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Three-dimensional instability of anticyclonic swirling flow in rotating fluid:
Laboratory experiments and related theoretical predictions

Ya. D. Afanasyev and W. R. Peltier
Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada

~Received 9 April 1997; accepted 3 September 1998!

We present results from a new series of experiments on the geophysically important issue of the
instability of anticyclonic columnar vortices in a rotating fluid in circumstances such that the Rossby
number exeeds unity. The core of the vortex is modeled as a solid cylinder rotating in a fluid that
is itself initially in a state of solid-body rotation. When the cylinder rotates cyclonically the flow
induced by the differential rotation is stable except for a brief initial period. When the cylinder
rotates anticyclonically, however, intense perturbations spontaneously appear and amplify in the
flow. The experimental results demonstrate that secondary motions appear in an annular region of
finite width surrounding the cylinder~in accord with the prediction of the generalized Rayleigh
criterion! and are governed by the process of three-dimensional centrifugal instability. These
motions are characterized by a definite wave number in the coordinate direction parallel to the axis
of the cylinder. Both the width of the unstable annular region and the vertical wavelength of the
motions induced by centrifugal instability are determined by the main nondimensional parameter of
the flow—the Rossby number. The evolution of the secondary motions gives rise to the appearance
of tertiary motions—which are Kelvin–Helmholtz-like~barotropic! vortices that develop at the
periphery of the unstable annulus, thus leading to the formation of exceedingly complex dynamical
structures. If the rotating cylinder is withdrawn vertically from the fluid, the instability rapidly
destroys the core of the vortex. During its initial phase of development the flow evolves in a way
that is strongly analogous to the cylindrical Couette case. An appropriate theory is employed to
explain the results of the laboratory experiments. ©1998 American Institute of Physics.
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I. INTRODUCTION

Compact vortices are abundant in both the atmosph
and the oceans and they play an important role in the glo
dynamics of these geophysical fluids. The Earth’s rotat
may, of course, be a crucial factor in determining the init
development of such coherent structures as well as their
bility characteristics. Small and mesoscale columnar vorti
in middle latitudes as well as larger-scale vortices in equa
rial regions may, in particular, be subject to the centrifu
~inertial! instability due to the background rotation, althou
this fact has only been realized rather recently~see, e.g.,
Smyth and Peltier,1 Carnevaleet al.,2 and Potylitsin and
Peltier3!. An important control parameter in determining th
stability of a columnar vortex is clearly the Rossby numb
Ro5v/2V0 , which represents the ratio of vorticityv in the
column to the background vorticity 2V0 . The behavior of
flows for limiting cases in which Ro is either very small
very large, is relatively clear. When Ro!1 the background
rotation tends to two-dimensionalize~and thus stabilize! the
vortical flow, an effect that is well understood on the basis
the Taylor–Proudman theorem. In the opposite limit the fl
does not ‘‘feel’’ the rotation at all and there is therefore
essential difference between cyclones and anticyclones.
intention herein is to focus upon the interesting intermed
regime, namely, that in which Ro>1.

