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The planar flow arising in an initially quiescent viscous fluid under the action of a 
localized dipolar-type forcing has been studied analytically and experimentally. The 
force dipole, with non-dimensional forcing amplitude Re, brings net zero momentum 
into the fluid and gives rise to the formation of a quadrupolar vortex : a system of two 
dipolar vortices moving apart. Experimentally, the action of a force dipole was 
modelled by a vertical cylinder oscillating horizontally in the shallow upper layer of a 
two-layer fluid. Two cases were studied: single quadrupoles and an array of 
quadrupoles. It is found that single quadrupoles develop in a self-similar manner: the 
length L and the translation velocity U of the quadrupolar vortex change with time as 
L - tliz and U - t- ' /2. These quantities are characterized by non-dimensional functions 
a(Re) and P(Re), respectively, which have been determined theoretically for small Re- 
values and experimentally for Re-values in the range 160-2200. 

To produce an array of quadrupoles an array of oscillating vertical rods was used. 
Two stages in the flow evolution were studied experimentally: the initial stage, when 
the interactions between the quadrupoles are weak, and the intermediate stage when 
the interactions play an essential role and the flow is (two-dimensionally) turbulent. It 
is found that at both stages the width H of the region with intense vortical motions 
increases with time as H - t'/'. A theoretical explanation of the experimental results is 
given. 

1. Introduction 
The dynamics of coherent vortex structures as commonly occur in geophysical flow 

situations have received considerable attention during the last few years. Theoretical, 
numerical and experimental studies have revealed the existence of a number of different 
vortex types : the monopolar vortex, characterized by a non-zero angular momentum ; 
the dipolar vortex, with non-zero linear momentum ; and the tripolar vortex, also 
characterized by a non-zero angular momentum. In many studies different analytical 
approximations are used to describe the dynamics of these compact vortices, without 
considering the physical formation mechanism causing these vortex structures to arise 
in an otherwise quiescent viscous fluid. The latter problem is closely related to the 
general problem of the generation of unsteady vortex multipoles by localized external 
forcing in an unbounded fluid (Cantwell 1986). Only for the simplest case of a 
symmetric vortex monopole has an exact unsteady nonlinear solution been found 
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(Afanasyev & Voropayev 199 1). Such solutions for the higher-order vortex multipoles 
are as yet not known, as far as we are aware. 

In view of the obvious difficulties in the analytical approach, laboratory experiments 
become very helpful in elucidating the physical mechanism of the formation of 
multipolar vortices and their subsequent evolution. The laboratory observations by 
Voropayev & Filippov (1985), Afanasyev, Voropayev & Filippov (1988), van Heijst & 
Flor (1989), Fernando, van Heijst & Fonseka (1992) and F16r & van Heijst (1994) have 
revealed that the dipole vortices induced by a localized force, acting either impulsively 
or continuously, develop in a self-similar manner. This allows a significant 
simplification of the interpretation of experimental data, and also enables one to 
construct semi-empirical models for this dipolar flow evolution (Voropayev, Afanasyev 
& Filippov 1991). 

In addition to the fundamental vortex types mentioned above, there is another basic 
vorticity structure : the quadrupolar vortex, consisting of two dipoles moving apart. 
This more complicated structure was considered by Voropayev & Afanasyev (1992), 
aiming at the interpretation of the experimental results of dipole-dipole interactions as 
well as the interaction of a dipole with a solid boundary. In its archetypal form, a 
vortex quadrupole is generated by the action of a localized force dipole in a viscous 
fluid and the total momentum of the flow induced by this source is zero. Although a 
self-similar solution for the initial stage of the quadrupole evolution shows qualitative 
agreement with the laboratory observations of Voropayev & Afanasyev (1992), a 
systematic quantitative study of these flow structures has not yet been performed, and 
analytical or semi-empirical models are barely developed. It is the main aim of this 
paper to provide these : below, the characteristics of vortex quadrupoles are analysed 
theoretically for small Re-values and investigated experimentally for larger Re-values, 
where Re is the non-dimensional forcing amplitude. In the experiments the action of 
a localized force dipole on the fluid was modelled by a vertical cylinder oscillating 
horizontally in the shallow upper layer of a two-layer fluid. Averaged over the 
oscillation period, the cylinder exerts equal but oppositely directed forces on the fluid, 
thus effectively reproducing the action of a localized force dipole. 

As a continuation of the study of the single quadrupolar vortex, an attempt was also 
made to reproduce an array of quadrupoles and to study the propagation dynamics of 
the two-dimensional turbulence that arises. For this purpose we used a linear grid of 
vertical rods oscillating horizontally in the shallow upper layer of the two-layer fluid 
in the direction normal to the plane of the grid. This experiment can be considered as 
a two-dimensional analogue of well-known experiments on three-dimensional 
turbulence induced by a planar horizontal grid oscillating vertically in a deep fluid 
tank. 

The remainder of this paper is organized as follows. A preliminary analysis and some 
estimates of characteristic features of the flow are presented in $2. The experimental 
arrangement is described in $3. The experimental data on single quadrupoles are 
presented in $4.1, while experimental results obtained for the array of quadrupoles and 
the propagation of the two-dimensional turbulent region are discussed in $4.2. Finally, 
a comparison with experiments on three-dimensional oscillating-grid turbulence as 
well as the main conclusions of the present study are given in $5. 

