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Wakes and vortex streets such as those occurring behind towed or self-propelled
bodies are generated by moving localized forces in a viscous fluid at moderate values
of the Reynolds number, Re ∼ 102. The forcing is provided by an electromagnetic
method and allows us to create a ‘virtual’ body without introducing any solid objects
into the fluid. Characteristics of stable and unstable wakes, in particular the shedding
frequency, are measured in the space of control parameters, namely the magnitude
of the forcing and the speed of translational motion of the forcing. The results for a
single force presented in the dimensionless form of the Strouhal number demonstrate
quantitative similarity to those for the classical flow around a cylinder. The problem
considered here has an extra degree of freedom compared to the problem of the flow
around a cylinder and exhibit a wider array of different regimes. These regimes are
documented in both our visualization experiments and particle image velocimetry
measurements.

1. Introduction
A solid body moving in a viscous fluid generates a vortical wake which often

becomes unstable. The instability results in the development of a regular array of
vortices of alternating sign in the wake. A quantitative description of an unstable
wake presents a difficult problem even if the shape of the body is relatively simple such
as a cylinder. The flow around a cylinder is a classical problem in fluid mechanics and
has a long history of serious investigation (see comprehensive reviews by Zdravkovich
1997 and Williamson & Govardhan 2004). The problem of the flow around a cylinder
belongs to a wider class of problems which consider a bluff body towed in a fluid. A
towed object experiences a drag force. The effect of the object on the fluid is therefore
described by the force equal to the drag force in magnitude and acting in the opposite
direction. A continuous transfer of momentum to the fluid takes place when the
body is towed. In contrast, self-propelled bodies such as swimming micro-organisms
or submarines, generate zero-momentum flow when moving with constant speed
because they have to transfer momentum to the fluid in the direction opposite to
that of their motion to generate the thrust force. If a self-propelled body moves with
constant speed, the drag and thrust forces are of equal magnitude and of opposite
directions. The drag force is applied near the front of the body while the thrust force
is usually generated near the rear end. Thus, these forces are separated by a distance
which is approximately equal to the length of the body. The same is also valid for
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the corresponding reaction forces which act on the fluid. Herein, we formulate an
idealized problem where the effect of the moving objects is effectively reduced to a
combination of spatially localized forces acting on the fluid. The flows sufficiently far
from the object (far-field flow), where the effect of the details of the shape of the body
are negligible, are asymptotically similar to that generated by localized forces. In the
near-field, the details of the distribution of forcing are important. We will show in
particular that the finite size of the area where the force is applied is an important
control parameter when the shedding of vorticity is concerned. A similar approach
with localized forcing was realized in the experiments by Voropayev et al. (2002) and
Voropayev & Smirnov (2003) where the source of forcing was a jet ejected from a
nozzle horizontally in a stratified fluid. The nozzle was translated horizontally in the
fluid in their experiments. Here we chose a different experimental method, namely
electromagnetic forcing, which allows us to generate flows without inserting any solid
objects into the fluid. It also provides greater flexibility in experiments where two
forces of equal magnitude must be created. Our experiments are performed in a thin
layer of stratified fluid which was demonstrated (e.g. Afanasyev & Korabel 2004) to
work well in simulating the (quasi) two-dimensional flows.

If a single force starts acting in an initially quiescent viscous fluid, a starting vortex
dipole is generated. A combination of two forces of equal magnitude but of opposite
direction (force doublet) generates a vortex quadrupole consisting of two dipoles
propagating in opposite directions. These prototype flows in stratified fluid or in a
thin layer of fluid (quasi-two-dimensional) have been investigated by, for example,
Voropayev & Afanasyev (1994) and Afanasyev & Korabel (2004). If a single force or a
force doublet moves with constant speed in a fluid, it generates a wake with a vorticity
distribution similar to that generated by stationary forcing, but rather stretched along
the x-axis by the oncoming stream. A theoretical solution which describes the vorticity
and streamfunction in both two-dimensional and three-dimensional (axisymmetric)
flows generated by a point force or a force doublet were obtained in Afanasyev (2004)
in the Oseen approximation.

In the following sections of this paper we report the results of laboratory
experiments investigating different regimes of the flow generated by a moving localized
forcing. The experimental apparatus, an electromagnetic method that allows us to
model the motion of a virtual body in a thin layer of fluid, the calibration of
the forcing and the methods of visualization and particle image velocimetry (PIV)
are described in § 2. The results of the visualizations as well as the results and
interpretation of measurements of the flow characteristics, in particular the vortex-
shedding frequency for different values of the control parameters of the flow, are
discussed in § 3. Discussion and concluding remarks are offered in § 4.