Although a small number of recent articles have a
3191070-6631/98/10(12)/3194/9/$15.00
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peared that have been focused upon the behavior of bar
pic vortices in a rotating fluid, this geophysically importa
problem seems yet to be fully understood. For example, th
have appeared several reports of results obtained throug
rect numerical simulation4,5 of various vortical flows that
have established that initially two-dimensional anticyclon
vortices may be strongly destabilized by three-dimensio
perturbations, whereas cyclonic vortices remain stable w
the Rossby number is of order unity. Theoretical analyses
Smyth and Peltier1 suggested by the numerical simulatio
by Lesieuret al.,4 have clearly demonstrated that in the ca
of an array of elliptic vortices in shear created as a resul
Kelvin–Helmholtz instability, the growth rate of a mode~re-
ferred to by the authors as the ‘‘edge mode’’! of instability
associated with centrifugal destabilization varies strongly
a function of both the Rossby number and the vertical wa
number of the perturbation and reaches a maximum fo
value of the Rossby number, that isO(1), when the vortices
are anticyclonic. It was shown that kinetic energy for th
mode is localized in an elliptic annular region at the perip
ery of the vortex, where the generalized Rayleigh criter
suggests that centrifugal instability should reside~see also
Potylitsin and Peltier3!. The difference in the behavior o
cyclones and anticyclones has also been demonstrated i
recently described numerical experiments of Carnev
et al.2 It was shown by these authors that for Rossby nu
bers greater than one, even small perturbations comple
4 © 1998 American Institute of Physics
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3195Phys. Fluids, Vol. 10, No. 12, December 1998 Y. D. Afanasyev and W. R. Peltier
destroyed the anticyclonic vortex through centrifugal ins
bility, while cyclones remain stable. The influence of ro
tion on parallel shear flows and mixing layers has been s
ied experimentally in the recent literature both by Alfreds
and Persson6 and by Bidokhti and Tritton.7 In this work it
was found that, whereas regions of cyclonic vorticity ha
increased stability in the presence of background rotat
regions of anticyclonic vorticity are thereby destabilized. A
additional demonstration of the differential behavior of an
cyclones and cyclones in a rotating environment was p
vided by the rotating tank experiments of Kloosterziel a
van Heijst.8 In their experiments the anticyclones were pr
duced using a gravitational collapse technique and were
served to be destroyed immediately upon generat
whereas cyclones formed in the same way remained sta
When vortices were created by the so-called stirring te
nique, so that the resulting vortex consisted of a patch
vorticity of one sign surrounded by a ring of opposite vo
ticity, the vortices with anticyclonic vorticity in the core spl
into two dipoles that subsequently moved apart. These
thors also demonstrated that anticyclonic vortices might
expected to be centrifugally unstable according to an ex
sion of Rayleigh’s criterion to rotating flows. However, th
details of the evolution of the centrifugal instability and t
manner in which the instability destroys the vortex remain
unclear. Using a so-called ‘‘displaced-particle’’ techniqu
Kloosterziel and van Heijst8 showed that the classical Ray
leigh criterion may be extended in order to include the C
riolis force. In a recent and related theoretical paper by
blanc and Cambon,9 the authors demonstrated that differe
criteria for inertial instability obtained previously for som
planar flows with simple symmetry~e.g., parallel shea
flows, circular vortices! can be related via a generalized c
terion based on the sign of the second invariant of the ‘
ertial tensor.’’

The main aim of the present work is to reproduce
evolution of the ‘‘edge mode’’ discovered by Smyth an
Peltier1 experimentally. For this purpose a new sequence
experiments in which the stable core of a barotropic vorte
represented by a rotating solid cylinder has been perform
The cylinder itself was placed in a rotating tank. Instabil
then can develop in the annular region around the cylin
where the swirling flow induced by the cylinder may be u
stable according to the generalized Rayleigh’s criterion.
spite of the obvious limitations of such a representation of
unstable vortex, we believe that these experiments do
vide considerable insight into the dynamics of the instabi
of ‘‘free’’ barotropic vortices in a rotating fluid. The advan
tage of the experimental geometry that we have selected
lies in the fact that this basic state is dynamically similar
the classical Taylor–Couette flow. Theoretical results c
cerning the nature of the stability of that flow will provid
very useful insight into the nature of the mechanism of c
trifugal instability through which anticyclones may be pre
erentially destabilized in the presence of rotation in the
gime in which the Rossby number is of order unity.
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II. LABORATORY APPARATUS AND TECHNIQUE