2. Preliminary analysis 
Consider the planar unsteady flow of a viscous incompressible fluid (with density p 

and kinematic viscosity v) induced by two identical point sources of momentum, 
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FIGURE 1. Schematic drawing of the momentum sources (a) and the quadrupolar vortex (b) arising 
under the action of two equal forces acting in opposite directions. The typical length L, width D and 
propagation velocity o( = dL/dt) of the evolving flow structure are defined as indicated in the figure. 

exerting on the fluid equal forces Jp  in opposite directions. As indicated schematically 
in figure 1, the momentum sources are located a distance E apart. In a polar coordinate 
system ( r ,6) ,  their positions are (ie,in) and (ie, -in) and the forces are exerted in 
opposite directions 6 = in and 6 = -in, respectively. By decreasing the distance E 

and simultaneously increasing the force amplitude J in such a way that their product 
E J =  M remains constant, one obtains a point force dipole of intensity Mp at the 
origin r = 0. It is assumed that the fluid is initially at rest and extends to infinity. The 
source of intensity M = const. starts at t = 0 and the dimensions of M are L4T-2. 
The resulting planar motion can be expressed in terms of the vorticity w (in fact the 
vorticity component perpendicular to the flow plane) and the stream function $, 
which is defined through v = - k x V$, with k the unit vector perpendicular to the 
flow plane. Solving the linear equation for the vorticity 

awlat  = vv2w 

V2$ = - w ,  

and then the Poisson equation for the stream function 

one obtains the solution of this problem in the Stokes approximation (Voropayev & 
Afanasyev 1992) : 

= --= - R  
r a6 e tP2{ 1 - exp (- t2)} cos 26, 

where u and v are the radial and azimuthal velocity components, respectively, 6 is the 
non-dimensional similarity variable 

6 = r/2(~t) ' /~ (2) 

Re = M/4nv2. (3) 

and Re is the non-dimensional forcing defined as 
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Solution (1) describes the evolution of a vortex flow arising in initially quiescent fluid. 
This flow represents two symmetric dipolar vortices moving apart in the directions 
6 = k:n (see figure 1) and we set out to calculate the maximum length L and width D 
of the flow pattern visible in the fluid of a passive tracer that was initially released in 
the vicinity of the source. This calculation can be performed as follows. For r < ro and 
t 9 rt/v, with ro an arbitrary constant radius, the solution can be expanded in a power 
series in (for small &values). Taking the limit [ + O  in (l), one obtains 

5-0 

This result implies that the radial velocity decreases with distance as r-l, while the 
azimuthal velocity vanishes at the ultimate steady stage of the flow evolution. In view 
of this, it is now assumed that the characteristic velocity Uo in the flow can thus be 
estimated as 

Uo = Re v/r. (4) 
This is in accordance with general principles of similarity (see e.g. Sedov 1959): the 
problem has no external lengthscale and the only scale is the distance r from the origin. 
In a self-similar flow 

where a is a non-dimensional function that does not depend on the distance r, but 
which may depend only on the Reynolds number, which at r = L is equal to the non- 
dimensional forcing : 

By scaling the flow velocity field by U,, the velocity 0 of the vortex front moving into 
the ambient quiescent fluid (see figure 1) can be estimated in a similar fashion: 

D = aL, (5) 

Re = U, L/v = M/4nv2. (6)  

U = dL/dt = /3Uo, 

L = (2/3 Re vf)'''. 

(7) 

where /? is also a non-dimensional function of Re. Combination of (4) and (7) for 
r = L yields 

By using (1) it is possible to calculate /3(Re) and a(Re). 

particles 

(8) 

With the help of the similarity variable (2), the equations of motion for marked fluid 

de - dr 
-=u, - 
dt dt -r' 

with u and v given by (l), can be presented in a non-dimensional form 

d [ /d~  = -+Re [-3{ 1 - exp ( - [')} cos 26 -it, 
d6ld.r = -:Re [-z{(5-2 - (1 + [-') exp (- tZ)} sin 26, 

(9 a> 

(9 b) 

where 7 = In f. The points where d[/d7 = d6/d7 = 0 determine the positions of the 
critical stagnation points where the non-dimensional velocities (9) are equal to zero, 
thus giving the positions of the dyed fronts of the flow. Two symmetrical stagnation 
points ([ = E0, 6 = +$n) at the leading fronts of the flow are clearly seen from the 
system (9), with the value of f = to being determined by the equation 
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FIGURE 2.  Functions a(Re) and ,8(Re) calculated from solution (1) for small Re-values. 

From (1 a) and (10) we obtain for the propagation velocity U of the leading fronts 

U = U(t0,  0 = +in, t) = (u/t)'/y0, 
or in equivalent form 

0 = 2(v/r) ti. 
This gives the value for the propagation velocity of the front formed by dyed fluid 
particles which initially were at the vicinity of the source of motion. Scaling U by Uo 
given by (4) yields 

By solving (10) one finds to(Re) and obtains the function p(Re), which is shown 
graphically in figure 2 for small Re-values. 

The maximum width D of the dyed pattern is determined by calculating the positions 
of the points at which the velocity component perpendicular to the axis of the flow 
changes its sign. This gives the condition 

p = U/Uo = (2/Re)[i. (12) 

d d t  de 
- ( ( ~ C O S ~ )  = cosO--tsinO- = 0, dr dt dt 

which determines the curve 

The distance between two symmetrical points (to, do)), (to[", n: - 6') on this curve, which 
have a maximum distance from the axis of the flow, gives the value of the width D of 
the dyed pattern (see figure 3) 

D = 2 ( V t ) ' / 2  (260 cos 60) 

a(Re) = D / L  = 2($/t0) cos Oo, 

Combination of this result with (5 ) ,  (8) and (12) yields the function a(Re), i.e. 

(14) 

and its behaviour as calculated from (10) and (13), is shown graphically in figure 2. 
The estimates obtained are valid for small Re-values when the flow, determined by 
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FIGURE 3. Explanatory sketch for the upper part of curve (13) in self-similar polar coordinates ([,O) 
for Re = 20. Near the points (Eo, 0") and ([O, A - Oo) the fluid particles cannot cross this curve and the 
distance D / 2 ~ ' / ~ t  = 2[0cos0" between these points determines the maximum width D of the flow 
pattern. 

(l), is self-similar. The validity of (5 )  and (8), i.e. self-similarity, for large Re-values 
must be verified experimentally. On general grounds one may only expect that when 
nonlinear effects become dominant a(Re) decreases for increasing Re-values and 
a(Re)+O as Re-tco (see e.g. Batchelor 1967), but P(Re)++ as Re+co (see Stern & 
Voropayev 1984). Below, the validity of (5 )  and (8) is verified experimentally and the 
functions a and /3 are determined for large Re-values. 

