
localized force plus the action of gravity leads to vortex dipole formation in a 
stratified upper ocean. It seems that vortex dipoles and also their combinations (e.g. 
vortex quadrupoles) are the universal product of any irregular forcing in two- 
dimensional flows. Theoretical analysis (Manakov & Schur 1983) of a system of point 
vortices in an ideal fluid demonstrates that  an isolated vortex in that system cannot 
remain single asymptotically. Isolated vortices of different sign form dipoles of zero 
total circulation. The dipole has a momentum and hence it can be considered as an 
elementary ‘ particle ’ in two-dimensional fluid dynamics. 
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FIGURE 1 (u, b) .  For caption see facing page. 

To illustrate specific features of the flow induced in a stratified fluid by a system 
of forces, consider a simple experiment. A thin layer (0.5 em depth) of dyed fresh 
water lies on a layer of salt water. We move a row of vertical bars (diameter 0.05 cm, 
mesh 1 cm) back and forth in horizontal directions in the upper layer, thus applying 
localized external forces. Figure 1 shows the subsequent development of the flow 
induced. One can see clearly in this sequence that the fundamental elements of the 
flow are not single vortices but vortex dipoles. For impulsive force action, shown in 
figure 1, a small-scale motion rapidly decays and numerous large-scale dipoles 
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FIGURE 1 ( a d ) .  Photographic sequence showing a top view of the evolution of numerous dipole- 
like coherent structures in an initially ( t  = 0) turbulent upper layer of density-stratified water. The 
lengthscale of the motion (typical diameter of the dipoles) is a;pproximately ten times greater than 
the depth of the upper layer and increases with time as R a 6: (a)  t = 2 s ,  ( b )  8 s ,  (c) 36 s, ( d )  98 s. 
The row of points to the left of the first photograph represent the horizontal cross-section of the 
vertical bars, the arrow shows the direction of motion of the bars. 

appear. As a result of dipole interactions and viscous diffusion, the lengthscales of the 
dipoles increase with time as R a 6. The nature of the forces inducing the motion is 
not important here. Similar, numerous dipolar structures are clearly seen in Griffiths 
& Hopfinger (1984, photos 2, 3) who studied experimentally mesoscale turbulence 
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generated by baroclinic instability. The forces inducing the motion in that case were 
internal. Other examples include flows in a soap film (Couder & Basdevant 1986), or 
in a layer of mercury in a magnetic field (Nguen Duc & Sommeria 1988). 

Before investigating a complicated irregular flow of the sort shown in figure 1,  it 
seems reasonable to reproduce and to study an isolated dipole with controllable 
characteristics in a stratified fluid. This simple idea was exploited in laboratory 
experiments, where laminar (Voropayev 1983) or turbulent (Voropayev 1987) 
horizontal jets from a thin round nozzle were used as controllable sources of 
momentum. In both cases, a compact vortex dipole was easily generated in a 
stratified fluid. Later, different aspects of isolated vortex-dipole dynamics were 
studied experimentally by van Heijst & Flor (1989a, b ) ,  Afanasyev & Voropayev 
( 1 9 8 9 ~ )  and Afanasyev, Voropayev & Filippov (1988, 1989), numerically by 
Voropayev & Neelov (1991), and theoretically by Barenblatt, Voropayev & Fillipov 
(1989) and Afanasyev & Voropayev (1989b). The characteristics of isolated vortex 
dipoles in a stratified fluid have been well studied and they are summarized in a 
detailed paper by Voropayev, Afanasyev & Fillipov (1991). 

The next, natural step in studies of vortex-dipole dynamics in a stratified fluid is 
the investigation of more complicated vortex structures, which appear as a result of 
the interaction of dipoles with each other and with a boundary. Preliminary 
experiments on the head-on collision of two impulsive strong jets in a stratified fluid 
have demonstrated the appearance of an unsteady vortex quadrupole (Afanasyev 
et al. 1988). The jets collide forming a turbulent cloud. In  a stratified fluid gravity 
suppresses vertical motions. As a result, two dipoles form and emerge from the cloud 
in directions perpendicular to  the initial directions of the jets. The subsequent 
motion of the dipoles depends on the ratio of jet intensities. If the intensities are 
equal, the dipoles move in a straight line. If the intensities are not equal the dipoles 
describe a loop and collide again. Increasing the distance between the nozzles, van 
Heijst & Flor (1989a, b )  reproduced and described in detail a situation in which two 
dipoles were formed by the jets before the collision. The subsequent collision also 
demonstrated the emergence of unsteady vortex quadrupole. Both sets of authors 
confined themselves to a description of the visual observations and did not propose 
any theoretical explanation of the experimental observations. 

A dipole impinging normally on a vertical barrier in a stratified fluid was 
reproduced experimentally and described in detail by van Heijst & Flor (1989b). 
Based on this experiment, Orlandi ( 1990) made two-dimensional numerical 
simulations of the collision of a dipole with a boundary. Non-slip and free-slip 
conditions on the boundary were discussed. The results of these numerical 
simulations demonstrated quite good agreement with the experiments and revealed 
a rather complex sequence of multiple rebounds and impingements a t  the 
intermediate stage of collision. Though the number of intermediate bifurcations 
increased with the Reynolds number of the flow, the final asymptotic state of the flow 
appeared to be very simple: two vortices (halves of the dipole) that moved apart 
along the wall and increased in size by viscous diffusion. 