2. Experimental technique
The laboratory experiments reported herein were conducted in a long rectangular

tank which is 120 cm long, 10 cm deep and 30 cm wide (figure 1). The tank was filled
with two layers of salt water of height 0.5 cm each and of concentration 30 and
250 g l−1. The flow was forced electromagnetically by imposing an electric current of
magnitude j =0–6 A in the horizontal direction. One or two rare earth permanent
magnets of diameter 0.5 cm were located approximately 0.1 cm above the surface
of water. The magnets were translated along the tank by a carriage driven by a
computer-controlled stepping motor on a translating stage. The translation velocity
was varied in the range U = 0.15–2.4 cm s−1. Each magnet produces a magnetic field
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Figure 1. Sketch of the experimental set-up.

with a vertical component of approximately 0.09 T. The interaction of the magnetic
field with the electric current results in a horizontal force exerted locally on the
fluid in the direction perpendicular to the electric current. Charged particles (ions in
dissociated electrolyte solution) moving in a magnetic field B experience the Lorentz
force F = qv × B, where q is the charge and v is the velocity of a particle. The particles
drift towards the electrodes such that positive ions move towards the cathode while
negative ions move towards the anode. The Lorentz force is perpendicular to both
the magnetic field and the current (drift velocity v). Since the oppositely charged
particles move in opposite directions the resulting force is in the same direction in the
horizontal plane for positive and negative ions. If on the other hand, the particles in
addition to drift are carried by the fluid motion, the total force due to this additional
velocity component is zero since positive and negative particles move in the same
direction and their total charge is zero. Thus the electromagnetic force on the fluid
does not depend on the motion of the fluid. The force is applied locally to the
fluid in a volume where the vertical component of the magnetic field is significant.
To characterize the shape of this volume consider a magnetic field induced by a
permanent magnet of cylindrical form. Assume that magnetization M of the magnet
is uniform over its volume and is directed along the z-axis. The magnetic field induced
by and elementary magnetic (dipolar) moment m is given by

B(R) =
3n(nm) − m

R3
, (2.1)

where R is the position vector of a point where the magnetic field is measured and
n is the unit vector in the direction of R. The vertical component of the magnetic
field induced by a cylindrical domain can be obtained easily by integration over the
volume:

Bz = M

∫ 0

−h

∫ a

0

∫ 2π

0

3(z − z′) − ((z − z′)2 + r2 + r ′2 − 2rr ′ cos(ϕ − ϕ′))1/2

((z − z′)2 + r2 + r ′2 − 2rr ′ cos(ϕ − ϕ′))2
dz′r ′ dr ′ dϕ′,

(2.2)

where h is the height and a is the radius of the magnet. Integration is performed in
cylindrical polar coordinates (r, ϕ, z). Isosurfaces of Bz calculated from (2.2) are depic-
ted in figure 2. Assuming that the magnet is at a distance 0.1 cm from the surface of
the water, the maximum value of the magnetic field in the fluid will be at the surface
along the symmetry axis of the magnet (r = 0, z = 0.1 cm) and will decay further away
from the magnet. The surfaces which enclose the values of Bz exceeding 50 % or
20 % of the maximum value are depicted in figure 2. The size of the volume where
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Figure 2. Isosurfaces of the magnetic field induced by a cylindrical magnet located at a
distance of 0.1 cm from the surface of water. The isosurfaces show 50 % and 20 % of the
maximum value of the magnetic field. The circle in the (x, y)-plane indicates the location of
the magnet.

magnetic field is significant is of the order of the diameter (d = 2a) of the magnet in the
horizontal direction and approximately half of that distance in the vertical direction.
Thus the magnet only induces motion of the fluid in the upper layer. Without exact
knowledge of drift velocities of ions in the fluid it is impossible to estimate the exact
value of the force acting in the fluid. However, we can use an indirect method to
obtain the value of this important control parameter. The magnitude of the force is
controlled in the experiments by varying the current. If a magnet is stationary, the
localized force generates a starting vortex dipole. Our previous results (Afanasyev &
Korabel 2004) predict that the distance travelled by a dipole varies with time as

L(t) =

(
3J

4π

)1/3

t2/3. (2.3)

This allows us to relate the momentum per unit time per unit depth of the layer, J , to
the magnitude of the electric current. We measured L as a function of time using video
sequences documenting the development of dipoles for different values of current j.

First, the power law (2/3) dependence was confirmed. The momentum flux J was
then estimated from the value of the slope of the dependence L versus t2/3. The linear
relation between the control parameter J and the current j was found to have the
form J =βj where β is a coefficient which depends on the particular parameters of the
apparatus (the distance of the magnet from the surface of water, the magnetization
of the magnet, the area of the electrodes and the stratification). In most of the
experiments where we used the same set-up, the value of this coefficient was in the
range β = 0.3–1.5 for J measured in cm3 s−2 and j in A. In the experiments with two
magnets, the values of the coefficient for both magnets were close to each other within
4% accuracy. In this calibration we assumed that the flow is approximately uniform
in the vertical direction along the depth of the layer. Our observations of the flow
visualized by dye show that this is a valid assumption. Although the fluid particles
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Series Experiment J (cm3 s−2) U (cm s−1) Symbol

1 9 0.22–1.6 0.58 +
2 10 0.27–1.6 0.87 �

3 5 0.54–1.6 1.16 ∗
4 8 0.54–1.6 1.45 �

5 5 0.8–1.6 1.74 �

Table 1. Experimental parameters for the experiments with a single magnet.