3. Description of the experiment 
The majority of the laboratory experiments were performed in a glass rectangular 

container (35 cm x 30 cm) with a working depth of 3 cm. To control the possible 
influence of the container size on the flow characteristics, some additional experiments 
were performed in a larger container (55 x 65 cm). In order to reproduce nearly two- 
dimensional flow, the container was filled with two layers of immiscible fluids of 
different density. The lower layer was relatively deep (approximately 2 cm) and 
contained heavy CCl,, and this fluid was topped by a shallow (0.4 cm) layer of distilled 
water. Because of the lower viscosity of CCl,, the flow induced in the upper layer was 
thus 'shielded' from the bottom, i.e. the bottom friction was effectively reduced by the 
presence of the lower layer. To reduce the effect of surface tension, some drops of 
shampoo were added to the surface of the upper layer and to the interface between the 
upper and lower layers. After this the flow induced in the upper layer was almost 
vertically uniform over its depth, and therefore to a very good approximation two- 
dimensional. Strictly speaking, the motion in the upper layer is only planar (horizontal), 
but three-dimensional, because the vertical vortex lines in the upper layer are closed at 
the upper and lower surfaces of the upper layer. But neglecting this, it can to a good 
approximation be considered as two-dimensional or at least as quasi-two-dimensional. 

The motions were visualized by adding the pH-indicator thymol blue to the upper 
fluid, which - after the addition of some acid - was coloured yellow. Addition of a few 
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FIGURE 4. Oblique view of the generation mechanism and the resulting quadrupolar flow in the 
shallow layer of distilled water floating on top of a deeper layer of CCl,. The vertical rod 1, connected 
to a loudspeaker by a horizontal frame 2, performs harmonic oscillations in the horizontal directions 
indicated by the arrows. The flow is visualized by the thymol-blue technique (see text). 

drops of slightly basic water turned the colour locally to dark blue, thus providing a 
good contrast. In each experiment only a few drops of basic fluid were introduced in 
the flow area of interest. After an experiment it took only a few minutes for the 
diffusive chemical reaction with the acidic ambient fluid to restore the original yellow 
colour of the upper layer, and the next experiment could be performed without 
changing the working fluid. The experimental data were mainly obtained through 
photographs of the visualized coloured flow patterns (see figures 4 and 5). Good 
contrast was obtained by illuminating the coloured fluid through the glass tank bottom 
by fluorescent lamps. In addition, streak photographs were taken, for which purpose 
the upper layer was seeded with small neutrally buoyant tracer particles. In this case 
the upper layer was illuminated by a horizontal light sheet produced from one side. 

The quadrupolar flow in the upper layer was induced by so-called ‘acoustic 
streaming’. The arrangement of this generation technique (see figure 4) consists of a 
rigid horizontal frame connected to a loudspeaker (one loudspeaker was used for the 
smaller container and two for the larger container), whose motion could be controlled 
by a function generator. The cylinder (in fact a thin rod of circular cross-section) is 
fixed to the supporting frame and is placed vertically in the upper fluid layer in the 
centre of the container such that its end almost touches the interface between the layers. 
In this way it was possible to let the cylinder perform horizontal oscillations in a 
sinusoidal fashion with adjustable frequency f and amplitude B .  In order to vary the 
effective size of the source of motion, experiments were performed with cylinders of 
different diameters d in the range 0.034.16cm, whereas the amplitude I of the 
oscillation was varied from 0.1-0.18 cm. The frequencyfwas taken either 9 or 18 Hz. 
The values of the experimental parameters are listed in table 1. Prior to each 
experiment a small area in the upper layer in the vicinity of the cylinder was dyed a 
contrasting dark blue colour by adding a few drops of basic fluid. In this way the 
resulting flow patterns could be visualized nicely, as can be seen in figures 5 and 6. 
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Experiment 
number d(cm) 6 (cm) f (Hz) Re = M/4nv2 

1 0.03 0.186 9 156 
2 0.07 0.095 18 270 
3 0.07 0.12 18 430 
4 0.07 0.143 9 215 
5 0.07 0.15 9 240 
6 0.07 0.184 9 356 
7 0.12 0.095 18 460 
8 0.12 0.103 9 190 
9 0.12 0.12 9 260 

10 0.12 0.12 18 735 
11 0.12 0.143 18 1040 
12 0.12 0.15 9 406 
13 0.12 0.16 18 1306 
14 0.16 0.12 9 346 
15 0.16 0.12 18 980 
16 0.16 0.138 9 460 
17 0.16 0.15 9 540 
18 0.16 0.175 9 736 
19 0.16 0.184 9 814 
20 0.16 0.18 18 2204 
21 0.08 0.18 17 1010 
22 0.08 0.14 18 667 
23 0.24 0.1 17 935 

TABLE 1. Experimental parameters for single quadrupoles. The uncertainty in measuring E is about 
1 %, so the third number after the decimal point is not reliable. Experiments 21, 22 and 23 were 
performed in the larger container. 

Qualitatively, the formation mechanism of these structures is rather simple (see e.g. 
Batchelor 1967). A small oscillating body in a viscous fluid generates layers of 
alternatingly positive and negative vorticity. Because convection carries some vorticity 
away from the boundary, not all the vorticity in these layers diffuses in such a way that 
oppositely signed vorticities cancel. This leads to the formation of a quadrupolar 
vorticity distribution near the body and, as a result, a vortex quadrupole arises in the 
initially still fluid. When a solid body oscillates back and forth about some mean 
position in a viscous fluid, it exerts a force on the latter in alternating directions. It can 
be shown (see e.g. Batchelor 1967) that the resulting force varies periodically with the 
frequency of oscillation of the body and consists of two parts: an inertial one and a 
dissipative one. The phase shift between the inertial force and the velocity of the body 
is in, and therefore the inertial force does not increase the kinetic energy of the fluid. 
In contrast, the dissipative force that appears owing to the no-slip conditions at the 
body surface and the subsequent creation of a boundary layer on the body varies with 
the same phase as the velocity of the body. Only in some simple cases is it possible to 
estimate accurately the amplitude of the dissipative force. For example, for a cylinder 
of diameter d oscillating with a small amplitude e in a direction perpendicular to its axis 
the mean amplitude of this force (per unit length of the cylinder) is given by (Batchelor 
1967, p. 357) 

