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Three-dimensional instability of anticyclonic swirling flow in rotating fluid:
Laboratory experiments and related theoretical predictions

Ya. D. Afanasyev and W. R. Peltier
Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada

(Received 9 April 1997; accepted 3 September 1998

We present results from a new series of experiments on the geophysically important issue of the
instability of anticyclonic columnar vortices in a rotating fluid in circumstances such that the Rossby
number exeeds unity. The core of the vortex is modeled as a solid cylinder rotating in a fluid that
is itself initially in a state of solid-body rotation. When the cylinder rotates cyclonically the flow
induced by the differential rotation is stable except for a brief initial period. When the cylinder
rotates anticyclonically, however, intense perturbations spontaneously appear and amplify in the
flow. The experimental results demonstrate that secondary motions appear in an annular region of
finite width surrounding the cylindefin accord with the prediction of the generalized Rayleigh
criterion and are governed by the process of three-dimensional centrifugal instability. These
motions are characterized by a definite wave number in the coordinate direction parallel to the axis
of the cylinder. Both the width of the unstable annular region and the vertical wavelength of the
motions induced by centrifugal instability are determined by the main nondimensional parameter of
the flow—the Rossby number. The evolution of the secondary motions gives rise to the appearance
of tertiary motions—which are Kelvin—Helmholtz-likébarotropi¢ vortices that develop at the
periphery of the unstable annulus, thus leading to the formation of exceedingly complex dynamical
structures. If the rotating cylinder is withdrawn vertically from the fluid, the instability rapidly
destroys the core of the vortex. During its initial phase of development the flow evolves in a way
that is strongly analogous to the cylindrical Couette case. An appropriate theory is employed to
explain the results of the laboratory experiments. 1898 American Institute of Physics.
[S1070-663(98)02812-9

I. INTRODUCTION peared that have been focused upon the behavior of barotro-
pic vortices in a rotating fluid, this geophysically important
Compact vortices are abundant in both the atmospherproblem seems yet to be fully understood. For example, there
and the oceans and they play an important role in the globalave appeared several reports of results obtained through di-
dynamics of these geophysical fluids. The Earth’s rotationrect numerical simulatidi? of various vortical flows that
may, of course, be a crucial factor in determining the initialhave established that initially two-dimensional anticyclonic
development of such coherent structures as well as their staortices may be strongly destabilized by three-dimensional
bility characteristics. Small and mesoscale columnar vorticeperturbations, whereas cyclonic vortices remain stable when
in middle latitudes as well as larger-scale vortices in equatothe Rossby number is of order unity. Theoretical analyses by
rial regions may, in particular, be subject to the centrifugalSmyth and Peltiérsuggested by the numerical simulations
(inertial) instability due to the background rotation, although by Lesieuret al,* have clearly demonstrated that in the case
this fact has only been realized rather receriige, e.g., of an array of elliptic vortices in shear created as a result of
Smyth and Peltiet, Carnevaleet al,?> and Potylitsin and Kelvin—Helmholtz instability, the growth rate of a motte-
Peltief). An important control parameter in determining the ferred to by the authors as the “edge modef instability
stability of a columnar vortex is clearly the Rossby number,associated with centrifugal destabilization varies strongly as
Ro= w/20Q)4, which represents the ratio of vorticity in the  a function of both the Rossby number and the vertical wave
column to the background vorticity(2,. The behavior of number of the perturbation and reaches a maximum for a
flows for limiting cases in which Ro is either very small or value of the Rossby number, that@{1), when the vortices
very large, is relatively clear. When Rd the background are anticyclonic. It was shown that kinetic energy for this
rotation tends to two-dimensionaliZand thus stabilizethe  mode is localized in an elliptic annular region at the periph-
vortical flow, an effect that is well understood on the basis ofery of the vortex, where the generalized Rayleigh criterion
the Taylor—Proudman theorem. In the opposite limit the flowsuggests that centrifugal instability should residee also
does not “feel” the rotation at all and there is therefore noPotylitsin and Pelti€). The difference in the behavior of
essential difference between cyclones and anticyclones. Owclones and anticyclones has also been demonstrated in the
intention herein is to focus upon the interesting intermediateecently described numerical experiments of Carnevale
regime, namely, that in which Rel. et al? It was shown by these authors that for Rossby num-
Although a small number of recent articles have ap-bers greater than one, even small perturbations completely
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destroyed the anticyclonic vortex through centrifugal insta- motor

bility, while cyclones remain stable. The influence of rota- .