Our experiments were carried out in a rectangular P
spex tank of dimensions 80380315 cm mounted on a rotat
ing turntable~Fig. 1!. The tank was rotated about a vertic
axis through its center in an anticlockwise direction with t
rotation rateV0 between 0.03 and 0.4 s21. The tank itself
was filled with a homogeneous fluid with a working depth
14 cm and rotated until a nearly solid-body rotation w
established. The flows in the tank were then generated b
bottomless cylinder placed vertically near the center of
tank and rotated in a clockwise direction. The frame supp
ing an electric motor with the cylinder on its axis was i
stalled on the rotating table so that initially the cylinder w
at rest with respect to the rotating tank. The cylinder w
started from rest impulsively. This allowed us to reach t
final rate of rotation of the cylinderV150.4– 0.9 s21 for a
very short time~about 0.3 s! in the experiments with the
Rossby numbers higher than critical. In some experime
where the flow regime close to criticality was studied, t
method of gradual increase of the rate of rotation with inc
ments of 0.05 s21 was employed. A sufficiently long time
~about 5–10 min! was allowed between the increments to
certain that almost steady flow was established. Howe
note that there were always some slow small-scale irreg
motions, due to convection, for example, which were alm
impossible to avoid in such a large tank. The space betw
the lower edge of the cylinder and the bottom of the tank w
less than 0.3–0.4 cm. The cylinder could be withdrawn v
tically from the tank with the help of a sliding frame. Thre
cylinders of different radii~R51.5 cm, 3 cm, 5 cm! were
employed in the sequence of experiments that we will rep

The working fluid consisted of a water solution of th
pH indicator thymol-blue. This solution is of an orang
yellow color in its neutral state. For flow visualization a d
voltage was applied, so that the rotating cylinder constitu
a negative electrode, whereas a copper plate at the side o
tank constituted a positive electrode. Due to the elec
chemical reaction, the solution near the cylinder becom
basic and, as a result, changes the color to blue. Thus, a
of dark blue fluid is formed around the cylinder, making t
flow pattern visible and providing a good contrast for ph
tography. A camera mounted above the tank or at the sid
the tank in the rotating reference frame was employed

FIG. 1. Sketch of the experimental apparatus.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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record the patterns of dyed fluid that were formed by
flow. After each experiment it took only a few minutes f
the diffusive chemical reaction with the acidic ambient flu
~an acid was added to the fluid in the tank! to restore the
working fluid to its original yellow color.

III. BASIC FLOW AND STABILITY CONSIDERATIONS

Consider the evolution of the laminar flow that is i
duced by the cylinder of radiusR rotating from timet50
with angular velocityV1 in a fluid initially at rest~in the
rotating coordinate frame!. Since the initial and boundar
conditions do not depend on the polar angleu, one can seek
a solution with the same property. Note that the backgro
rotation does not affect the velocity field in the case of pur
two-dimensional flow. One can obtain the exact solution
this problem by solving the equations of motion, which
this case simply describe the viscous diffusion of vortici
However, for the sake of simplicity, consider a self-simi
flow induced by a point source of motion that illustrates t
evolution of the actual flow induced by the cylinder of fini
radius. We may imagine decreasing the radiusR of the cyl-
inder and simultaneously increasingV1 such that the produc
R2V1 remains constant. One then obtains~for details see,
e.g., Voropayev and Afanasyev10! the respective distribu
tions of the azimuthal velocity and vorticity for this flow:

v5
G

2pr
e2r 2/4nt, ~1!

v52
G

4pnt
e2r 2/4nt, ~2!

where G52p limR→0,V1→` R2V1 is the intensity of the
point source of motion. One may then note that a ste
velocity distribution,

v5
G

2pr
5

R2V1

r
, ~3!

will be established near the origin, while the velocity deca
exponentially with distance for larger. The vorticity at a
given r decays with time ast21e21/t.

Consider next the stability of a steady swirling flow in
rotating coordinate frame. The three components of the eq
tion of motion written in the rotating frame of referenc
together with the continuity equation, are, respectively,

]u

]t
1~u–“ !u2

v2

r
22V0v

52
1

r

]P

]r
1nS ¹2u2

u

r 22
2

r 2

]v
]u D , ~4!

]v
]t

1~u–“ !v1
uv
r

12V0u

52
1

r

]P

]u
1nS ¹2v2

v
r 2 1

2

r 2

]v
]u D , ~5!