It is clear now that the results of these studies are useful in elucidating the nature 
and dynamics of the mushroom-like currents in the ocean. Vortex dipole interactions 
of different kinds cause the emergence of more complex flows. Up to now, only a few 
of these have been reproduced experimentally. To fill this gap we have reproduced 
some other types of dipole interactions in a stratified fluid and present below the 
experimental results obtained. Basing our work on a general theory proposed 
recently by Cantwell (1986), which permits us to consider, from one point of view, 
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different flows induced by the action of localized forces in a viscous fluid, we propose 
a model for two-dimensional vortex-dipole interactions and interpret the ex- 
perimental results. To make the discussion of the experimental observations more 
constructive we postpone the experimental part of our study and consider first a 
theoretical model. 

This paper is organized as follows. In $2  we present a theoretical analysis which 
permits us to connect the forces applied on a viscous fluid with appropriate vorticity 
distributions and introduce governing parameters for the induced two-dimensional 
flow, then we consider exact solutions of the two-dimensional Stokes equations for 
the flows induced by two equal forces directed towards one another and acting 
impulsively or with constant intensity : a model of the collision of two dipoles and the 
subsequent generation of an unsteady vortex quadrupole. In $3 we describe briefly 
the experimental technique used. In $4 the experimental results for different kinds 
of vortex dipole interactions are presented and, on the basis of the relevant 
parameters governing the flow, some cases of particular interest are discussed. 
Conclusions are given in $5.  

2. Theoretical analysis 
Following the paper by Cantwell (1986) consider the planar unsteady flow of a 

viscous incompressible fluid induced by a system of forces F(x’ , t )  (force per unit 
volume), which acts on the fluid inside the area S(x’) (figure 2). The forces and 
associated vorticity distribution ~ ( x ’ ,  t )  = ( O , O ,  w )  = kw are assumed to occupy a 
finite area S(x’) and the fluid extends to infinity (k  being the unit vector along z-axis 
perpendicular to the plane of motion). The vector potential B(x,  t )  = (0, 0, @) = k$, 
where $ ( x , t )  is the stream function at  a point x, can be found from the vector 
Poisson equation 

the solution of which for two dimensions is 
V2B = - 0, (2.1) 

o(x‘,t)lnIx-x’ldS 

2.1. Multipole expansion and governing equations 
For 1x1 >> lx’l the vector potential (2.2) may be approximated by a few terms of a 
multipole expansion 

where 

D, = J x;o(x’, t )  dS’, 
S’ 

Q,, = I ( 2 4  xi - (x’)~ a,,) w(x’, t )  ds’ 
S 

(2.5) 

and n, = x,/IxI, x = ( x l ,  z2). In addition to the monopolar term (2.4) and dipolar term 
(2.5), the case considered by Cantwell (1986), the third quadrupolar term (2.6) is 
added in expansion (2.3). 

22-2 
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FIGURE 2. Sketch of the flow and coordinate system. 

The fact that w is divergence free and localized and forces apply no net moment 
to the fluid implies that r = 0. After some algebra the multipole expansion (2.3) in 
a polar coordinate system ( r ,  6) can be presented in the form 

1 2n m 

$(r ,O , t )  =%lo lo COS(8-0’)o(r’,8’,t)(r’)2dr’dB’ 
+-& 5:’ 1; cos 2(8 - 0’) w(r’, O’, t )  (v-7’ dr’ dB’ + 0 

The full nonlinear problem is too complicated for analysis, thus consider Stokes’ 
equation for vorticity 

r2wt = v(wss + rw, + r2w,,). (2.8) 

Taking into account the expansion (2.7), we are looking for self-similar solutions of 
(2.8) in the form (Barenblatt et al. 1989) 

r 
w = AtrnW(fJc~~[n(6+6,)], ( = - 2(vt)i  ’ 

where v is the viscosity, A ,  m, B0 are constants, and n = I ,  2, . . . . From (2.8) for W(€J 
we obtain the governing ordinary differential equat,ion 

d2W d W  
y+(2(+(-’)--((n(-2+4m) w = 0. 
d t  dE 

(2.10) 

A general solution of (2.10) can be expressed via the confluent hypergeometric 
functions (see e.g. Kamke 1959). The stream function can be found from the equation 

$oo + r$r + r2$,, = - r2w.  (2.11) 

Consider now some cases of practical interest. 
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2.2. Vortex dipole 
Consider a flow induced by a point momentum source which acts impulsively at  time 
t = 0 and exerts on the fluid a force 

Jp = JsF dx' = I p  8(t)  

in the direction 8 = 0 in a polar coordinate system (T, 8) ($(t) is the delta function, p 
is the fluid density). The source is at  the point T = 0. The dimensions of I are L 3 T 1  
and I = const. 

On dimensional grounds and from the geometry we have: 

A = ~ / f ,  m = - t ,  8, = in, n = 1. 