Series Experiment J (cm3 s−2) U (cm s−1)

1 7 0.8–3.1 0.58
2 11 0.25–3.1 0.87
3 8 0.8–3.1 1.16
4 7 1.3–3.1 1.45
5 5 1.5–3.1 1.74

Table 2. Experimental parameters for the experiments with two magnets.

move somewhat faster at the surface than at the interface between the layers, the
velocity shear is relatively small (and decreases with time owing to vertical diffusion of
momentum) such that the difference between the horizontal displacements of particles
travelling at different depths is small compared to the length scale of the flow. Note
that in the experiments described in this paper we used magnets of relatively small
size. The reason for this choice is that the relation (2.3) was obtained for the flow
induced by a point force. It was demonstrated in Afanasyev & Korabel (2004) that
this relation works well when the values of dimensionless parameter Π2 = Ja/ν2 which
characterizes the effect of the finite size of the magnet, are not very large. For larger
magnets the calibration method described here will result in inaccurate values of J

and a different method must be used for this purpose.
In the experiments with a single magnet, the polarity of the magnet and the direc-

tion of the current were chosen such that the resulting force was applied on the fluid
in the same direction as that of the translation of the magnet. This imitates the force
applied by a towed body on the fluid (a reaction to the drag force). In the experiments
with two magnets (force doublet), the magnet in the rear acted in the opposite direction
thus simulating the reaction to the thrust force applied by a self-propelled body. Since
the drag and thrust forces were of the same magnitude (but of opposite directions)
this system simulates a self-propelled body moving with constant speed. Parameters
of the experiments with the single and the double forces are summarized in tables 1
and 2.

Two layers were used to minimize the vertical component of velocity, providing
two-dimensionality of the flow. The process of two-dimensionalization of the flows in
a thin two-layer system was studied in detail by Paret et al. (1997) who demonstrated
that vortices effectively adjust such that they can be considered almost uniform in the
vertical direction. The particular parameters of our system were the same as those used
in our previous experiments with two-dimensional turbulence (Wells & Afanasyev
2004). This system was shown to work well in achieving this purpose. In particular,
an important result of the study on two-dimensional turbulence was the growth of
the Reynolds number of the flow which was in agreement with the predictions for the
two-dimensional turbulence (e.g. Chasnov 1997). This growth was previously achieved
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only for flows in soap films (Martin et al. 1998). This provides additional evidence of
the two-dimensional dynamics of the flow. In a thin-layer system, bottom friction is an
important factor which prevents the flow from being purely two-dimensional. Bottom
friction, as well as friction due to ordinary viscosity, causes the total energy of the flow
to decay (e.g. Paret et al. 1997; Danilov et al. 2002). It is important therefore to keep
the rate of energy decrease due to bottom friction at somewhat less than that due to
ordinary viscosity, such that this effect is not too restrictive. This was demonstrated
to be the case in Wells & Afanasyev (2004). We assume that this is also true for the
present experiments where the magnitude of forcing is similar to that used previously.
A simple estimate of a characteristic time required for the bottom boundary layer
to diffuse a certain distance can be obtained from a self-similar solution for the
boundary layer on a flat plate u =Uerf(ξ ) (e.g. Batchelor 1967). Here, ξ = z/2(νt)1/2

is the similarity variable which suggests an estimate for the characteristic time to be
t = z2/4ν. Therefore, it takes 25 s to diffuse a distance of 1 cm and 6 s for a distance of
0.5 cm. The lowest value of frequency of vortex shedding observed in our experiments
is approximately f =0.1 s−1 (the highest frequency f =0.4 s−1), which corresponds to
a period of T = 10 s (lowest period T = 2.5 s). Thus we can reasonably assume that the
‘internal oscillator’ which is responsible for vortex shedding is not affected by the
viscous boundary layer while being approximately uniform through the depth of
the upper layer. The shed vortices form a wake which develops on the larger time
scale and is therefore affected by the bottom effects. The system is therefore more
dissipative for longer times if compared to deep-layer systems.

For the purpose of comparison of a thin-layer stratified system used here with
experimental set-ups where a deep layer of homogeneous fluid and a long cylinder are
used for the investigation of bluff-body wakes, it is important to estimate whether the
generation of surface (gravity/capillary) or internal waves is important. To estimate
the amplitudes of the perturbations at the surface or the interface, we must esti-
mate the perturbations of pressure due to the unsteady nature of the flow. Taking
the lowest period T = 2.5 s of oscillations observed in the experiments and the size,
2a, of the region where the forcing is applied to be the time scale and the length
scale of the flow, we can obtain the characteristic pressure perturbation p = ρ(2a/T )2.
The perturbations of pressure will cause perturbations of the surface of the order
ζ = (2a/T )2/g = 10−4–10−5 cm. The magnitude of the perturbations at the surface is
therefore extremely small and the effect of generation of any surface waves can be
safely ignored. Besides, the typical velocity of the flow is much less than the phase
speed of gravity/capillary waves (cp =25 cm s−1 when the wavelength is λ=1 cm)
such that the corresponding Froude number is small. Note that since there is no
solid body piercing the surface in our experiments, there are no perturbations of
surface associated with the wetting effect. Thus a possible generation of capillary
waves due to vibrations at acoustic frequency is not an issue in our experiments.
On a related note, a streaming effect which includes the production of vorticity by
a solid body vibrating in fluid is absent here. Note that this effect can be very
important and even dominating under certain conditions for the flow around a solid
body. Laboratory experiments where a very thin cylinder oscillated in a stream
demonstrated the formation of a typical Kármán–Bénard vortex street (Afanasyev &
Filippov 1995). In those experiments, the diameter of the cylinder was small such that
the Reynolds number was less than critical. Therefore, there was no vortex shedding
if the cylinder was stationary in the stream and the occurrence of the vortex street
was only due to the vorticity generated by the streaming effect. Another effect which
is worth discussing here is a finite extent of the forcing in the vertical direction. The
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Figure 3. Vertical profiles of concentration for different times t = 6, 60 min. Step-like profile
indicates the initial distribution.

experiments with finite cylinders demonstrate that a tip vortex of horseshoe form is
created at the free end of the cylinder (e.g. Roh & Park 2003; Sumner, Heseltine &
Dansereau 2004). For cylinders of small aspect ratio, the flow around the free end may
affect the flow along the entire cylinder height such that the Kármán–Bénard vortex
shedding can be suppressed. In our experiments, the forcing decayed gradually with
depth in contrast to the case of the finite cylinder. In addition to that effect, strong
density stratification effectively suppressed any three-dimensional perturbations such
that no tip vortex was observed.