(15) pJ  = 4 ~ ~ ’ ~ p d ~ ~ / ~  ef 3/2, 

where f is the oscillation frequency in Hz (note that without this formula it is hardly 
possible to estimate correctly the value of J, which is a function of four independent 
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FIGURE 5. Colour picture of the vortex quadrupole (top view) induced by a continuously oscillating cylinder. In 
contrast to the pictures shown in figure 6, the ambient fluid is in the basic form (light blue). Prior to the 
experiment a small area in the vicinity of the cylinder was dyed by adding a few drops of acidic fluid. 
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Experiment 
number 

1 
2 
3 
4 
5 
6 
7 
8 

Symbol 

0 + * 
0 
0 
a 
rn 
A 

do(cm) F ( C 4  f (H4 
0.5 0.128 18 
0.5 0.133 18 
0.5 0.190 15 
1 0.146 9 
I 0.133 18 
1 0.158 18 
2 0.094 18 
2 0.133 18 

Re = 
M/4nv2 

490 
530 
820 
225 
530 
740 
260 
530 

t* (4 
0.35 
0.33 
0.25 
2.2 
1.3 
1.1 
8.1 
5.3 

At (3) 

0 
0 
0 
1 
1 
0.5 
1 
1 

TABLE 2. Experimental parameters for the array of quadrupoles. The uncertainty in measuring E is 
about 1 %, so the third number after the decimal point is not reliable. 

parameters). The direction of this force changes with a high frequency. Hence, the 
action of the oscillating force is equivalent to the action of a point force dipole with 
intensity 

This expression is used below for the quantative characterization of the source intensity 
in the laboratory experiments. Although formally its validity is restricted to cases 
c $ d, it is assumed that (16) also applies to cases c z d as occurs in the experiments 
described in the next sections. 

The main overall characteristics of the quadrupoles, i.e. their maximum width D and 
their maximum length L, were measured throughout the course of the experiment from 
the dye pattern as shown schematically in figure 1. The experiments were conducted at 
moderate values of the Reynolds number (in the range 16&2200, see table 1). For 
Re > 2500 the motion in the vicinity of the rod was observed to become three- 
dimensional and the flow is then unstable: the primary frontal vortices are formed 
periodically (see also Tatsuno & Bearman 1990, figure 13). At Re 5 100 the 
quadrupoles develop very slowly, and even the slightest background motion strongly 
disturbs the symmetric shape of the generated quadrupolar flow. For this reason 
attention was focused on the region of intermediate Re-values, for which reliable data 
could be obtained. 

The array of quadrupolar vortices was created by a horizontally oscillating grid, 
consisting of vertical rods of diameter d = 0.07 cm placed equidistantly in a linear 
array of length Do = 20 cm. Three different grids of the same length were used, with 
rod spacings do = 0.5, 1.0 and 2.0 cm, respectively. One of the grids was positioned 
vertically in the upper layer, with the polished ends of the rods just above the interface 
between the layers. As for the oscillating rod, the grid was fixed to a light, but rigid, 
horizontal frame that could oscillate horizontally in the direction normal to the grid 
plane with an adjustable frequency fand amplitude E .  The oscillation frequency was 9, 
15 or 18 Hz, and the amplitude was varied in the range 0.09-0.19 cm. For all the 
experimental runs carried out, the values of the various parameters are listed in table 
2. Again the resulting motion in the upper layer was visualized by adding the pH- 
indicator thymol blue to the fluid. Prior to each experiment, a few drops of basic fluid 
were introduced near the grid, thus locally providing a dramatic colour contrast. 

Two types of oscillating-grid experiments were performed. In the first case the grid 
was placed in the centre of the container, so that the ends of the grid were relatively 
far (c .  8 cm distance) from the sidewalls of the container. This geometry was chosen to 
examine quantitatively the influence of the sidewalls on the mean large-scale motion 

&f = Jc = 4 7 ~ ~ / ~ d v ~ / ~ ~ ~ f  3/2. (16) 
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FIGURE 6. Sequence of planview photographs showing the formation and subsequent evolution of a 
symmetric vortex quadrupole induced by a rapidly oscillating cylinder. This cylinder is fixed to the 
supporting bar, which is visible on the photographs as the dark line. Experimental parameters:f= 
9 Hz, 6 = 0.14 cm. The photographs were taken at (a) t = 4.4 s, (b)  9.2 s, (c) 13.2 s after the forcing 
was started. 

that develops. In the second case, two additional parallel walls were introduced into the 
container to form a long channel with width equal to the length of the grid (20 cm). In 
this case the grid completely spans the channel width and so any mean large-scale 
motion is practically absent. The quantitative data on the flow evolution and the 
propagation of the fronts of the turbulent region that arises were obtained only in this 
latter geometry. 

4. Experimental results and interpretation 

4.1. Single quadrupoles 
The typical evolution of the flow induced by the oscillating cylinder can be observed 
in the sequence of plan-view black-and-white photographs presented in figure 6 (see 
also figure 5, plate 1). In the photographs the black line is the supporting rod to which 
the cylinder is fixed. The cylinder itself is not visible, because it points downwards into 
the fluid; it performs a horizontal oscillating motion in a direction perpendicular to the 
axis of the supporting rod. At the start of the experiment some dye was present near 
the cylinder (some traces can still be observed in the photographs); most of this dye is 
seen to get carried away in the two symmetric dipolar vortices that are formed after the 
oscillations start. The two dipolar vortices move away from the source of motion along 
aligned, straight trajectories ; their size is observed to increase gradually, while their 
translation speed decreases. Once the dipolar vortices have moved sufficiently far away 
from the origin, the flow in the vicinity of the source can be considered as being steady. 
This can be observed on the streak photographs presented in figure 7: once the dipolar 
vortices (still visible in figures 7 a and 7 b) have left the source region, the flow takes on 
a steady appearance (see figures 7 c  and 7 4 ,  consisting of two outflow regions in the 
form of narrow jets in the oscillation direction and two wide inflow regions. In the flow 
field near the source the azimuthal velocity component (referring to a polar coordinate 
system with the origin coinciding with the source position) is negligibly small, and the 
tracer particles move along nearly straight radial lines, both in the inflow and in the 
outflow regions. The ultimate steady quadrupolar flow was studied analytically by 
Voropayev (1994) and in the present paper attention is mainly focused on the 
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FIGURE 7. Streak photographs showing the evolution of the quadrupolar vortex induced by an 
oscillating cylinder. The rectangular construction visible in the pictures is the supporting frame to 
which the cylinder is attached. Experimental parameters: f =  9 Hz, E = 0.14 cm. The photographs 
were taken at (a) t = 4 s, (b) 10 s, (c) 15 s, (d) 30 s, and the exposure time was 2 s. 
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L (cm> 
FIGURE 8. Graphical presentation of measured values of the width D of the quadrupolar vortex for 
different distances L from the origin for experiments 8 (O), 23 (A) and 15 (0). Experimental 
parameter values are listed in table 1. 