For these m and n, the solution of (2.10) that is non-singular at C; = 0 for t > 0 and 
satisfies the condition W(5)  + 0 when C;+ co is 

WE) = cC;exP(-52). (2.12) 

The fact that the impulse of the vorticity distribution (first integral in (2.7)) is equal 
to the total impulse, I = I: J dt, applied by the force distribution since the onset of 
the motion (Cantwell 1986), where 

I(t) = [ som sin e'o(r', e', t )  (r')2 dr'de', 

gives C = 1/(4n) in (2.12). Thus for the vorticity we have 

Ir 
8 7 t ( ~ t ) ~  

w=-  exp ( - r2/4vt)  sin 8. 

Solving (2.11) for the stream function we obtain 

I 
2xr 

+ = - (1 - exp ( - r2 /4v t ) )  sin 8. 

(2.13) 

(2.14) 

(2.15) 

Consider now the case in which a point momentum source acts continuously : it starts 
at  time t = 0 and thereafter exerts on the fluid a force Jp in the direction 8 = 0. The 
dimensions of J are L 3 T 2  and J = const. Using the same arguments as above (for 
this case A = J / d ,  m = - t ,  8, = t x ,  n = 1)  we obtain 

J 

2nvr 
w = -exp ( - r2/4vt) sin 8, 

1 + = e-Zx-ldz sin8. 

Integrating the equations of motion for marked particles 

(2.16) 

(2.17) 

(2.18) 

with the stream function (2.17) or (2.15), one can calculate the distributions of the 
marked particles and compare them with the dyed water distributions in a real flow. 
The results of comparisons with the visualized flows induced in a linearly stratified 
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t = O  t > O  

FIGURE 3. Sketch of dipole formation under the action of a localized force : appropriate dyed 
water distributions (shaded area), vortical flow (w + 0), potential flow (w = 0). 

FIGURE 4. Sketch of 

I \ r  \ 

‘I 

two equal (I ,  = I, = I) forces acting on fluid 
8 = a, 19 = 0, a is an arbitrary angle. 

in opposite directions : 

fluid (Afanasyev & Voropayev 1989b) and in a two-layer fluid (Voropayev et al. 1991) 
have demonstrated that the model correctly reproduces the gross features of the real 
dipole generated by a localized force in a viscous fluid. Dipole formation, and the 
appropriate distributions of dyed fluid, vortical and potential flows are shown 
schematically in figure 3. 

2.3. Vortex quadrupole 

Consider two point sources of momentum exerting on the fluid equal forces J p  in 
opposite directions (figure 4). The sources are at  the points ( ~ ,  a), (b, a+x) and act 
on the fluid in the directions 0 = x, 0 = 0 respectively (a is an arbitrary angle). 
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Decrcasing 8 and increasing J so that the product EJ = M remains constant, we 
obtain a point sourcc of intensity M p  at the point r = 0. The source consisting of two 
forces (figure 4) is a force dipole for a = 0, n and a pair of forces for a = &in. For 
arbitrary a we have a combination of the two types of sources. The force dipole 
applies no net force on the fluid hence the dipolar distribution (2.13) is equal to zero 
and the first non-zero term in (2.7) is the term with quadrupolar distribution (second 
integral in (2.7)), hence w - cos 2(8+ do). 

Consider again two cases : an impulsive source and a source of constant intensity. 
I n  the first case M = Q&(t ) .  The dimensions of Q are L4T-' and Q = const. Hence in 
(2.9) A = Q / v 2 ,  m = -2, n = 2 and from (2.10) we obtain the solution 

W ( [ )  = C[zexp(-g2). (2.19) 

For the source of constant intensity Mp which starts at t = 0 the dimensions ofM are 
L 4 P  and M = const. Hence A = M / v 2 ,  m = - 1, n = 2 in (2.9) and from (2.10) we 
obtain the solution 

W(5)  = C(1+[-2)exp(-[2). (2.20) 

To determine a constant of integration C in (2.19) and (2.20) we need the connection 
(similar to (2.13) between the source intensity and appropriate quadrupolar vorticity 
distribution. Besides that we must find some additional arguments to determine a 
constant O0 in (2.9). 

For large r the stream function (2.15) or (2.17) for the flow induced by a point force 
is 

sin 8, (2.21) 
I 

v + o = s  

where I = const for an impulsive force and I = J t  for a constant force ( J  = const). 
Representing the stream function for two equal forces (II = I, = I) shown in figure 4 
as the superposition of stream functions (2.21), for large r we have 

From the geometry (see figure 4) we have 

r: = r2+(i$)2+Ercos(B-a),  

r2 - - r 2 +($)2 -ercos (8 -a ) ,  

rl sin 8, = r sin 8 + (%) sin a, 

r2 sin O2 = - r sin O+ ($) sina,  

and for r % $ with an accuracy of order s/2r for the force dipole we obtain 

(2.22) 

(2.23) 

where Q = d. 

determining the constants C and 8,: 
Comparing (2.23) with the second term in expansion (2.7) we obtain the condition 

--sin (20-a) = - IoW cos 2(e - O') w(r ' ,  O', t )  (r')3 dr' dO'. (2.24) 
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I I cm 1 

l = O  5 10 s 

FIQURE 5. Dyed water distribution (shaded area) in a planar impulsive vortex quadrupole 
calculated with the stream function (2.26). The contours of shaded area were obtained by 
calculations of the trajectories of 10 marked particles in the first quadrant. The final positions of 
the particles for different times were drawn by hand. To avoid the singularity, particles which had 
initial positions near the point r = 0 were not considered. Q = 2 om4 s-l, v = cm* s-l. 