To estimate the effect of the generation of internal waves, we need to know the
typical parameters of the stratification. The tank was filled very carefully to avoid
any mixing. The filling process typically took 5–10 min. Assuming that diffusion starts
immediately, we can estimate the evolution of the vertical density distribution in the
system. Solving the equation of diffusion with no-flux boundary conditions at the
surface and at the bottom and step-like initial distribution of concentration, we obtain
by separation of variables:

c(z, t) =
∑

n=1,n−odd

2

πn
sin

(
2πn

H
z

)
exp

(
−D

4n2π2

H 2
t

)
. (2.4)

Here, H =1 cm is the total depth of the fluid and D = 1.1 × 10−5 cm2 s−1 is the co-
efficient of diffusion of salt in water. Profiles of the concentration c for different times
t = 0, 6 and 60 min are depicted in figure 3. We can see that immediately after the filling
stops, the initial step-like distribution is smoothed by diffusion. Although the diffusion
is very fast initially, when the gradient of concentration is very high it slows down
with time such that even after 1 h, the density difference still remains large (typically,
one series of experiments was finished within a 1 h period). The value of buoyancy
frequency at the interface varies from N = 9 s−1 immediately after the filling to N =
4 s−1 after a 1 h period. Thus, the frequency of the internal oscillator in the flow is much
lower than the buoyancy frequency such that the system is far from resonance.
However, the emission of high-order normal modes is still possible. An estimate of the
magnitude of the vertical displacement of the interface gives ζ = (2a/T )/N = 0.05 cm.
This value is small enough for the energy loss associated with the emission of the
internal waves to be neglected. In fact, the energy loss for the unsteady quasi-two-
dimensional flows is small (of the order of a few per cent) even when the stratification



126 Y. D. Afanasyev and V. N. Korabel

is much weaker and the flow is closer to resonance. It was shown to be the case for
colliding vortex dipoles in two-layer fluid (Afanasyev 2003).

The flow was visualized by the pH-indicator thymol blue. The solution of this indic-
ator is of orange–yellow colour in its neutral state and is deep-blue in the basic state.
A few drops of the basic solution of the indicator were injected into the upper layer
along the axis of motion of the magnet before each experiment. The fluid particles
marked by the indicator are clearly visible and of neutral density. Since the water in the
upper layer was made slightly acidic, it takes only a few minutes after the experiment
for the injected blue fluid to become yellow again owing to diffusive chemical reaction.
The flows were recorded using a video camera or a photo camera placed above the con-
tainer. Geometrical characteristics of the flow were then measured using the individual
frames of a video sequence. The horizontal velocity field in the flow was measured
using a PIV technique where variational filtering and interpolation were used for
post-processing of data. A description of the method and general technique of PIV
is given by Fincham & Spedding (1997) while the variational method is described
in Afanasyev & Demirov (2005). Videos of the experiments were recorded in plan
view using a digital video camera with an array resolution of 1032 × 1032 pixels. The
typical spatial resolution of the images was 35.5 pixels cm−1. The seeding particles were
polyamid spheres of mean diameter 50 µm and density 1.03 g cm−3. The density of the
particles corresponds to a density of water with salt concentration of approximately
37 g l−1. A suspension of particles in water of neutral density was introduced into the
interface between the layers. Particles were made visible by illuminating the interface
with a sheet of light from a 1 W argon ion laser. The light sheet was created by a
cylindrical lens. Since the index of refraction of the stratified fluid varies significantly
with depth, it was difficult to adjust the light sheet such that the area of the flow
was illuminated uniformly. To avoid this problem, the light sheet was made quite
thick. However, since the particles were mainly at the interface at their equilibrium
density level, the fact that a thick layer of fluid was illuminated did not introduce any
additional uncertainties into the PIV procedure.

Our experimental set-up involved a relatively thin two-layer fluid. Although the esti-
mates of different effects which might affect the two-dimensional character of the flow
including boundary layers, surface and internal waves, show that the flows can indeed
be considered approximately two-dimensional in this system, the ultimate test which
would show that the results of the experiments described herein are of more general
character and are rig independent, must include a comparison with a well-documented
flow. The flow about a circular cylinder is a benchmark flow in fluid dynamics and is
a natural choice for the purpose of comparison. We towed two different cylinders of
diameter d = 0.487 and 0.315 cm when all other parameters (including the towing velo-
city and the stratification) of the system were similar to those used in our experiments
with magnets. Typical regimes including steady wakes and Kármán–Bénard vortex
streets (figure 4) were observed in the experiments where the Reynolds number was
varied in the range Re = 40–180. Frequency of oscillations in the unstable wakes was
measured in these experiments. The results are plotted in figure 5 in the form of the
Roshko number as a function of the Reynolds number which are defined in a standard
manner. The solid line indicates the empirical dependence Ro = 0.21(Re–20.5) (Tritton
1959). Our experimental results are in good agreement with this dependence which
itself represents the results of a large number of classical experiments with circular
cylinders. This comparison provides the assurance that the results of our experiments
with magnets reported herein are not sensitive to the particular details of the apparatus
and can be considered in a more general context.
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Figure 4. Kármán–Bénard vortex street behind a circular cylinder of diameter d =0.478 cm
moving with velocity U =1.74 cm s−1, Re =83.
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Figure 5. The Roshko number versus the Reynolds number for the towed cylinders of dia-
meters d = 0.478 (circles) and 0.315 cm (triangles). The solid line shows the dependence (3.7).