]w

]t
1~u–“ !w52

1

r

]P

]z
1n¹2w, ~6!
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in which (u,v,w) are the components of the velocity vect
u in cylindrical coordinates (r ,u,z) andP5p2V0

2r 2r/2 is a
reduced pressure. Following the standard procedure~see,
e.g., Chandrasekhar11!, we may consider the stability of a
basic state flow that can be expressed in the following g
eral form:

u5w50, v5V~r !5rV~r !, ~8!

whereV(r ) represents a solution of~4!–~7!. One may then
seek solutions for axisymmetric~]/]u50! disturbances, peri-
odic in the axial direction, of the form

~u8,v8,w8,p8!5~u,v,w,p!~r !egt coskz, ~9!

where the perturbed state is described by (u8,V
1v8,w8,p8). Equations~4!–~7! then reduce to the following
system of ordinary differential equations:

n~DD* 2k2!2gu12~V1V0!5
dp

dr
, ~10!

n~DD* 2k2!2gv22~V1V0!2r
d

dr
~V1V0!50,

~11!

n~DD* 2k2!2gw52kp, ~12!

D* u52kw, ~13!

in which

D5
d

dr
, D* 5

d

dr
1

1

r
.

Note that for the inviscid problem, one may easily establ
the stability criterion using the standard method of rewriti
the equations in terms of Lagrangian variables. Rayleig
stability criterion for the flow in nonrotating coordinates, d
termined in this way, then states that the flow is stable wh
the ~Rayleigh! discriminantF is positive, a condition that
has the explicit form

F~r !5
1

r 3

d

dr
~r 2V!2.0.

In the case of interest herein, which concerns a flow in
rotating frame, the substitutionV→V1V0 leads directly to
the more general stability criterion,

F~r !52~V1V0!~v12V0!.0 ~stability!. ~14!

Applying this criterion to the flow induced by the rotatin
cylinder, one immediately sees that when the cylinder rota
anticyclonically (V0.0,V1,0), then the flow is unstable
whenuV1u.V0 @the term in the first bracket in~14! becomes
negative#. For a steady flow of the form~3!, the widthD of
the annular region surrounding the cylinder in which the
stability may develop is then given by

D5R~Ro1/221!, ~15!

where the Rossby number Ro5uV1u/V0 has been intro-
duced. Note that when the cylinder rotates cyclonica
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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(V1.0) the unsteady flow around the cylinder may still
unstable initially, since the vorticity is negative in this ca
and the term in the second bracket in~14! can be negative
However, since the absolute value of vorticity decreases w
time, the flow restabilizes. As mentioned above, this is
accord with experimental observations.

Let us now return to the viscous problem. For cons
tency with the previous analyses for Couette flow, conside
flow between two coaxial cylinders of radiiR ~inner cylin-
der! andR0 ~outer cylinder!. The general form of the station
ary flow between the cylinders is

V5Ar1
B

r
. ~16!

Measuringr in units of the radinsR0 of the outer cylinder,
writing k25a2/R0

2, s25gR0
2/n, and making the transforma

tion

2R0
2

n
~A1V0!u→u,

and upon eliminatingw and p, one obtains from~10!–~13!
the system

~DD* 2a22s!~DD* 2a2!u52a2T8S 1

r 22k8D , ~17!

~DD* 2a22s!v5u, ~18!

in which

T852
4B~A1V0!R0

2

n2 , k852
~A1V0!R0

2

B
.

In the case of interest to us here,A50 andB5V1R2, hence,

T852
4V1V0R0

2R2

n2 , k852
R0

2

R2

V0

V1
. ~19!

Equations~17! and ~18! are formally the same as the equ
tions for Couette flow in a nonrotating coordinate fram
except that the nondimensional governing parametersT8
~Taylor number! and k8 are defined in a different manne
Introducing the radius ratioh5R/R0 , it is convenient to
rewrite T8 andk8 asT85T/h2, k85k/h2, where

T52
4V1V0R4

n2 , k52
V0

V1
5Ro21. ~20!

The appropriate boundary conditions for~17!, ~18! are that
all components of the velocity vanish on the walls; thus,

u5v50, Du50, for r 51 and h, ~21!

where the last of the three boundary conditions is equiva
to w50.