tion on parallel shear flows and mixing layers has been stud- ) 2,1 I

ied experimentally in the recent literature both by Alfredson extgfl‘;memal bottomless
and Perssdhand by Bidokhti and Trittori. In this work it Ty Cylinder
was found that, whereas regions of cyclonic vorticity have 'R|
increased stability in the presence of background rotation, rotating :

regions of anticyclonic vorticity are thereby destabilized. An turntable

additional demonstration of the differential behavior of anti- 1Q1
cyclones and cyclones in a rotating environment was pro- = =

vided by the rotating tank experiments of Kloosterziel and % %

van Heijst In their experiments the anticyclones were pro- B 3

duced using a gravitational collapse technique and were ob- FIG. 1. Sketch of the experimental apparatus.

served to be destroyed immediately upon generation,

whereas cyclones formed in the same way remained stable.
When vortices were created by the so-called stirring techl!- LABORATORY APPARATUS AND TECHNIQUE

nique, so that the resulting vortex consisted of a patch of  Qur experiments were carried out in a rectangular Per-
vorticity of one sign surrounded by a ring of opposite vor-spex tank of dimensions 880X 15 cm mounted on a rotat-
ticity, the vortices with anticyclonic vorticity in the core split ing turntable(Fig. 1). The tank was rotated about a vertical
into two dipoles that subsequently moved apart. These awxis through its center in an anticlockwise direction with the
thors also demonstrated that anticyclonic vortices might bgotation rateQ, between 0.03 and 0.4 5 The tank itself
expected to be centrifugally unstable according to an exterwas filled with a homogeneous fluid with a working depth of
sion of Rayleigh's criterion to rotating flows. However, the 14 cm and rotated until a nearly solid-body rotation was
details of the evolution of the centrifugal instability and the €stablished. The flows in the tank were then generated by a

manner in which the instability destroys the vortex remained®®ttomless cylinder placed vertically near the center of the
unclear. Using a so-called “displaced-particle” technique,tank and rotated in a clockwise direction. The frame support-

Kloosterziel and van Heij$tshowed that the classical Ray- ing an electric mot'or with the Cy"”?'e.r. on its axis was in
A N . ) stalled on the rotating table so that initially the cylinder was
leigh criterion may be extended in order to include the Co- . . .
riolis force. In a recent and related theoretical f by L at rest with respect to the rotating tank. The cylinder was
olls force. In a recent and refated theoretical paper by Leqi.ted from rest impulsively. This allowed us to reach the
blanc and Cambohthe authors demonstrated that different

o T . ) _ final rate of rotation of the cylindef2;=0.4-0.95? for a
criteria for inertial instability obtained previously for some very short time(about 0.3 ¥ in the experiments with the

planar flows with simple symmetrye.g., parallel shear Rosspy numbers higher than critical. In some experiments,
flows, circular vorticescan be related via a generalized cri- where the flow regime close to criticality was studied, the
terion based on the sign of the second invariant of the “in-method of gradual increase of the rate of rotation with incre-
ertial tensor.” ments of 0.05 s* was employed. A sufficiently long time
The main aim of the present work is to reproduce the(about 5—10 mihwas allowed between the increments to be
evolution of the “edge mode” discovered by Smyth and certain that almost steady flow was established. However,
Peltiet experimentally. For this purpose a new sequence ofiote that there were always some slow small-scale irregular
experiments in which the stable core of a barotropic vortex ignotions, due to convection, for example, which were almost
represented by a rotating solid cylinder has been performedmpossible to avoid in such a large tank. The space between
The cylinder itself was placed in a rotating tank. Instability the lower edge of the cylinder and the bottom of the tank was
then can develop in the annular region around the cylindeless than 0.3-0.4 cm. The cylinder could be withdrawn ver-
where the swirling flow induced by the cylinder may be ur‘_t|cally from the tank with the help of a sliding frame. Three

stable according to the generalized Rayleigh’s criterion. Incyllnders of different radi(R=1.5cm, 3 cm, 5 cnwere

spite of the obvious limitations of such a representation of anemployed n the sequence (.)f experiments that we will report.
The working fluid consisted of a water solution of the

unstable vortex, we believe that these experiments do pro-

id iderable insiaht into the d ics of the instabilit pH indicator thymol-blue. This solution is of an orange-
v f cor’1'5| era e.|n5|g . n 0. € yngmlcs _0 € insta IIyyellow color in its neutral state. For flow visualization a dc
of “free” barotropic vortices in a rotating fluid. The advan-

voltage was applied, so that the rotating cylinder constituted

tage of the experimental geometry that we have selected alspeqative electrode, whereas a copper plate at the side of the
lies in the fact that this basic state is dynamically similar t0i5nk constituted a positive electrode. Due to the electro-