3. Experimental results and interpretation
In order to identify different regimes of the flow, a number of experiments were

performed where the main control parameters, namely the translation speed of the
magnet U and the momentum flux J , have been varied. Figure 6 demonstrates typical
images of the flow in the experiments with a single force. When the speed of the
magnet was relatively large while the force was relatively weak, the wake behind the
magnet was stable and was in the form of a jet (figure 6a) flowing in the direction
of motion of the force. In this regime, the flow induced by the magnet is completely
overwhelmed by the stream and no recirculation occurs under the magnet. For higher
values of J , undulations of the jet were observed (figure 6b). In some experiments,
these undulations develop into a vortex street consisting of an antisymmetric array
of vortices (interconnected vortex dipoles) well after the forcing is passed (figure 6c).
It will be shown later, however, that the initial form of the instability of the jet flow
is in fact symmetric in the form of a chain of dipoles moving after one another
along the jet axis. For even higher values of J , the formation of a recirculation in
the form of a vortex dipole was observed under the magnet and a stable jet behind
it (figure 7). Note that the existence of the regimes with the recirculation is in accord
with the results of our recent numerical simulations of the flows generated by a
moving localized force (Afanasyev & Korabel 2006). The size of the dipole depends
on the relative values of J and U . Figure 7 depicts the case when the velocity is
relatively low such that the dipole is large compared to the size of the magnet. The
centre of the dipole in figure 7 is located at some distance downstream of the centre
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Figure 6. For caption see facing page.
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Figure 7. Recirculation in the form of a vortex dipole with a trailing wake behind it. The
magnet is the black circle at the end of a transparent Plexiglas plate. Experimental parameters:
U = 0.29 cm s−1, J = 0.7 cm3 s−2, Πa =33.

of the magnet. If the value of J is further increased, the dipole becomes stronger such
that its centre shifts upstream. The dipole does not remain stable, however, and starts
shedding vortices. As the dipole loses vorticity of one sign it becomes asymmetric and
eventually turns in the direction of rotation of the remaining vortex (figure 8). After
a transient stage shown in figure 8, a regular vortex shedding establishes when the
dipole disappears, but the vortices of alternating sign are rather generated periodically
under the magnet (figure 9). This results in the formation of a typical Kármán–Bénard
vortex street in the wake similar to that shown in figure 6(d). When the forcing is
increased even further, the nonlinearity of the flow increases to such an extent that the
forcing produces strong compact vortex dipoles which then eject in different directions
quasi-periodically without forming an organized vortex street (figure 6e).

Further insight into the dynamics of the unstable wakes can be provided by PIV
measurements. Figure 10 demonstrates the velocity and vorticity fields for three
different regimes of the flow. A stable jet is shown in figure 10(a) while figure 10(b)
shows a typical form of instability of the jet. This particular regime of instability
corresponds to that shown in figure 6(a). The unstable flow is symmetric with respect
to the axis of the jet and is in the form of dipoles where the vorticity of the jet is
concentrated. The dipoles propagate in the same direction as that of the jet. Finally,
the regime of the Kármán–Bénard vortex street where an antisymmetric array of
vortices is shed from the vortex dipole is shown in figure 10(c). The measurements
of the velocity field in the stable jet (figure 10a) allow us to perform a comparison
with theoretical results. The vorticity and velocity fields in the jet generated by
a translating point force in a viscous fluid were previously found in the Oseen
approximation (Afanasyev 2004). The x and y velocity components, can be obtained

Figure 6. Top view images of the flow generated by a single magnet for different regimes: (a)
jet flow in the wake of the moving magnet, (b) weakly unstable jet, (c) further development
of the unstable jet when the magnet is stopped, (d) Kármán–Bénard vortex street (the magnet
is stopped shortly before the picture is taken, the dipole in front of the magnet is generated
after the magnet was stopped), (e) unstable wake in the form of vortex dipoles. The magnet
is located at the end of a support rod. Diffused yellow colour in the background remained
from the previous experiments. Experimental parameters: (a) U = 1.45 cm s−1, J = 0.8 cm3 s−2,
Πa = 2.5; (b) U =0.87 cm s−1, J = 0.48 cm3 s−2, Πa = 2.5; (c) U = 1.74 cm s−1, J = 1.6 cm3 s−2,
Πa = 2.1; (d) U = 1.16 cm s−1, J = 1.1 cm3 s−2, Πa = 3.3; (e) U = 0.87 cm s−1, J = 1.35 cm3 s−2,
Πa = 7.1.
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Figure 8. Sequence of video frames showing transient vortex shedding by an unstable
dipole. Experimental parameters: U = 0.29 cm s−1, J = 1.7 cm3 s−2, Πa = 81.
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(a)

(b)

(c)

(d)