If a basic state flow is unstable according to the criter
~14!, one would expect viscous diffusion to have a stabil
ing effect, in the sense that the flow would be stable
values of the Taylor number less than a certain critical va
Tc . Thus, the problem is to determineTc as a function of
other governing parameters of the flow. There are a num
of methods that have been developed for solving the sys
~17!, ~18! for the case of a narrow gap between cylinde
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However, in the case of interest here we are obliged to so
the system without making any assumptions about the w
of the gap. The method based on the use of an expansio
terms of orthogonal cylindrical functions satisfying approp
ate boundary conditions was developed~Chandrasekhar11!
for this problem for the case in which the marginal state
stationary~s50!. This method leads to a secular equati
which allows one to determine numerically the minimal va
ues ofT8 ~as a function ofa! for assigned values ofk8. We
have performed the calculations in different approximatio
~from second to fourth order, the order of the approximat
being the order of the determinant in the secular equatio!.
The results are shown in the next section together with
experimental results.

Nonaxisymetric disturbances can also be important
the dynamical evolution of the flow of interest to us he
Consider, for example, two-dimensional~barotropic! distur-
bances that depend upon the azimuthal angleu, but not on
the axial coordinatez. Since for purely two-dimensional flow
~we assume that vertical motions are negligible! the back-
ground rotation does not play a role~the axis of rotation
being perpendicular to the plane of motion!, the well-known
inflexion-point theorem of Rayleigh can be applied. An an
log of this theorem for circular flows~e.g., Drazin and
Reid12! states that a necessary condition for instability w
respect to two-dimensional disturbances is that the grad
of the basic vorticity,

Dv5D
1

r
D~rV !, ~22!

must change sign. ObviouslyDv[0 whenV is of the form
~16!, and it has been shown for Couette flow that there are
unstable modes in the spectrum for this flow. However, tw
dimensional barotropic disturbances can develop if the b
flow is altered by the primary axisymmetric disturbance
Consider the azimuthal velocity profile in the flow aroun
the rotating cylinder where axisymmetric disturbances due
the centrifugal instability evolve in an annulus of widthD
~15!. An inviscid form of Eq.~5! written for axisymmetric
motions implies the following conservation law:

D

Dt
~rV1r 2V0!50, ~23!

where D/Dt is the material derivative. According to thi
relation a fluid particle moving radially from the wall of th
rotating cylinder to some radiusr, acquires the azimutha
velocity

v85
1

r
@V1R22V0~r 22R2!#. ~24!

Suppose that in the annular region within which axisymm
ric centrifugal disturbances amplify, the distribution of v
locity is given by~24!. Since outside the annulus the veloci
is of the form~3!, there should be some transition region
the periphery of the annulus. The distribution of velocity
the transition region is shown schematically in Fig. 2. O
may then obtain a vorticity distribution such that the gradie
of the vorticity changes sign somewhere at the periphery
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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the annulus. Thus, two-dimensional barotropic Kelvin
Helmholtz-type instability may develop as a consequence
the primary centrifugal instability of the basic flow. In th
next section we will, in fact, demonstrate that both types
instability are realized experimentally.

IV. EXPERIMENTAL RESULTS AND INTERPRETATION

A typical evolution of the unstable flow induced by th
rotating cylinder is illustrated by the photographs shown
Figs. 3, 4, and 5. After the cylinder is set in motion, t
circular bands of dyed fluid appear around the cylinder w
a well-defined vertical wave number. Toroidal vortices
mushroom-like shape in the cross section then grow fr
these bands. They form in the annular region surrounding
cylinder in which the instability is initiated. Since the radi
motions due to the centrifugal instability change the rad
distribution of the azimuthal velocity of the basic flow,
secondary Kelvin–Helmholtz-type instability develops at t
periphery of the unstable annulus, thus creating a comp
three-dimensional flow@Figs. 4~a!, 5~b!#. In an oblique view
of the flow ~Fig. 6!, typical Kelvin–Helmholtz-like vortices
are clearly visible in the horizontal plane. Flows with az