Using this condition after some algebra we find: C = 1/(8n), 8, = -$a-& Inserting 
these constants into (2.19), (2.20) and (2.9) and solving (2.11) we obtain two 
solutions. For the impulsive source : 

exp ( -rr2/4vt) sin (28-a), Qr2 = -~ 
32nv3t3 

I) = -- 1 -  I+- exp(-r2/4vt) sin(28-a). 
2rrQ1'[ ( L) 1 

For the source of constant intensity (Q = Mt, M = const) : 

(1-exp(-r2/4vt)sin(28-a). 
Mt I)=-- 
2nr2 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

Integrating the equations of motion (2.18) with the stream function (2.26) or (2.28) 
one can calculate the distributions of marked particles which initially were in a small 
circle around the source ( r  = 0). These distributions are shown for the impulsive force 
dipole (2.26) in figure 5.  Thus two equal forces acting in opposite directions induce 
the vortex quadrupole consisting of two dipoles moving in the directions 8 = +(a+n). 
Vortex quadrupole formation and appropriate distributions of dyed fluid, vortical 
and potential flows are shown schematically in figure 6. 

Thus the action of a single force or of the simplest system of forces (two equal 
forces) on a viscous fluid leads to the formation of a compact vortex dipole or a 
quadrupole, respectively. The governing parameter for the dipole is the integral 
intensity ( I )  of the dipolar vorticity distribution (momentum of the dipole). 
Correspondingly, for the quadrupole i t  is the integral intensity ( Q )  of the quadrupole 
vorticity distribution. I and Q are determined by the intensity of the initial force 
action on the fluid. Note, that  vorticity in these vortex structures is localized in a 
compact fluid volume of radius R (figure 3). The following interpretation of 
experimental results is based on the idea of vortex multipoles governed by the 
parameters introduced above. 
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l = O  r > 0  

FIQURE 6. Sketch of quadrupole formation under the action of two equal forces of opposite 
direction: appropriate dyed water distributions (shaded area), ( 1 )  vortical flow, (2) potential flow. 

3. Description of the experiment 
The technique used for the generation of vortex dipoles in the experiments 

discussed in this paper is similar to those described in detail in other papers 
concerning this subject (Voropayev BE Filippov 1985 ; Voropayev et al. 1991). Here we 
omit the details and present only a brief description of the experimental set-up. 

The experiments were performed in a transparent Plexiglas tank, of rectangular 
shape, 80 x 80 x 30 cm. A density stratification in the working fluid (distilled water) 
was created by varying its salinity in the vertical direction. A strong, linear, vertical 
density distribution with buoyancy frequency N = 1.5 s-' was produced using the 
two-tank method. 

The flows in the tank were generated by horizontal jets from one or two thin round 
nozzles - localized sources of momentum (nozzle diameter D = 0.1-0.2 cm). Dyed 
jets were injected horizontally into the stratified fluid at the level of their equilibrium 
density (p) .  A jet exerts on the fluid a localized force j = 4pq2/(nD2) and imparts to 
the fluid a localized impulse given by i = j : j d t  (q is the measured volume flux from 
the nozzle). The dimensions of j for a round source are L T 2 .  To characterize the 
source intensity we shall use a non-dimensional parameter j / v 2  which is almost 
equal to a squared Reynolds number (Re) of the jet flow generated by the source : j / v 2  
%Re (e.g. see Batchelor 1967). For an impulsive source the flow momentum 
i = j At = const, where At is the duration of the action of the force. Its typical value 
in our experiments is At x 3-5 s. For a source of constant intensity, the flow 
momentum, i = j t ,  increases with time. 

The results of previous experiments and theoretical analysis demonstrate that the 
Richardson number of a vortex dipole, generated by localized force action in a 
stratified fluid, rapidly increases with time. Thus the flow at the intermediate- 
asymptotic stage can be considered as an approximately two-dimensional one, the 
vertical lengthscale (H) of the dipole being determined by the initial Reynolds 
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number of the flow and a stratification parameter (Voropayev et al. 1991). The model 
presented in the latter paper permits one to calculate the main vortex-dipole 
characteristics (including H ) .  Thus, in our further qualitative analysis we consider 
the dipoles as planar and characterize their intensity in terms of momentum per unit 
depth Z = i / H .  Applying the same arguments for a quadrupole, we also obtain the 
quadrupole intensity in the form Q = Ie = Ei/H. For the horizontal lengthscale of the 
flow, we use the typical lengthscale (R) of the dyed water region and take into 
account that R increases with time. The values of t,he initial Reynolds number (Re) 
for each case are given in the figure captions. The buoyancy frequency in all 
experiments was N x 1.5 s-'. 

In  the experiments in which we studied the interaction of a dipole with a wall, we 
used a glass plate which was placed vertically in the tank. 