the classical Taylor—Couette flow. Theoretical results conghemical reaction, the solution near the cylinder becomes
cerning the nature of the stability of that flow will provide pasic and, as a result, changes the color to blue. Thus, a layer
very useful insight into the nature of the mechanism of cenvof dark blue fluid is formed around the cylinder, making the
trifugal instability through which anticyclones may be pref- flow pattern visible and providing a good contrast for pho-
erentially destabilized in the presence of rotation in the retography. A camera mounted above the tank or at the side of
gime in which the Rossby number is of order unity. the tank in the rotating reference frame was employed to
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record the patterns of dyed fluid that were formed by thegy u 1 9v ow
flow. After each experiment it took only a few minutes for -+ + 1 75+ ——=0, ()
the diffusive chemical reaction with the acidic ambient fluid

(an acid was added to the fluid in the tartk restore the in which (u,v,w) are the components of the velocity vector

working fluid to its original yellow color. u in cylindrical coordinatesr(,#,z) andP=p—Q3r?p/2 is a
reduced pressure. Following the standard procedses,

e.g., Chandrasekhd), we may consider the stability of a

basic state flow that can be expressed in the following gen-
Consider the evolution of the laminar flow that is in- eral form:

dL_Jced by the cylin_der of_ radqu_ ro_tqt?ng from tim_et=0 U=w=0, v=V(r)=rQ(r), @)

with angular velocityQ); in a fluid initially at rest(in the

rotating coordinate frame Since the initial and boundary WhereV(r) represents a solution ¢#)—(7). One may then

conditions do not depend on the polar angl®ne can seek Se€ek solutions for axisymmetrig/76=0) disturbances, peri-

a solution with the same property. Note that the backgroun@dic in the axial direction, of the form

rotation does not affect the velocity field in the case of purely

two-dimensional flow. One can obtain the exact solution for

this problem by solving the equations of motion, which inWhere the perturbed state is described by’ V

this case simply describe the viscous diffusion of vorticity. Tv'-W’,p"). Equationg4)—(7) then reduce to the following

However, for the sake of simplicity, consider a self-similar System of ordinary differential equations:

flow induced by a point source of motion that illustrates the dp

evolution of the actual flow induced by the cylinder of finite v(DD, — k?)—yu+2(Q+ Qg)=

Ill. BASIC FLOW AND STABILITY CONSIDERATIONS

(u,v",w,p")=(u,v,w,p)(r)e” coskz, (9)

(10

radius. We may imagine decreasing the rad®usf the cyl- dr
inder and simultaneously increasifig such that the product 5 d
R2(), remains constant. One then obtaifisr details see, Y(DD, —K) = yw=2(Q+ Qo) =1 5o (2+00) =0,
e.g., Voropayev and Afanasy®y the respective distribu- (11)
tions of the azimuthal velocity and vorticity for this flow:
r »(DD, —k?)— yw=—kp, (12
124y
v=5—e " (D D, u=—kw, (13
r in which
_ —r2/aut
O Amnt e @ D:i D :i_,_l
dr’ *odroor’

where I'=27 limg_0q, .. R*Q; is the intensity of the
point source of motion. One may then note that a steadj}\lote that for the inviscid problem, one may easily establish
velocity distribution, the stability criterion using the standard method of rewriting
r R20) the t_a_quati_ong, in terms of Lagrangian yariables._ Rayleigh’s

V= — = 1, 3) stability criterion for the flow in nonrotating coordinates, de-
27t r termined in this way, then states that the flow is stable when

will be established near the origin, while the velocity decaysthe (Rayleigh discriminant® is positive, a condition that
exponentially with distance for large The vorticity at a  has the explicit form
givenr decays with time as~ e .

Consider next the stability of a steady swirling flow in a d(r)= Bar (r2Q)?>0.
rotating coordinate frame. The three components of the equa-
tion of motion written in the rotating frame of reference, In the case of interest herein, which concerns a flow in a
together with the continuity equation, are, respectively, rotating frame, the substitutio — Q + ), leads directly to