Figure 9. Sequence of video frames showing different phases of a regular vortex-shedding re-
gime. The regular regime establishes after the transient regime shown in figure 8. In this regime,
a dipole does not form under the magnet, but rather single vortices of alternating rotational
sense are formed and shed. Experimental parameters: U =0.58 cm s−1, J =4.25 cm3 s−2, Πa =51.
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Figure 10. Vorticity (colour) and velocity (arrows) fields measured in the experiments with
a single magnet for different regimes of the flow: (a) stable wake, U = 1.45 cm s−1, J =
0.54 cm3 s−2, Πa = 1.0; (b) weakly unstable jet where the symmetric ‘varicose’ instability is
observed in the form of a chain of vortex dipoles, U = 1.6 cm s−1, J = 1.1 cm3 s−2, Πa = 1.7 and
(c) Kármán–Bénard vortex street, U = 0.58 cm s−1, J =0.54 cm3 s−2, Πa =6.4. The colour bars
show the vorticity scale in s−1.

by differentiation of the streamfunction of the flow:

ψ(x, y) = −Jy

2π

∫ ∞

0

1 − exp

[
−x ′2 + y2

4νζ

]

x ′2 + y2
dζ, (3.1)
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Figure 11. Velocity field for the flow induced by a moving point force calculated from the
theoretical solution (2). Scale in cm.
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Figure 12. Profiles of the x-component of velocity in the jet at three different distances (x = 3,
6 and 10 cm) from the origin where the forcing is located. Solid lines represent the theoretical
solution (2) while symbols show the results of the PIV measurements (same as in figure 3a).

where x ′ = x−Uζ . The velocity vectors are shown in figure 11, which can be compared
with the velocity field in figure 10(a). The values of the control parameters J and
U are the same for theory and the experiment. Comparison shows some similarities
as well as differences. In order to compare this data in a quantitative manner we
plotted the profiles of the x-component of velocity, u, for three different distances
from the origin (where the forcing is located). The experimental data (the key for
symbols is given in table 1) and theory (solid lines) in figure 12 demonstrate that
the width of the jet remains approximately constant in the experiments, whereas,
according to theory, it must increase with the distance from the origin. The most
important discrepancy between the theory and the experiment is the significant return
flow at the sides of the jet which is observed in the experiment. The return flow
predicted by theory is very weak. This discrepancy is due the approximate nature of
the solution which does not take into account the advective transport of vorticity
by the flow or the effect of the finite size of the forcing area. The lateral motion of
fluid towards the axis of the jet can be an important factor by providing transport
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Figure 13. The Strouhal number versus Πa for five series of experiments with a single
magnet in linear and logarithmic scale. The legend for symbols is given in table 1.

which compensates the effect of viscous diffusion of momentum directed away from
the axis. This may explain why the jet does not widen in the manner predicted by the
solution. Another significant factor may be the size of the forcing area. While theory
is developed in the assumption of a point force, the effect of the size of the forcing
area, a, can be important for the dynamics of the stable jet. Our previous numerical
simulations (Afanasyev & Korabel 2004) of jets and vortex dipoles generated by
a localized forcing in initially quiescent fluid demonstrated that when a was small
enough, the comparison of results of numerical simulations with theory was quite
good. The flow did not form concentrated vortices in that case. In contrast, for larger
a, the compact vortex dipole was formed at the front of the developing jet. The
dipole propagated faster than was predicted by theory because the theory neglected
the effect of self-induction of vortices. This dipole also remained a compact structure
during its evolution. The effect of the finite size of the forcing area (or rather the
effect of the corresponding dimensionless parameter which includes a) will be also
discussed here in the context of the dynamics of the vortex shedding for unstable
flows.

The wavelength of the perturbations, λ was measured in our experiments for
different regimes of the flow. The wavelength was defined as a distance between the
peaks in the meandering jet such as the one in figure 6(b) or the distance between
the vortices of the same sign in the vortex street (figure 6d). The frequency of the
perturbations can then be introduced as f = U/λ. In order to understand better the
behaviour of f for different values of the control parameters involved in the problem,
it is useful to perform first a simple dimensional analysis. Frequency f depends on
a set of four dimensional quantities including kinematic viscosity ν, velocity U , the
amplitude of forcing J and the size of the region where the force is applied, a.
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Figure 14. Frequency of vortex shedding for different values of the forcing magnitude. Solid
lines indicate the asymptotic values of frequency for large J in the experiments with different
U . Symbols are the same as those in figure 11.
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Figure 15. The Roshko number versus the Reynolds number for the flows where the
Kármán–Bénard vortex street was formed.

Dimensional analysis then gives

f =
U 3

J
Φ

(
J

νU
,

J

aU 2

)
, (3.2)

where Φ is an unknown function of two dimensionless arguments. The first argument
Πν = J/νU of the function Φ represents the effect of viscosity while the second
argument Πa = J/aU 2 represents the effect of the finite size of the source. Πa can
also be interpreted as the ratio of the momentum flux delivered by the forcing to
the momentum per unit time transported by the stream through the cross-section of
the forcing area. Relation (3.2) can then be rewritten in the dimensionless form as
follows:

St = Φ(Πν, Πa), (3.3)

where St= f J/U 3 is an analogue of the Strouhal number (dimensionless frequency)
defined for the flow around a cylinder as Stc = f d/U , where d is the diameter of the
cylinder. Note that the force applied by the cylinder on the fluid is not an independent
parameter, but rather depends on the control parameters of the flow J =CDdU 2/2,
where CD is the drag coefficient dependent on the Reynolds number of the flow.
Thus, the Strouhal number introduced here is related to that for the cylinder as
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(a)