The flows were visualized by adding a pH-indicator, thymol blue dye, to the 
working fluid (Stern & Voropayev 1984). The fluid in the tank was acidic (yellow). 
The fluid injected from the nozzle was in the basic form (blue) so the flow was clearly 
visible. After the end of each test we waited several minutes until the injected (blue) 
fluid in the tank became yellow again by a diffusive chemical reaction with the acidic 
surroundings. Thus we could perform the next experiment without changing the 
working fluid in the tank. 

4. Experimental results and interpretation 
In  this section we present results from experiments documenting the dynamics of 

vortex-dipole interactions. Some representative photographic sequences are given in 
the figures in this section. We also present a qualitative interpretation of the 
experimental results in terms of forces acting on the fluid and associated vortex 
multipoles : dipoles, quadrupoles and their combinations. 

4.1. Head-on collision of two dipoles of equal momenta 
Consider two sources of momentum which start simultaneously and thereafter apply 
to the fluid equal forces, acting in opposite directions for a time At. After the onset, 
the sources generate two initially turbulent strong jets (Re x 700, figure 7 a ) .  The 
jets, which have equal momenta (I, =I, =I), collide, forming a chaotic, turbulent, 
three-dimensional cloud (figure 7 b ) .  Owing to gravity, the flow becomes quasi- 
planar. As a result of the collision, two dipoles are pushed from the cloud in opposite 
directions, perpendicular to  the initial directions of motion of the jets (figures 7 c  and 
7 d ) .  A similar kind of collision was also observed by van Heijst & Flor ( 1 9 8 9 ~ )  with 
the only difference that, in their experiment, primary dipoles were formed from the 
jets before the collision. 

Consider now the same interaction but for laminar flows (Re x 45, figure 8). The 
initial jets are weak and the flow is laminar from the start; thus the jets form two 
dipoles before the collision (figure 8a) .  These dipoles move towards one another 
forming a quadrupole (figure 8 b )  consisting of the vortices of the primary dipoles. 
Two newly formed dipoles then move apart perpendicular to the initial directions of 
motion of the primary dipoles (figure 8c ,  d ). Of course, the initial flows in figures 7 ( a )  
and 8 ( a )  look very different but the final result of the interactions (figures 7d and 
8 d ) ,  i.e. the formation of dipoles of equal intensity moving apart, is the same for both 
cases. It is clear that, a t  least qualitatively, we can consider the interaction dynamics 
without emphasizing the regime of the flow (whether i t  is turbulent or laminar 
initially) and below we present only the most informative examples. 
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FIGURE 7 ( a d ) .  Photographic sequence showing a top view of the collision of two impulsive strong 
jets (Re z 700) of equal momentum and the formation of an  impulsive vortex quadrupole in a 
linearly stratified (N = 1.5 s-l) fluid. Scale in cm. Distance between the sources E = 15 cm. 

FIGURE 8(a-d). Photographic sequence showing the head-on collision of two dipoles (Re % 45) of 
equal momentum and the formation of a vortex quadrupole. Scale in cm. Distance between the 
sources E = 2.5 cm. (a)  t = 2 s ,  ( b )  7 s ,  (c) 13 s ,  ( d )  19 s. 

Consider now the same interaction in terms of vortex multipoles. For this case the 
total momentum of the flow is equal to zero, hence we have only one parameter - the 
quadrupolar intensity of the flow Q = Ie ,  where E is the distance between the two 
sources. After the sources start, two primary dipoles form. Initially (R < $) they 
develop independently, governed by the parameters I , ,  I ,  (II = 12) respectively 
(figure 8a) .  When the dipole radius R,  which is also a lengthscale of the vortical 
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FIGURE 9. Sketch of the head-on collision of two dipoles of equal momentum 1 (a) initial phase of 
interaction, ( b )  formation of compact vortex quadrupole ; (1) vortical flow, (2) potential flow. 

patches, becomes comparable with the distance between the two patches, the 
interaction begins. The mutual induction of two vortical, dipolar patches causes the 
emergence of potential, quadrupolar backflow outside the patches (see the sketch in 
figure 9). At the moment of collision, vorticity is localized around the collision point 
(figure 8 b ) .  Thus, a localized vortex quadrupole forms a t  this point (figure 9 b ) .  The 
subsequent flow evolution is governed by the single parameter Q. As a consequence, 
the quadrupole flow develops in accordance to the t,heoretical solution (2.26) shown 
in figure 5. 

4.2. Head-on collision of two dipoles of different momenta 
Consider a case when two colliding jets have different momenta. In  figure lO(a) the 
left-hand jet acts for three times longer than the right-hand one, thus I, = 31,. The 
secondary dipoles emerging from the chaotic cloud (figure 10b,c) are no longer 
symmetric and move along circular paths instead of straight lines (figure 10c-e). The 
weaker vortices in these dipoles are subjected to straining while orbiting around 
stronger vortices and eventually decay. Finally, the stronger vortices form a new 
dipole which moves to the right, in the same direction as the primary jet which has 
the largest momentum (figure 10e, f ) .  