lo-' 
102 103 

Re 

FIGURE 9. Measured values of u in ( 5 )  and ,h' in (8) for different values of the Reynolds number Re. 
The numbers in the graph refer to the experiments listed in table 1. The solid lines represent the 
relationships (I  7) and (I  8). 

100' I 
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FIGURE 10. Measured values of the length L for different times t for experiments 8 (O), 23 (A) 
and 15 (0). Experimental parameter values are given in table 1 .  
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FIGURE 1 1 .  The behaviour of a and p in a wide range of Revalues. The solid lines represent the 
theoretical estimates (12) and (14) for small Revalues, and the approximations (17) and (18) of the 
experimental data (dots) for large Revalues. The transition region at moderate Revalues remains 
unstudied. 

FIGURE 12. Schematic drawing of the flow generated by an oscillating grid with the tank sidewalls far 
from the edges of the grid. The numbers indicate: 1, the grid; 2, the region of small-scale vortical 
motions near the grid; 3, the induced large-scale quadrupolar flow, which is governed by the total 
intensity M,, = MDJd,, of the grid forcing; 4, the container. The open arrows indicate the inflow of 
ambient fluid near the ends of the grid. 

intermediate-asymptotic stage (see figure 6), which appears too complicated to study 
analytically. 

Two main characteristics of the flow were measured in the experiments: the 
maximum width D and the distance L from the origin to the front of the dye structure 
(see figure 1). Typical experimental data for D and L obtained during three different 
experiments are shown graphically in figure 8. All measurements were made at 
L/15 0.6, where 21 is the length of the container, and the source is placed at the middle 
of the tank. In order to estimate the influence of the tank walls on the measurements 
results one can use (1). For r 2 L the velocity at the point (r, &c) can be written as u + uo, 
where u and uo are the velocities induced by the source and its mirror image, 
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(a) 

FIGURE 13. Sequence of streak photographs of the flow generated by the oscillating grid with the tank 
walls far from the grid ends @ / D o  z 1.8, with h the width of the container and Do the length of the 
grid). Experimental parameters: do = 1 cm, E = 0.13 cm,f= 18 Hz, exposure time 2 s. The rectangular 
construction visible in the upper part of the pictures is the supporting frame to which the grid is 
attached. 
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respectively. Using (1 a) one obtains the upper estimate: uo/u = r3/(21- r)3. For 
r / l S  0.6 this gives u, 

To demonstrate that the size of the working container does not influence the 
experimental results, two sets of experimental data, 15 and 23, obtained in smaller and 
larger containers at approximately the same Re-values are presented together in figure 
8. It is found that the experimental data are in good agreement with the linear 
relationship (5 ) ;  the mean values of the proportionality coefficient 01 in ( 5 )  have been 
determined for the 23 experiments listed in table 1, and the results are plotted in figure 
9 as a function of the Reynolds number Re. The straight line in this graph represents 
the approximation to the data by a conjectured power relationship of the form 

0.06~.  

01 = c1 Re-114, (17) 
where the proportionality constant is c, = 2.5 f 0.3. 

In order to verify the relation (8) the dependence of L on time t was measured in all 
experiments listed in table 1. Some typical results of the measurements obtained in the 
same experiments as those of figure 8 are presented in figure 10, and a good agreement 
with a power law L N t1/2 (denoted by the straight lines) can be observed. The 
proportionality coefficients in this relationship were estimated from these data, and this 
yielded values of the function /3(Re) in (8) for all 23 experiments. The results are 
presented graphically in figure 9, together with those of 01, as a function of the Reynolds 
number Re. The straight line through the P-data in figure 9 represents the 
approximation of the data by a conjectured power relationship of the form 

/3 = ~ , R e l ~ ' ~ ,  (18) 
where the proportionality constant is c2 = 0.14k0.02. 

The corresponding functions a(Re) and /3(Re) were also determined experimentally 
for single vortex dipoles by Voropayev et al. (1991, figure 11). It is not possible to 
compare the data for the functions a(Re) and /3(Re) directly, because the forcing and 
the definition of /3 is different for the dipole and the quadrupole flow. (In the case of 
the quadrupole the linear solution (1) was used to estimate the velocity scale (4), in 
contrast to the case of the dipole where the nonlinear solution obtained for the steady 
jet in the boundary-layer approximation was used.) Nevertheless, the functions 01 and 
/3 for these two types of flow are qualitatively similar in that in both cases the functions 
&(Re) show a rapid decrease with Re and the functions P(Re) show a slight increase 
with Re at large Re-values. 

Thus, the planar quadrupolar flow develops in a self-similar manner not only at 
small, but also at large Re-values. The only governing parameter in this flow is the non- 
dimensional intensity (Re) of the force dipole, which determines the main charac- 
teristics of the flow. Some of these characteristics can be estimated using only two 
non-dimensional functions a(Re) and P(Re), which have been determined theoretically 
(for small Re-values) and experimentally (for large Re-values), the results being 
summarized graphically in figure 1 1. The transition region at moderate Re-values 
(lCL100) remains unstudied. Below, the results obtained for single quadrupoles are 
used to explain the experimental data for the evolution of the array of quadrupoles. 