au »2 the more general stability criterion,
5 TU-V)u— =200 D(r)=2(Q+Qp)(0+20)>0 (stability). (14)
1 9P u 2 v Applying this criterion to the flow induced by the rotating
= + 1/( Viu— 5— — %) , (4) cylinder, one immediately sees that when the cylinder rotates
por =T anticyclonically €2,>0,,<0), then the flow is unstable
v uv when|Q4|>Q, [the term in the first bracket i14) becomes
5t T U V)u+ =420 negativd. For a steady flow of the forn8), the widthA of
the annular region surrounding the cylinder in which the in-
10P v 2 dv stability may develop is then given by
=———+VVU_—2+—Z—, (5)
P a0 r r<ade AZR(ROIIZ— 1), (15)
ow 10P i
W __+IF 2 where the Rossby number R¢Q,|/Qq has been intro-
ot +(u-V)w p 0z FrViw, © duced. Note that when the cylinder rotates cyclonically
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(©Q,>0) the unsteady flow around the cylinder may still be However, in the case of interest here we are obliged to solve
unstable initially, since the vorticity is negative in this casethe system without making any assumptions about the width
and the term in the second bracket(i®) can be negative. of the gap. The method based on the use of an expansion in
However, since the absolute value of vorticity decreases witllerms of orthogonal cylindrical functions satisfying appropri-
time, the flow restabilizes. As mentioned above, this is inate boundary conditions was developé&handrasekhah
accord with experimental observations. for this problem for the case in which the marginal state is
Let us now return to the viscous problem. For consis-stationary(c=0). This method leads to a secular equation
tency with the previous analyses for Couette flow, consider avhich allows one to determine numerically the minimal val-
flow between two coaxial cylinders of radd (inner cylin-  ues of T’ (as a function of) for assigned values of’. We
den andR, (outer cylindey. The general form of the station- have performed the calculations in different approximations

ary flow between the cylinders is (from second to fourth order, the order of the approximation
B being the order of the determinant in the secular equation
V=Ar+ —. (16)  The results are shown in the next section together with the
r experimental results.
Measuringr in units of the rading}, of the outer cylinder, Nonaxisymetric disturbances can also be important in
writing k?=a?/R2, o= yR%/v, and making the transforma- the dynamical evolution of the flow of interest to us here.
tion Consider, for example, two-dimension@arotropig distur-

bances that depend upon the azimuthal amylbut not on
the axial coordinate. Since for purely two-dimensional flow
(we assume that vertical motions are negligitlee back-
ground rotation does not play a rolthe axis of rotation
being perpendicular to the plane of motipthe well-known
inflexion-point theorem of Rayleigh can be applied. An ana-
, log of this theorem for circular flowge.g., Drazin and
27K ) (17 Reid") states that a necessary condition for instability with
respect to two-dimensional disturbances is that the gradient
(DD, —a?~o)v=u, (18 of the basic vorticity,

in which
4BA+Qo)RG | (A+QQR]
S S OV e

v ' B must change sign. Obviousw=0 whenV is of the form
In the case of interest to us here=0 andB=Q,R?, hence, (16), and it has been shown for Couette flow that there are no
A ) unstable modes in the spectrum for this flow. However, two-
S 40,Q0RgR ,_ R (19  dimensional barotropic disturbances can develop if the basic
2 r K RZQ," flow is altered by the primary axisymmetric disturbances.
Consider the azimuthal velocity profile in the flow around
the rotating cylinder where axisymmetric disturbances due to
the centrifugal instability evolve in an annulus of widfh
(15). An inviscid form of Eq.(5) written for axisymmetric
motions implies the following conservation law:

2R3
T (A+ QO)U—>U,

and upon eliminatingv and p, one obtains from(10)—(13)
the system

(DD, —a?—o)(DD, —a?)u=—a’T’

DwZD%D(rV), (22

Equations(17) and (18) are formally the same as the equa-
tions for Couette flow in a nonrotating coordinate frame,
except that the nondimensional governing parameférs
(Taylor number and «’ are defined in a different manner.
Introducing the radius ratioj=R/R,, it is convenient to

rewrite T' and«’ asT'=T/%?, k' =«ln?, where D
— (rV+r2Qg) =0, (23
40,0R* Qo - 0 Dt
= 2 L = -5 = O . . . B . . .
v “ 92} where D/Dt is the material derivative. According to this

relation a fluid particle moving radially from the wall of the

The appropriate boundary conditions fdr7), (18) are that s ; ) ; X
rotating cylinder to some radius acquires the azimuthal

all components of the velocity vanish on the walls; thus,

velocity
u=v=0, Du=0, forr=1 and 7, (21)
where the last of the three boundary conditions is equivalent v'=— [Q,R?—Qy(r?—R?)]. (24)
tow=0.