It is interesting to compare the case considered (I, = 31,) with one when the 
momenta of the colliding jets differ only slightly (I, % 1.312, see figure 4 in Afanasyev 
et al. 1988). The major difference between the two cases is that, in the latter, the 
radius of the circular paths in which the secondary dipoles move is much larger than 
the radius of the dipoles. The weaker vortices in the dipoles do not decay in the less 
intensive background straining field. As a result, two secondary dipoles consisting of 
vortices of different intensity perform a looping excursion and collide again at the 
original collision point. Finally, after another exchange of partners between the 
colliding dipoles, two new dipoles are formed. The newly formed dipoles have 
different momenta which correspond to the momenta of the primary jets. Note that 
the common radius of the circular paths in which the secondary dipoles move 
depends on the ratio I J I , .  When I J I ,  + 1 this radius tends to  infinity and we have 
a ‘pure’ quadrupole ($4.1). 

Consider the collision shown in figure 10 in terms of its governing parameters. For 
this case, both of the parameters I = I, - I, and Q = I, E are non-zero. The summary 
flow can be considered as a superposition of dipolar (I) and quadrupolar ( Q )  flows. The 
velocities induced by a dipole and a quadrupole decrease with distance as r-2 and r-3 
respectively (see $2). Thus at small distances a quadrupolar flow prevails. As a result, 
two secondary dipoles governed by the parameter Q emerge from the cloud after the 
collision (figure l ob ,  c ) .  At larger distances dipolar flow prevails. As a result, the 
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FIGURE 12 ( a d ) .  Photographic sequence showing the interaction of two dipoles (Re x 70) moving 
in parallel. Distance between the sources 6 = 2 cm. (a) t = 5.5 s, ( b )  16 s, (c) 60 s, ( d )  118 s .  

newly formed dipoles move in a background dipolar flow (figure 10c-e). Finally, the 
flow determined by the multipole of the lowest order (dipole) survives (figure 10 f ). 

4.3. Merging of two dipoles, one moving behind the other 
Consider two sources acting impulsively in the same direction along the line 
connecting the sources, or equivalently, one source which acts twice. The 
photographic sequence in figure 11 shows the flow evolution for this case. The second 
dipole can be seen to  penetrate the first one from the rear, pushing aside the vortices 
of the first dipole (figure 11 b, c ) .  The strained outer vortices orbit around the vortices 
of the intruding second dipole (figure l l c - e ) .  This continues until a single dipole 
forms as a result of vortex merger (figure l l f ) .  

The explanation for this case is very simple. Initially, the dipoles develop 
independently governed by the parameters I,, I ,  respectively. The mutual induction 
of two dipolar vortex patches generates a net dipolar flow of intensity I = I ,  +I,. The 
vortex patches (dyed fluid) move in this background dipolar flow ; the two dipoles 
merge and finally form one dipole of intensity I .  

4.4. Parallel motion of two dipoles 
Consider the interaction of two dipoles of equal intensity ( I ,  = I,) moving parallel to 
one another (figure 12). The dipoles were generated by the simultaneous action of two 
sources of equal intensity. In the initial period after thc onset of the motion the 
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F’IQURE 1 3 ( a 4 ) .  Photographic sequence showing the oblique collision of two dipoles (Re x 60). 
Distance between the sources E = 14 cm. (a) t = 4.5 s ,  ( b )  21 s ,  (c) 32 s ,  ( d )  56 s. 

dipoles do not influence one another (figure 12a) .  As time progresses, the dimensions 
of the dipoles increase and the dipoles begin to interact. They push sideways and 
their inner vortices begin to orbit around the outer ones (figures 12b, c ) .  During this 
process the strained (initially inner) vortices decay. The remaining vortices form the 
new dipole which continues to move forward (figure 1 2 d ) .  

The interpretation for this case is similar to that for the previous case. Initially, 
when R -c $ ( E  being the distance between the sources), two primary dipoles develop 
independently and are clearly seen in figure 12a.  The mutual induction of dipoles 
creates a net dipolar flow of intensity I = I ,  +I2. The dipoles moving in this net 
dipolar flow (figure 12b, c )  eventually form one dipole (figure 1 2 d ) .  

4.5. Oblique collision of two dipoles 
In a case when two dipoles of equal momenta ( I ,  = 12) collide at  some angle, each of 
the primary dipoles splits into two vortices and two new dipoles form. The outer 
vortices form a new strong dipole which moves forward. The inner vortices form a 
weak dipole which moves in the opposite direction (figure 1 3 b d ) .  Note that similar 
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FIGURE 14(u-d). Photographic sequence showing the collision of an impulsive strong jet (Re x 
700) with a wall. Distance between the source (1) and the wall (2), B = 14 cm. (a) t = 10 s, ( b )  51 s, 
( c )  75 s, ( d )  136 s. 

results were observed in the experiment where the quasi-two-dimensional flow was 
produced in a soap film (figures 12, 13 in Couder & Basdevant 1986). 

The initial phase is clear: two dipoles develop independently (figure 13a). To 
explain the subsequent evolution of the flow we must take into account that  the 
dipole intensity (momentum) is a vector. Introducing the components of the 
momentum vector we find that the flow shown in figure 13 is governed by two 
parameters : I = 21, cos+ and Q = dl sin $a (a being the angle between the directions 
of the sources). Thus the flow represents the superposition of dipolar and quadrupolar 
flows. From the geometry it is clear that the induced velocities are in the same sense 
to the right of the collision point, and in opposite senses on the left-hand side. The 
outer vortices of the primary dipoles develop in the accompanying background 
dipolar flow and form an intensive dipole (figure 13b). The inner vortices develop 
against the background dipolar flow forming a weak dipole (figure 13b) which 
eventually decays (figure 13c, d ) .  