4.2. Array of quadrupoles 
4.2.1. Large-scale motion 

Consider first the flow induced by the grid when its ends are far from the sidewalls 
of the container (see figure 12). After the grid oscillation is started, each individual 
oscillating rod acts on the fluid as a localized force dipole with intensity M per unit 
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3 ,  

FIGURE 14. Schematic drawing of the flow generated by an oscillating grid stretched across the width 
of the channel. The numbers indicate: 1, primary quadrupoles; 2, the region where the primary 
quadrupoles intensively interact, forming larger secondary vortex structures ; 3, channel walls. The 
open arrows indicate the entrainment of ambient fluid. 

immersed rod length, given by (16). Thus, the action of the oscillating grid can be 
considered as a distributed force dipole of total intensity Mo = MD,/do (with Do the 
grid length and do the spacing between the rods), and at large distances the flow must 
be similar to that produced by a single force dipole with intensity Mo. In accordance 
with (1) the far-field flow has a quadrupolar character with the stream function given 
by 

MO t $o E lim$ = --sin28. 
2nr2 5- @J 

In an incompressible fluid this large-scale motion is induced instantaneously by the 
action of pressure forces. This motion is very intensive (in the experiments Do/do 
ranged from 10 to 40, hence Mo % M ) .  As a result, the vorticity produced by each rod 
is swept by the large-scale motion (figure 12), leading to the rapid formation of four 
large vortices (figure 13 a). With time the flow in the confined geometry becomes quasi- 
steady: irregular small-scale motions are localized in a small region near the grid, while 
four large vortices exist at some distance away. Although these large cells show some 
weak drift about a mean position, the four-cell pattern is quite stable (see figure 13 b, 
c). Qualitatively such a flow is very similar to the quasi-steady streaming induced 
by an oscillating cylinder in a small tank (see Schlichting 1955 and Van Dyke 1982, 
figure 31). 

Thus, the oscillating grid in the considered geometry induces an intense large-scale 
quadrupolar circulating motion. 

4.2.2. Formation and evolution of turbulent region 
To eliminate the large-scale motion, the grid was placed in the middle of a channel 

such that it spans the whole width of the channel (see figure 14). In this geometry the 
grid does not produce any significant large-scale motion and after the grid oscillation 
is started, the action of the grid can be characterized as a linear arrangement of force 
dipoles. This forcing gives rise to a linear array of vortex quadrupoles, as can be clearly 
seen in figure 15 (a). In the initial stage of the experiment (1-2 s), when the typical width 
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FIGURE 15. Sequence of photographs showing the evolution of the flow generated by a horizontally 
oscillating linear grid of vertical rods in a rectangular channel when the grid spans the whole width 
of the channel. The forcing was started at t = 0, and the photographs were taken at (a) t = 1.3 s, 
(b) 3.2 s, (c) 5 .5  s, ( d )  19 s. Experimental parameters: do =. 1 cm, d = 0.07 cm, E = 0.13 cm,f= 18 Hz, 
Re = 530. Just before the start of the experiment the fluid in the vicinity of the grid was dyed. The 
arrows indicate the mean positions of the vortical fronts. 

D of the vortex structures is still less than the rod spacing do, the primary quadrupoles 
develop independently (see figure 15a). As time progresses, the quadrupole size D 
gradually increases, and when D becomes comparable with the spacing distance do the 
quadrupoles start to interact (see figure 15b). At this stage the explicit order is lost and 
the flow is irregular or turbulent (figure 15c,d); the short initial stage is over and the 
prolonged (many tens of seconds) intermediate stage beings. At this stage the irregular 
two-dimensional motions are confined to a limited region with well-defined sharp 
boundaries. The width H of this region, indicated by the arrows in figure 15, increases 
with time, its boundaries propagating in opposite directions away from the grid into 
the irrotational ambient fluid. The limited size of the turbulent region, i.e. its well- 
defined width H ,  provides an easily measurable characteristic of this two-dimensional 
turbulent flow. 

The visual observations revealed a rather complex picture of motions in the 
turbulent region. The primary vortices generated on either side of the grid visually do 
not interact directly with their counterparts on the other side of the grid (note, 
however, that the flows on the opposite sides of the grid influence one another by 
pressure forces, as in the case of a single quadrupole). Observations revealed that these 
primary vortices mostly interact directly with the vortices generated on the same side 
of the grid by the nearest rods. Two neighbouring primary dipoles usually merge, thus 
forming a larger secondary dipolar structure that detaches from the source of motion 
and moves away from the grid. At the same time a new primary structure begins to 
grow in the vicinity of the rod and this process is repeated. The size of the secondary 
structures gradually increases owing to the entrainment of ambient fluid and 



38 S .  I. Voropayev, Y. D. Afanasyev and G .  J.  F. van Heijst 

10' I I I I I l l  I 

A 
* '"i * 

FIGURE 16. Measured values of the width H of the turbulent region as a function of time t for 
experiments 3 (*) and 8 (A). Experimental parameter values are listed in table 2. 

interactions. In addition to pairing, two dipoles, moving in parallel, sometimes split 
and their inner vortices (of opposite sign) join, forming a new dipole moving in the 
opposite direction (i.e. 'backwards'). 

Tripolar, quadrupolar and more complex structures are sometimes visible in the 
turbulent region, but the most frequently occurring structure is the dipolar vortex. The 
interaction/pairing process is repeated continuously, leading to the formation of even 
larger tertiary structures and causing the vorticity front to propagate into the 
irrotational surrounding fluid. Ambient fluid is entrained periodically into the 
turbulent region between large leading structures (see figure 15). It spreads in this 
region in the form of narrow long filaments and gradually gets entrained into the 
vortex structures, as can be seen from the spiral-shaped dye distributions. The vorticity 
diffusion across these spirals is very effective and soon the entrained fluid becomes 
vortical. 