FIG. 2. Radial distribution of the circulationvr ~a! and vorticityv ~b! for
the flow altered by radial motions due to the centrifugal instability. T
curves labeled 1,2 represent distributions~3! and~24!, respectively, while 3
is intended to represent a transitional distribution.
Downloaded 30 Mar 2006 to 128.208.71.131. Redistribution subject to AI
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muthal wave numbers in the range from two to six we
observed for different values of Rossby and Reynolds nu
bers. If the rotating cylinder is carefully withdrawn vertical
from the fluid, one gets a vortex with an initially stable co
rotating like a solid body and a boundary layer outside. T
perturbations introduced by the withdrawal of the cylind
together with centrifugal instability give rise to the Kelvin
Helmholtz-type instability. It is this instability initiated at th
periphery of the vortex that rapidly erodes the vortex co
~Fig. 7! in a way that is consistent with the behavior
unstable vortices produced by stirring the fluid inside a c
inder in the previous laboratory experiments by Kloosterz
and van Heijst.8

The vertical wavelength of the primary instability wa
measured in our experiments as a function of the Ros
number Ro. The results for three cylinders of different ra
are presented in Fig. 8. The fact that the experimental d
for different cylinders do not collapse onto a single cur
indicates that the nondimensional wavelengthl/R obviously
depends not only on Ro but also on the Reynolds number
which can be defined as

Re5
R2V1

n
,

since the values of Re in the experiments differ for differe
cylinders ~Re5110–220 for the cylinder of radiusR
51.5 cm, Re5450–900 forR53 cm, Re51250–2500 for
R55 cm!. The behavior ofl/R for large Ro suggests a
power law relation of the form

l/R5Re21/2f ~Ro!. ~25!

Normalized values ofl were therefore plotted~Fig. 9! as a
function of Ro in order to illustrate the validity of the rela
tion ~25!.

The width of the unstable annulus was also estimated
the maximum radial dimension of the mushroom-like vor
ces. The results presented in Fig. 10 again reveal the de
dence on the Reynolds number. The measured width of
annulus for the small cylinder (R51.5 cm) is in good agree
ment with the values predicted by~15! for the entire range of
Ro. Since the Reynolds number is smallest in this case
role of viscosity in the flow is relatively important and th
basic velocity profile~3!, which is established only in con
sequence of the viscous diffusion of momentum, has
chance to form prior to the onset of the instability that s
lu-
-

FIG. 3. A sequence of photographs showing the evo
tion of the centrifugal instability. Side view. Experi
mental parameters:R51.5 cm, Ro53.4, Re5150; t
510 s ~a!, t512 s ~b!, t515 s ~c!, t518 s ~d!.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 4. A sequence of photograph
showing the evolution of the centrifu-
gal instability. Side view. Experimen-
tal parameters:R55 cm, Ro52.5, Re
52000; t55 s ~a!, t57 s ~b!, t59 s
~c!, t511 s ~d!.
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nificantly alters the basic state flow. Although vortices m
in general, extend outside the boundary layer~as, e.g., in the
case of Go¨rtler vortices!, this is not the case in our exper
ment, since the radial dimension of the vortices is sma
then the theoretical estimate. This provides assurance tha
dimension of the vortices may provide a reasonable estim
of the width of the boundary layer.

The second series of experiments that we perform
were specifically designed to enable us to measure the c
cal Taylor numberTc as a function of the other governin
parameter, the Rossby number Ro. These experiments
initiated with the absolute value of the rotation rate of t
cylinder set to a value just slightly greater than the ba
ground rotation rate, i.e.,uV1u.V0 . Then uV1u was incre-
mented until the flow became centrifugally unstable. On t
basis, the critical values ofV1 were determined and the va
ues ofTc given by ~20! thereafter calculated. These resu
Downloaded 30 Mar 2006 to 128.208.71.131. Redistribution subject to AI
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are shown as a function ofk5Ro21 in Fig. 11, together with
the theoretical curves obtained by solving~17! and~18! for a
stationary marginal state using Chandrasekhar’s method.
values ofh that represent the boundary conditions~21! for
the problem, were chosen to fit with the experimental d
for each cylinder. For this purpose, the dependence ofTc(k
50) uponh was calculated~Fig. 12!. The approximate val-
ues of Tc(k50) suggested by the extrapolation of expe
mental data were then used to obtain the values ofh from the
relationship of Fig. 12. These values ofh were in turn em-
ployed to calculate the curves presented in Fig. 11. The
ues of h thereby obtained give the effective width of th
annulus in which the perturbations appear initially as