4.6. Head-on collision of a dipole with a wall 
As mentioned above, a vortex dipole impinging on a solid wall was visualized in a 
recent experiment by van Heijst & Flor (1989~) .  We have reproduced a similar 
experiment and present some photos of the flow in figure 14. 

The source of momentum of intensity I ,  is a t  distance 8 from the wall and is 
directed normally to the wall. In  contrast to  the case considered by the 
aforementioned authors, in our experiment the source of momentum was not 
sufficiently far from the wall for a primary dipole to be formed before the collision. 
Initially, a turbulent cloud impinges on the wall (figure 14a) and eventually splits 
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FIGURE 15. Sketch of the initial stage of the collision of a vortex dipole with a wall. Secondary 
vortex patches (1)  are created in the boundary layer at the wall by the flow induced by the dipole. 
Two arrows show schematically the momenta I,,, I ,  of the primary and newly formed dipolar vortex 
patches. 

forming two dipoles (figure "14b). The newly formed dipoles, consisting of intense 
primary vortices and of weaker satellites, rebound from the wall and move in circular 
paths (figure 14c). Note that in spite of different initial conditions, the intermediate 
phase of flow evolution shown in figure 14c is very similar to the flow shown in figure 
9 b  in van Heijst & Flor (1989a). The weaker satellites eventually decay. As a result, 
two large vortices of increasing radius move gradually apart along the wall. 

If there was a free-slip condition a t  the wall, one would expect the situation to  be 
similar to the collision of two dipoles of equal intensity (see 54.1). In  that case, the 
wall would act only as a mirror. But in a real fluid, vorticity is created at the wall. 
Consequently, the flow for non-slip and for free-slip conditions is different. When the 
source begins to act, the induced, potential, dipolar flow causes the emergence of 
friction forces in the boundary layer a t  the wall. These forces generate two vortical 
patches of opposite sign (see the sketch in figure 15). These patches can be considered 
as a newly formed dipole directed away from the wall. 

To explain the subsequent evolution of the flbw, consider the interaction of 
primary and newly formed dipoles. This stage of the process can be interpreted in the 
same way as the collision of two dipoles of different intensities (54.2). Thus, in 
addition to the main governing parameter - the momentum I ,  of the primary dipolar 
patch -we can introduce the momentum I ,  of the dipolar vorticity distribution 
generated a t  the wall. We do not know the exact value of I ,  which is a function of 
the initial governing parameters and time, but, evidently, it cannot exceed Io .  Thus 
two parameters govern the flow dynamics : I = Io-I* and Q* = I* B .  Owing to the 
virtual quadrupole, two dipoles, consisting of vortices from the split primary dipole 
and vortices detached from the wall, are formed. These dipoles then move in looping 
curves in the net background dipolar flow of intensity Z (figure 14b, c ) .  The weaker 
satellites, generated at the wall, decay while orbiting around the primary vortices. As 
a result, a single, final dipole is formed (figure 14d) as if the process has returned to 
the beginning, with one essential difference : the momentum of the final dipole (I) is 
smaller than that of the primary dipole ( I o ) .  Thus the wall reduces the momentum 
of the flow by this process. Consider now the effect of the image vortices on the flow 
dynamics. We can interpret this stage of interaction using the same arguments as for 
a head-on collision of two dipoles of equal intensity (54.1). As a result, two vortices 
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(half-dipoles) move apart along the wall. The numerical two-dimensional simulation 
by Orlandi (1990) shows that the number of intermediate bifurcations, as well as the 
number of secondary vortices created a t  the wall, increases when the initial Reynolds 
number of the flow (the momentum of the primary dipole) is increased. I n  our 
experiment the initial Reynolds number was not very large and only one bifurcation 
occurred. The current Reynolds number of the impulsive vortex dipole decreases 
with time (Voropayev et al. 1991). Thus, after a number of bifurcations the nonlinear 
effects become small. Hence, the secondary vorticity generated at  the wall does not 
concentrate into localized patches and the process of viscous diffusion prevails. 
Therefore, two vortices of increasing size moving apart with decreasing velocity 
along the wall (figure 14d)  is the final result of the head-on collision for moderate 
initial Reynolds numbers. 

4.7. Parallel motion of a dipole along the wall. 

Consider the case when the source of momentum I ,  is a t  some small distance ( E )  from 
the wall and acts parallel to the wall. The photographic sequence in figure 16 shows 
the evolution of a dipolar vorticity patch which moves along the wall. One can see 
that the dipole forms (figure 16b) in a turbulent cloud and then emerges from the wall 
(figure 16c). The eruption of the dipole from the wall resembles the bursting 
phenomenon in the near-wall region of turbulent boundary layers (Falco 1977). The 
outer vortex straines and eventually decays. A single vortex (a half of a dipole) of 
increasing size, moving forward with decreasing velocity, is the result of the 
interaction (figure 16 f ). 