The dynamics of the turbulent region can be characterized by its global behaviour, 
e.g. by the width H(t)  of the turbulent region. Experimentally, this width is determined 
by measuring the mean position of the front of the dyed region relative to the grid. To 
derive an estimate of H(t), let us assume that the width H of the turbulent region does 
not depend on the intensity M of the forcing due to single rods, but rather depends on 
the mean force intensity m = M / d ,  per unit grid length. It is then possible to write H 
as a function of three external parameters: 

H =Am, v, t).  (19) 

The dimensions of the quantity m are L3TP2. By applying a dimensional analysis, (19) 
can be written as 

H = m1I3 t2 I3 @(7) with 7 = mt1/2/v3/2, (20) 

where @ is a non-dimensional function of the non-dimensional variable 7. The typical 
evolution of H(t), as measured in two different experiments, is shown in figure 16. In 
the first approximation, the data suggest that H - t Y ,  with y z i. To satisfy this 
experimental result, the function @(7) in (20) should behave as @(7) - yh,  with h = 
27-2. This would imply that 

H = const. r n 2 Y - l  v2-3Y ty, 



Two-dimensional flows with zero net momentum 39 

which is clearly incorrect. For example, for y = t this gives H - (vt)'/', which is 
obviously independent of the main governing parameter m;  this result also disagrees 
with the observations shown in figure 16. The choice y < $, as suggested by some of the 
data sets, would lead to H - m-', with 6 = 1 -2y > 0, which is even more erroneous. 

In order to obtain a realistic estimate of H ,  we should return to the full set of 
governing parameters. In general, the width H can be written as a function of five 
parameters : 

Since two of these parameters have independent dimensions, according to Buck- 
ingham's theorem the number of parameters in (21) can be reduced from five to three. 
This is, however, still a large number, and the chances of predicting the proper 
dependence are very small. Therefore it is useful, whenever possible, to take into 
account some physical arguments. For this purpose consider the initial stage of the 
flow evolution, when the primary vortex structures develop independently, without any 
direct mutual interaction. The typical length L and width D of the individual vortex 
quadrupoles increase with time according to (5) and (8), with CL and /3 given by (17) and 
(18). By using these lengthscales, the dependence (21) can be written in non- 
dimensional form as 

(22) 
Note that both L and D are introduced in (22) for convenience: because L and D are 
related through the known function a(Re), formally only one lengthscale is used in 
(22). Since in the experiments Re 9 1 and D,/D 9 1, it is assumed that the function $ 
possesses complete similarity with respect to the arguments Re and D,/D,  i.e. 

$(Re % 1, D,/D 9 1, d,/D) = $,(do/@. 

(21) H =AM, Do, do, v, 4. 

H / L  = $(Re, Q/D, d,,/D). 

Hence, the estimate for H is 
H = L$,(do/D). 

To determine the non-dimensional function $,(d,/D) experimentally, in all experiments 
the argument d,/D as well as the lengthscale L have to be normalized at the transitional 
point, d,/D = 1, between the initial and intermediate-asymptotic stages. From the 
condition d,/D = 1, with the help of (5), (8), (17) and (18) one obtains an estimate for 
the transition time : 

A' 
UO t -  * - 2c; c, Re3%' 

By introduction of a non-dimensional time 7 = t/t,, one can cast (23) in a normalized 
form, as 

Ho = Rel/ldg c1 = 7'/'$,(dO/D), (25) 

where 7 = 1 at d,/D = 1 and c1 = 2.5, c, = 0.14 in accordance with (17) and (18). 
At 7 5 1 (i.e. t 5 t*) the primary vortices do not interact significantly but they 

develop independently. Hence, one may expect that during the initial stage the width 
H of the vortical region is equal to the length L of the single structures : H = L, which 
yields $, = 1 for 7 5 1. The experimental data obtained at small times ( t  5 t*) are 
plotted according to the non-dimensional form (25) in figure 17, with the solid line 
representing the estimate (25) with $,, = 1. The best fit through the experimental data 
gives 

which is in good agreement with the estimate $, = 1. 

$, = c, = 0.95f0.1 for 7 < 1, (26) 
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FIGURE 17. Experimental data representing the normalized non-dimensional width H,, of the vortical 
region as a function of the normalized time T for the initial stage (T < 1). The solid line represents the 
dependence (25) with the estimated value $o = 1. Experimental parameters are listed in table 2. 

At 7 = 1 the initial stage is over, the primary vortices start to interact and the 
intermediate stage begins. At this stage the interactions play an essential role, the 
motion is now turbulent and $o in (25) may differ from (26). To compare the 
experimental data obtained at this stage (7 > 1) with (25), a small correction (t+At) 
was introduced into the time origin. This was done because the origin of time in the 
experiment does not coincide with the time origin of the intermediate stage at H+O. 
The measurements yield values of At  in the range &1 s, see table 2. These small 
corrections were introduced into all the data, obtained in eight experiments for 7 > 1, 
and the data were replotted according to the non-dimensional form (25). The result is 
presented in figure 18. Note that some of the scatter of the data points observed in a 
specific experiment, marked by one specific symbol, is due to the data being obtained 
in different tests under the same conditions. The solid line in this graph represents the 
estimate (25) with $o = constant. The best fit through the 65 experimental points gives 

$o = c = 0.6f0.1 for 7 > 1. (27) 

Summarizing, in a first approximation the function in (25) can be represented 
by a step-like function given by (26) and (27) for T d 1 and 7 > 1, respectively. 

It is hardly possible to estimate quantitatively the observed decrease in the value of 
$o at the intermediate stage, and only a simple qualitative interpretation can be given. 
In two dimensions there is no stretching of vortex lines and the typical size of the 
leading structures at the front of the vortical region may only increase with the distance 
from the origin. The mean propagation velocity dH/dt of the front (entrainment 
velocity) is determined by the rate of entrainment of irrotational ambient fluid into the 
turbulent region. As was pointed out above, this occurs mainly between large leading 
structures. When these structures are tightly packed, the rate of entrainment reduces, 
compared to the case of single structures, and the propagation velocity of the front 
diminishes. The fact that $o at this stage is approximately constant means that the 
structure of the front is similar at different moments of time (self-similarity). 
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FIGURE 18. Experimental data representing the non-dimensional width Ho of the two-dimensional 
turbulent region as a function of the normalized time 7 for the intermediate stage (7 > 1) for the eight 
experiments listed in table 2. The solid line represents the estimate (25) with 9, = 0.6. The dashed lines 
represent the data obtained by Dickinson & Long (1978) in experiments with a plane oscillating grid, 
for three-dimensional geometry. 