D85R~h2121!,

which is about 1 cm for all cylinders. Since the entire pr
r
-

FIG. 5. The same as in Fig. 4 but fo
an increased value of the Rossby num
ber Ro55.9; t55 s ~a!; t57 s ~b!.
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cess is transient in the sense that the onset of instability t
place simultaneously with basic state flow development,
might reasonably expect that the instability could develop
smaller values ofTc if one were to wait for a sufficiently
long time that the annular region in which the velocity pr
file ~3! is established, becomes wider~h becomes smaller!.
However, this scenario is not realizable. SinceTc}V0V1

and uV1u is always greater thanV0 , one can makeTc

smaller by decreasing the rotation rateV0 of the experimen-
tal tank. However, when the tank rotates very slowly, t
three-dimensional background irregular motions~which al-
ways exist in the tank! do not decay since they are not su
pressed by the background rotation~i.e., the Rossby numbe
for these motions is not sufficiently small!. This background
turbulence then creates the effective initial conditions for
perturbations by not allowing the annulus to become su
ciently wide prior to the onset of the instability. The vertic
wavelengthlc of the perturbations at the onset of instabili
~when T'Tc! was also measured in the experiments. T
values of lc /R as a function ofh are shown in Fig. 13
together with the theoretical curve, which represents the
culated values of the wavelength forT5Tc at k50.

FIG. 6. Kelvin–Helmholtz-type vortices at the periphery of the unsta
annulus.
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V. DISCUSSION AND CONCLUSIONS

It is interesting to compare, at least qualitatively, o
experimental results with those for Couette flow as well
with numerical results for the centrifugal destabilization
anticyclonic barotropic columnar vortices. Note that not on
toroidal but also spiral vortices~Fig. 14! were observed in
our experiments when the large cylinder (R55 cm) was em-
ployed, and hence the Reynolds number was largest. Th
consistent with a well-known flow regime diagram~see Fig.
2 in Anderecket al.13! for counter-rotating cylinders, wher
observations of Taylor~toroidal! vortices have been docu
mented for smaller values of the Reynolds number wh
spiral vortices are observed for larger values of the Reyno
number. Since the primary aim of our experiments was
demonstrate the appearance of centrifugal instability o
vortex in a rotating fluid with a possible application to atm
spheric vortices rather than to present another exampl

FIG. 8. Nondimensional vertical wavelength of the perturbations for diff
ent values of the Rossby number. Different symbols indicate the experim
tal data for different cylinders:~1! R51.5 cm; ~* ! 3 cm; ~s! 5 cm.
lu-
n
s:
FIG. 7. A sequence of photographs showing the evo
tion of the vortex after the cylinder was withdraw
from the water. Top view. Experimental parameter
R53 cm, Ro53.8, Re5700.
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3201Phys. Fluids, Vol. 10, No. 12, December 1998 Y. D. Afanasyev and W. R. Peltier
Taylor-vortex flow, we did not follow the routine that ha
become standard for Couette flow experiments. Since
typical aspect ratio of the atmospheric vortices of interes
not large, we did not try to model a vortex of infinite heig
in our experiments. However, the typical ratio of waveleng
of primary instability to the depth of the fluid is not particu
larly small in our experiments,l/H55 – 8 for the small cyl-
inder (R51.5 cm) and 7–11 for the large cylinder (R
55 cm). Note that in the experiments on flow regimes in
Couette system by Anderecket al.,13 the typical value of
l/H515. Obviously finite-length effects will play some ro
in our experiments, although their influence cannot be de
minant. For example, due to the vortex-number quantiza
condition~Park and Donnelly14! the number of vortices may
vary in such a way as to contribute to the scatter of exp
mental data. The Ekman cells of height 0.5–1 cm adjacen
the top and bottom boundaries can also be detected in
system. Regarding the critical Taylor number, we may re
to the experiments of Cole15 who has shown that the value o
Tc at which axisymmetric Taylor vortex flow occurs is rath
insensitive to annulus length. Having in mind the nonuniq
ness of the stable flow states in the Couette system dem
strated by Coles,16 we have followed a certain path~though
not a so-called thermodynamic path! in parameter space, th

FIG. 9. Normalized values of the vertical wavelength versus the Ros
number. The symbols are the same as in Fig. 8.