To explain the evolution of the flow shown in figure 16 consider first the dipolar 
vortex patch of intensity I, moving along the wall. As a consequence, a thin 
boundary layer forms at the wall. The dipolar vortex cloud moving along the wall 
sweeps the vorticity from the boundary layer. This leads to  an asymmetry of the 
vorticity distribution in the cloud: the vortex nearest to the wall becomes weaker. 
At the same time the interaction of the patch with its mirror image occurs. The 
subsequent evolution of the flow resembles the interaction of two dipoles moving in 
parallel and separated by the distance 2e (54.4). The result of this interaction is a 
compact vortex (half of a dipole) which slowly moves along the wall with decreasing 
velocity. Thus, the wall in the experiment of figure 16 is more than just a symmetry 
plane : its viscous boundary layer causes the vortex to move away from the wall over 
a considerable distance (compare figure 16 f and figure 12d) .  

The question arises, where has the vorticity from the decaying vortex gone ? A 
natural hypothesis is that  all the vorticity goes into the vortex tail and then 
effectively diffuses. 

4.8. Oblique collision of a dipole with a wall 
Finally let us consider the case in which the source of momentum I, is at some 
distance ( E )  from the wall and acts a t  an angle a to the wall. The photographic 
sequence in figure 17 shows the evolution of the flow. A primary dipolar vortex patch 
splits into two parts: two dipoles are formed and emerge from the wall. The more 
intensive dipole is directed forward and the less intensive is directed backward. The 
dipoles describe loops, their outer vortices strain and eventually decay. As time 
progresses the dipoles transform into two vortices (halves of dipoles) of different 
intensity moving apart along the wall. 

To interpret the evolution of the flow, consider again two effects produced by the 
wall: the production of vorticity in the boundary layer a t  the non-slip wall and of 
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FIGURE 17 ( a 4 ) .  Photographic sequence showing the oblique collision of an impulsive strong jet 
(Re x 600) with a wall. Distance between the source and the wall, 6 = 4 cm. (a)  t = 1 s, ( b )  15 s, (c) 
20 s, ( d )  60 5. 

mirror vortices. Both effects influence the flow simultaneously, but for simplicity let 
us consider them separately. When the source of momentum starts, the induced, 
potential, dipolar flow causes the emergence of friction forces in the boundary layer 
at the wall. These forces generate two vortex patches of opposite sign which can be 
considered as a dipole of intensity I ,  directed away from the wall against the source 
of momentum. Thus, at  the intermediate stage, two parameters govern the flow 
dynamics: I = l o - I*  and Q* x d,. Owing to the virtual quadrupole, two dipoles 
form and then move in looping curves in the net, background, dipolar flow of 
intensity I .  At the same time, the mirror image of the flow influences the flow 
dynamics. Using the same arguments as for an oblique collision of two dipoles (§4.5), 
we obtain two main parameters governing the flow : I cos a and Q = ds in  a. Thus the 
flow represents the superposition of dipolar and quadrupolar motions and two 
intermediate dipoles move in this flow. From the geometry, it is clear that the 
induced velocities combine on the right-hand side of the collision point at  the wall 
and are in opposition on the left-hand side. The right dipole develops in the 
accompanying background dipolar flow, makes a loop, and transforms into an 
intense single vortex (this final phase is not shown in figure 17, but it is similar to the 
last frame in the sequence shown in figure 16). The left dipole develops in the weak 
background quadrupolar flow, makes a loop and also transforms into a single vortex. 

5. Concluding remarks 
We have considered a compact vortex quadrupole arising in a viscous fluid from 

the symmetric collision of two dipoles and explained this result theoretically. We 
have also reproduced different kinds of vortex-dipole interactions in a stratified fluid 



688 S .  I .  Voropayev and Ya. D .  Afanasyev 

and have tried to  explain the interaction dynamics in terms of compact vortex 
multipoles : dipoles, quadrupoles and their combinations. Proposed governing 
parameters permit the qualitative prediction of not only the result of an interaction 
but also of intermediate bifurcations of the flow. In our simple experiments we have 
restricted ourselves to qualitative analysis with the aim of providing a common 
perspective for several different kinds of interaction. To obtain quantitative data 
some further study is needed. 

We hope that the results obtained can be used by those who investigate the 
dynamics of mushroom-like currents in the upper ocean on the basis of satellite 
images. At first glance, these mesoscale vortex dipoles appear to develop a t  very 
high Reynolds numbers, but simple estimates demonstrate that this is not so. A 
typical horizontal lengthscale (R) of these structures is some tens of kilometres and 
they exist in a field of small-scale turbulent background motions. The effective 
background turbulent viscosity in the upper ocean depends on the scale (L)  of 
motion and for L < R its typical value is 105-106 cm2 s-'. Thus mushroom-like 
currents with typical velocities of some tens of centimetres per second develop a t  
moderate Reynolds numbers and one may hope that laboratory experiments, a t  
least qualitatively, correctly reproduce real oceanic flow dynamics. 

The authors are indebted to  Mr I. A. Filippov for his part in performing the 
experiments and are grateful to Professor G. K. Batchelor and Professor G. 1. 
Barenblatt for helpful discussions and comments. 
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