5. Concluding remarks and discussion 
In summary it is concluded that a small cylinder, oscillating in the direction normal 

to its axis, acts on the fluid as a localized force dipole. It is shown that in a viscous fluid 
the action of the force dipole gives rise to the formation of a planar quadrupolar vortex 
flow of zero total momentum. The main governing parameter for this flow is the source 
intensity M (with dimensions L 4 T 2 )  determined by (16). This permits one to define the 
non-dimensional forcing as Re = M/4nv2, where Re is the Reynolds number of the 
flow. The flow has no external lengthscale and develops in a self-similar manner: the 
length and the propagation velocity of the quadrupolar structure (marked by dye) 
change with time as L - P I 2 ,  U - t-li2 and they are characterized by the non- 
dimensional functions a(Re) and P(Re), respectively. These functions were determined 
analytically for small Re-values and experimentally for large Re-values. 

The present study also demonstrates that quadrupoles are the basic primary flow 
elements induced by an oscillating grid in a two-dimensional geometry. After the 
oscillation is started, an array of quadrupoles, distributed regularly along the grid, 
arises. Initially, at t 5 t,, where t ,  is the transition time, the interactions are weak and 
these primary structures develop independently. Later, at t > t,, the interactions play 
an essential role in the flow dynamics and the motion becomes turbulent over the whole 
width of the vortical region. During both stages the width H of the vortical flow region 
increases with time as H - PI2 .  It is shown that the main governing parameter here is 
the non-dimensional forcing, Re, as in the case of single quadrupoles, and the 
additional external lengthscale (the rod spacing do) does not enter directly into the 
dependence H(t), but is introduced indirectly via the transition time t,. 

The physical arguments and the scaling analysis used to explain the propagation 
dynamics of a two-dimensional turbulent region are general enough to be applied to 
the three-dimensional geometry as well. To demonstrate this, consider the results of 
measurements reported by Dickinson & Long (1978). In their experiments a plane 
horizontal grid fabricated from a fine woven copper screen (do = 0.155 cm, d = 
0.033 cm) was used to generate three-dimensional turbulence. This grid was oscillated 
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vertically in a deep tank with homogeneous fluid and it produced a horizontal 
turbulent layer of increasing depth H(t). The amplitude of the oscillations was fixed, 
6 = 0.475 cm, and in different experiments the oscillation frequency was varied in the 
rangef= 6.3-12.0 Hz. The transition time t,, given by (24), for these parameters is 
very short (t* N 0.02 s) and only the intermediate stage was studied. The measurements 
obtained in these experiments are presented in the non-dimensional form (25) in figure 
18 and are shown by the two dashed lines between which points obtained in other 
experiments with different frequencies are situated. It is clear that the experimental 
data obtained in the different experiments practically lie on a single line, in agreement 
with (25). This gives for in (25) 

= c3 = 1.3f0.05 for T > 1 (28) 
in the case of three-dimensional geometry. The difference in the values of q50 for two- 
and three-dimensional geometry is not surprising. In the latter case the motion can be 
considered as planar only in the close vicinity of the grid (at least, in the boundary layer 
near the rods) where no-slip conditions and viscous effects determine the amplitude of 
forcing, as given by (16). At greater distances the motion is essentially three- 
dimensional, an additional degree of freedom appears and $o changes from the two- 
dimensional case. 

To explain Dickinson & Long’s (1978) data, Long (1978) introduced a quantity 
called the ‘action’ of the grid and proposed in his qualitative theory that the flow near 
the planar oscillating grid be modelled by a system of doublets of opposite sign placed 
regularly in infinitesimal holes in a rigid plane. Long’s theory does not allow us to 
determine the dependence of the action K on external parameters : it only predicts that 
K - f. The values of K must be determined from the experimental dependencies 

Now, with the help of (8), (23) and (28), we can calculate Long’s action as 

and compare the calculated values with those (Kezp) obtained experimentally by 
Dickinson & Long (1978). This comparison is shown in figure 19. Thus, Long’s action 
acquires a clear physical sense: at the limit Re +co (/3+ const, see figure 11) the action 
is equal, in fact, to the forcing amplitude K - M / v .  This gives K - f 3/2, in agreement 
with Dickinson & Long’s experimental data. 

Finally, note that despite the good agreement shown in figure 19, one important 
question remains: is $o for T > 1 for the three-dimensional case a universal constant 
that does not depend onf, d and c, as in the two-dimensional case? But this is a separate 
problem which is beyond the scope of the present study; some results will be published 
by Long (1994) and Voropayev & Fernando (1994). 

Concluding, we must stress that the results obtained in the present paper for grid 
turbulence are valid only for fine grids, made from circular rods of small diameter and 
oscillating with high frequency and small amplitude. Only in this case can the forcing 
produced by the grid elements be considered as localized and only in this case is it 
possible to put different external parameters together and to calculate accurately the 
forcing amplitude. In most of the previous studies on three-dimensional grid 
turbulence, a grid made from solid bars of square cross-section (1 x 1 cm) was used. In 
this case it is hardly possible to obtain an analytically correct estimate for the forcing 
amplitude and different empirical dependencies without clear physical sense are used 
for these grids. That is why Dickinson & Long’s (1978) data, the only data obtained 
with fine grid, were used to verify our predictions for three-dimensional geometry. 

H = (Kt)? 

K = 2c3v Re (29) 
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FIGURE 19. Comparison of the calculated grid action K according to (29) and the experimentally 
measured values K,,, of the grid action obtained by Dickinson & Long (1978) in experiments with 
f= 6.3, 7.2, 8.8, 10.0, 11.4 and 12.0 Hz. The solid line represents K = K,,,. 
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