FIG. 10. The nondimensional width of the unstable annulus for differ
values of the Rossby number. The symbols are the same as in Fig. 8
solid line represents the relationship~5!.
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same path in all experiments: first the state of solid-bo
rotation was established and then the cylinder was sta
from rest impulsively. An important feature of the flows
our experiments is that they are, in fact, strongly unste
due to the continuous viscous diffusion of momentum fro
the cylinder~the process that establishes the basic flow! and
also due to the simultaneous development of toroidal vo
ces~primary instability! together with the barotropic Kelvin–
Helmholtz-like vortices~secondary instability!. The develop-
ment of these instabilities leads finally to a fully turbule
flow. Thus, a steady state with embedded toroidal vortice
never achieved in this case as it would be in conventio
Couette flow. This explains the pronounced complexity

y

t
he

FIG. 11. Critical values of the Taylor number as a function of the inve
Rossby number. Solid lines represent the solutions of~17!, ~18! for a sta-
tionary marginal state with different boundary conditions~h50.85, 0.75,
0.55!. The symbols are the same as in Fig. 8.

FIG. 12. Calculated values of the critical Taylor number atk50 for differ-
ent values of the boundary parameterh.
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3202 Phys. Fluids, Vol. 10, No. 12, December 1998 Y. D. Afanasyev and W. R. Peltier
the flow of interest for us~e.g., Figs. 3–5! as well as the
rather significant deviation of the experimental points fro
the theoretical curve in Fig. 13. Note that it is the impulsi
start that allows us to reach the final, though unsteady, s
with highly supercritical values of the Rossby number. O
erwise, if gradual increments of rotation rate were employ
one would necessarily pass through a succession of inte
diate unstable states and the final result would be uninte
ing, since the flow would become turbulent~due to the sec-
ondary Kelvin–Helmholtz-like instability! well before the
final value of the Rossby number could be reached.

The Smyth and Peltier1 numerical results on the growt
rate of three-dimensional perturbations in the case of c
trifugal instability ~their so-called edge mode! of auticy-
clonic vortices on thef-plane show@see Fig. 13~b! in their
paper#, demonstrate that the instability is not especially
lective in terms of the vertical wavelength of the amplifi
perturbations so that a wide spectrum of motions can be
alized. This explains the large scatter of the data shown
Fig. 8. Note that in spite of the fact that the basic flows
different, our results can be related to those of Smyth
Peltier if one takes the width of the annulus, wherein ins
bility occurs, as a natural characteristic length scale for b
cases. The maximum growth of perturbations was found
the value of nondimensional vertical wave numberd52 and
Rossby number Ro53.3. The distribution of the kinetic en
ergy of the perturbation~Fig. 16 in Smyth and Peltier1! lo-
cates the annular region in which the perturbation is loc

FIG. 13. The nondimensional wavelength of perturbations measured in
experiments where the Taylor numbers were near their critical values.
values of h are the same as in Fig. 11. The solid curve represents
calculated values oflc for T5Tc andk50.
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ized. On this basis one may estimate the ratio of
horizontal scale of the perturbation to the vertical scale.
d52, this ratio is near 0.7 while in our experiments the ra
D/l varies between 1 and 2 for different values of Ro. W
are therefore justified in concluding that our experime
have successfully captured the essence of the ‘‘edge-mo
of centrifugal instability to which anticyclonic columnar vo
tices are susceptible for Rossby numbers ofO(1).
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FIG. 14. Typical spiral vortices observed in the experiment with a la
Reynolds number~Re52500!.
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