(b)

(c)

Figure 16. Images of the flow generated by two magnets for different regimes: (a) stable
regime where a dipole is formed under the front magnet and a jet is generated by the rear
magnet which provides the thrust. The starting vortex dipole generated when the forcing was
started is visible in the left hand side of the picture; (b) inverted Kármán–Bénard vortex street
(the axes of the interconnected dipoles in the wake are inclined slightly towards the direction
opposite to that of the motion of the magnets which is especially clear in the near wake);
(c) highly unstable irregular wake. Top view. Experimental parameters: (a) U =0.58 cm s−1,
J = 0.7 cm3 s−2, Πa = 8.3; (b) U = 0.87 cm s−1, J = 2.0 cm3 s−2, Πa = 11 and (c) U =0.29 cm s−1,
J = 2.0 cm3 s−2, Πa = 95.

St= CDStc/2. The Strouhal number is plotted in figure 13 as a function of Πa for
five series of experiments. In each series, the value of velocity U was fixed while the
magnitude of the forcing J was varied (table 1). The graph shows that transition
between the regimes of the stable jet (f =0) and unstable meandering jet occurs at
Πa ≈ 2. The second transition from the meandering jet to the Kármán–Bénard vortex
streets is not immediately obvious from the data, but it can be identified from the
analysis of the images of the flow. The analysis shows that the transition occurs at
Πa ≈ 2.5. There is a small step in the graph (marked by an arrow in figure 13) at this
value of Πa . The data points in the St versus Πa graph corresponds to different values
of Πν . However, the data collapse well onto a single curve for Πa < 2.5, indicating
negligible dependence of the function St = Φ(Πν, Πa) on its first argument. The data
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Figure 17. Vorticity (colour) and velocity (arrows) fields measured in the experiment with
two magnets: U = 0.87 cm s−1, J = 0.81 cm3 s−2, Πa = 4.3. The colour bar shows the vorticity
scale in s−1.

points in this range of Πa are characterized by relatively large values of velocity. The
scatter in the data for the larger values of Πa , however, is more significant, implying
that the dependence on Πν must be taken into account. To clarify this dependence,
let us return to the dimensional variables. A plot of frequency as a function of J

for the series of experiments with different velocity U (figure 14) demonstrates that
the frequency remains approximately constant with J when the flow is in the vortex
street regime (J is sufficiently large). The values of f in this regime for four series
of experiments (different U ) are indicated by straight lines in figure 14. For the fifth
series (circles) which correspond to the largest U , the forcing was not strong enough
for the flow to reach the vortex street regime. The constant values off can be plotted
then as a function of U . However, this can be done also in terms of new dimensionless
parameters, namely the Roshko number and the Reynolds number defined as follows:

Ro =
f d2

ν
,

Re =
Ud

ν
.

Here, d =2a is the diameter of the forcing region. These numbers are used to describe
the flow around a circular cylinder, which is one of the well-studied flows in fluid
mechanics (e.g. Zdravkovich 1997). We can therefore establish a similarity between
the flow generated by localized forcing and the flow around the cylinder. The plot of
Ro versus Re where only the data points for the flow in the established vortex street
regime are considered, is shown in figure 15. A linear fit gives the dependence of the
form

Ro = 0.18(Re − 18). (3.4)

This dependence is very close to that of the flow around a cylinder. A number of such
dependences have been offered in literature during a period of more than 100 years.
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Some well-known examples include:

Ro = 0.195(Re − 20.1) (Rayleigh 1879), (3.5)

Ro = 0.212(Re − 21.2) (Roshko 1952), (3.6)

Ro = 0.21(Re − 20.5) (Tritton 1959). (3.7)

Note, that in (3.4), the diameter of the magnet is taken as an estimate of the effective
size of the forcing region. This might account for the small discrepancy between the
numerical values of coefficients in (3.4) and those in the relations for the cylinder.
Thus, the dynamics of the flow in the regime when the Kármán–Bénard vortex street
forms in the wake is similar to that of the flow around a cylinder for moderate values
of the Reynolds number (40 < Re< 150).

Consider now the results of the experiments where two magnets moving over the
surface of the water applied forces of equal magnitude, but of opposite direction. A
stable regime is characterized by the formation of a jet (not shown here) for relatively
low values of J . For higher values of the magnitude of forcing, a meandering of the
jet similar to that in the experiments with a single magnet, was observed. Figure 16(a)
demonstrates a typical view of the flow in a regime when the magnet at the front
generates a dipole stationary in the oncoming stream of velocity U while the magnet
at the rear generates a jet flow in the direction opposite to that of the translation of the
magnets. A starting vortex dipole can also be seen at the extreme right in figure 16(a).
Figure 16(b) demonstrates the flow for even higher values of the magnitude of forcing
where a regular vortex street is formed in the wake. This vortex street is visually
different from the Kármán–Bénard vortex streets observed in the experiments with a
single magnet, and can be referred to as an inverted Kármán–Bénard vortex street.
The inverted Kármán–Bénard vortex streets were observed in the wakes of thrust-
generating objects such as swimming fish (e.g. Triantafyllou & Triantafyllou 1995;
Barrett et al. 1999; Triantafyllou, Triantafyllou & Yue 2000; Vandenberghe, Zhang &
Childress 2004). While the Kármán–Bénard vortex street consists of interconnected
dipoles, the vortex street for the force doublet can be characterized as an array of
interconnected vortex quadrupoles. Each of the quadrupoles consists of two dipoles.
Since the prototype flow generated by a stationary localized force is a vortex dipole
while the flow generated by a stationary force doublet is a vortex quadrupole (e.g.
Voropayev & Afanasyev 1994) the arrangement of vortices in the vortex streets
correspond to the generic structure of the forcing. A typical vorticity field in the
vortex street in the zero momentum wake is shown in figure 17. In the far wake,
elongated vortices of alternating sign form an array along the x-axis. This is clearly
different from the vortex street in the wake generated by a single force where vortices
form an alternating pattern (figure 4d). Figure 16(c) illustrates the regime of the flow
when the forcing is rather strong while the translation velocity is relatively low. The
front magnet generates large-scale unsteady dipoles while the rear magnet generates
an unstable jet. The overall appearance of the flow is irregular in this regime.

The wavelength of the perturbations were measured in the experiments with a force
doublet when the wake was unstable in the form of either a meandering jet or the
regular vortex street. The dependence of the Strouhal number on the parameter Πa

(figure 18) is, in general, similar to that for the single force (figure 13). The value
of Πa where the transition to instability takes place is approximately Πa = 2 and is
similar to that for the single force. Note that in the problem with a force doublet,
there is one additional dimensional parameter, namely the distance δ between the
magnets. However, in our present investigation this distance was fixed, δ = 3 cm.
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Figure 18. The Strouhal number versus Πa for all series of experiments with two magnets in
linear and logarithmic scale.

The dependence of the flow characteristics on this parameter is a subject of further
investigations.

4. Discussion
The results of laboratory experiments reported in this paper provide a description

of the regimes of the flow generated by a moving ‘virtual’ bluff body in quasi-two-
dimensional geometry. The regimes of the wake for the experiments with a single force
simulating the towed body include the steady jet carrying momentum, the unsteady
meandering jet where the initial instability is symmetric in the form of a chain of vortex
dipoles, the regular Kármán–Bénard vortex street and finally the irregular ejection of
vortex dipoles. The approach proposed in this article allows us to look at the initial
stages of formation of vortices induced by a forcing and their subsequent shedding.
An analogy with a canonical flow around a circular cylinder can again be established
here for the case of the meandering jet. Jeon & Gharib (2004) demonstrated that
an impulsively started cylinder sheds vorticity in a symmetric manner in the form of
a dipole. The vortices then undergo a transformation into an antisymmetric pattern
forming a Kármán–Bénard vortex street. The authors speculated that the process of
shedding of vorticity from the cylinder is analogous to the process of the formation
of vortex rings (in the axisymmetric case) by a stroke of a piston inside a nozzle. The
vortex rings do not grow indefinitely according to Gharib, Rambod & Shariff (1998),
but have some characteristic formation time equal approximately to the time it takes
a piston to travel four diameters of the nozzle. Jeon & Gharib (2004) then extended
this result to the flow around a cylinder, demonstrating that the cylinder travels four
diameters before the vortex (dipole) is shed. In our previous studies of starting vortex
dipoles (Afanasyev & Korabel 2004) we showed that a starting jet forms a dipole at
its front which detaches to some extent from the trailing jet when the size of the region
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where the forcing was applied was large enough. To establish whether a formation
time similar to that for vortex rings exists for starting vortex dipoles generated by
a forcing of finite extent, further investigations are necessary. These would provide
a more direct analogy with the cylinder flows because of the two-dimensionality of
the flow. Note, that the theory of starting dipoles developed previously by different
authors (Cantwell 1986; Afanasyev & Voropayev 1989; Voropayev, Afanasyev &
Filippov 1991) was based on the notion of a point force obtained in the limit of
a → 0. In this context, the importance of a finite size, a, of the forcing region in our
experiments should be emphasized. We may think that the formation of vortex streets
is still possible in the limit of a point force when a → 0; however, our experiments
demonstrate that for very large values of Πa which correspond to small a, the flows
become irregular such that the large-scale vortex dipoles are ejected from the forcing
region in different directions. Thus, the finite size of the forcing region (or the size of
the body) is a necessary condition for the formation of vortex streets.

The behaviour of the dimensionless frequency of vortex shedding exhibits
dependence on the parameter Πa and negligible dependence on the parameter Πν

which includes the kinematic viscosity, for relatively high values of the speed U . In
the regime of the vortex street, however, when U is smaller and J is larger, the
dependence on viscosity becomes significant. This dependence can be expressed in the
form of the linear relation between the Roshko number and the Reynolds number of
the flow in direct analogy to the relation for the flow around a circular cylinder.

The results of experiments with the force doublet which simulates the self-propelled
body were different from those using a single force. The pattern of the vortices behind
the force doublet exhibited the inverted Kármán–Bénard vortex street. This pattern
consisted of interconnected vortex quadrupoles, which is consistent with the generic
structure of forcing. The far wake transforms eventually into an array of vortices of
alternating sign located along the x-axis.

The research reported in this paper has been supported by the Natural Sciences
and Engineering Research Council of Canada under grants 300805-04 and 227192-04.
The authors are grateful to J. Wells for help in conducting the experiments.
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