If a basic state flow is unstable according to the criterionSuppose that in the annular region within which axisymmet-
(14), one would expect viscous diffusion to have a stabiliz-ric centrifugal disturbances amplify, the distribution of ve-
ing effect, in the sense that the flow would be stable forocity is given by(24). Since outside the annulus the velocity
values of the Taylor number less than a certain critical valués of the form(3), there should be some transition region at
T.. Thus, the problem is to determirlg, as a function of the periphery of the annulus. The distribution of velocity in
other governing parameters of the flow. There are a numbehe transition region is shown schematically in Fig. 2. One
of methods that have been developed for solving the systemmay then obtain a vorticity distribution such that the gradient
(17), (18) for the case of a narrow gap between cylinders.of the vorticity changes sign somewhere at the periphery of
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vr @ muthal wave numbers in the range from two to six were
observed for different values of Rossby and Reynolds num-
2 bers. If the rotating cylinder is carefully withdrawn vertically
’ from the fluid, one gets a vortex with an initially stable core
.3 1 rotating like a solid body and a boundary layer outside. The
perturbations introduced by the withdrawal of the cylinder
together with centrifugal instability give rise to the Kelvin—
Helmholtz-type instability. It is this instability initiated at the
periphery of the vortex that rapidly erodes the vortex core
(Fig. 7 in a way that is consistent with the behavior of
(b) unstable vortices produced by stirring the fluid inside a cyl-
5 A inder in the previous laboratory experiments by Kloosterziel
1

R A+R T

and van Heijst
The vertical wavelength of the primary instability was
29, R _JAasR r measured in our experiments as a function of the Rossby
2 number Ro. The results for three cylinders of different radii
are presented in Fig. 8. The fact that the experimental data
FIG. 2. Radial distribution of the circulatioer (&) and vorticity @ (&) # for different cylinders do not collapse onto a single curve
. 2. Radlal aistripution o e Ccirculatiomr ana vorticity o or . : . . .
the flow altered by radial motions due to the centrifugal instability. The indicates that the nondimensional WavelenlgtR ObVIOUSIy
curves labeled 1,2 represent distributidBsand (24), respectively, while 3~ depends not only on Ro but also on the Reynolds number Re,
is intended to represent a transitional distribution. which can be defined as
R%2Q),
Re= ,
14

the annulus. Thus, two-dimensional barotropic Kelvin—
Helmholtz-type instability may develop as a consequence of , , ) )
the primary centrifugal instability of the basic flow. In the since the values of Re in the experiments differ for different

next section we will, in fact, demonstrate that both types Oic_ylinders (Re=110-220 for_the cylinder of radiusR
instability are realized experimentally. =1.5cm, Re=450-900 forR=3 cm, Re=1250-2500 for

R=5cm). The behavior ofA/R for large Ro suggests a
power law relation of the form

MR=Re Y% (Ro). (25)

IV. EXPERIMENTAL RESULTS AND INTERPRETATION

A typical evolution of the unstable flow induced by the
rotating cylinder is illustrated by the photographs shown inNormalized values ok were therefore plottedFig. 9 as a
Figs. 3, 4, and 5. After the cylinder is set in motion, the function of Ro in order to illustrate the validity of the rela-
circular bands of dyed fluid appear around the cylinder withtion (25).

a well-defined vertical wave number. Toroidal vortices of  The width of the unstable annulus was also estimated as
mushroom-like shape in the cross section then grow fronthe maximum radial dimension of the mushroom-like vorti-
these bands. They form in the annular region surrounding thees. The results presented in Fig. 10 again reveal the depen-
cylinder in which the instability is initiated. Since the radial dence on the Reynolds number. The measured width of the
motions due to the centrifugal instability change the radialannulus for the small cylindelR= 1.5 cm) is in good agree-
distribution of the azimuthal velocity of the basic flow, a ment with the values predicted §¥5) for the entire range of
secondary Kelvin—Helmholtz-type instability develops at theRo. Since the Reynolds number is smallest in this case the
periphery of the unstable annulus, thus creating a complerole of viscosity in the flow is relatively important and the
three-dimensional floFigs. 4a), 5(b)]. In an oblique view basic velocity profile(3), which is established only in con-

of the flow (Fig. 6), typical Kelvin—Helmholtz-like vortices sequence of the viscous diffusion of momentum, has a
are clearly visible in the horizontal plane. Flows with azi- chance to form prior to the onset of the instability that sig-

FIG. 3. A sequence of photographs showing the evolu-
tion of the centrifugal instability. Side view. Experi-
mental parametersR=1.5cm, Re=3.4, Re=150; t
=10s(a), t=12s(b), t=15s(c), t=18 s(d).
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FIG. 4. A sequence of photographs
showing the evolution of the centrifu-
gal instability. Side view. Experimen-
tal parametersR=5 cm, Ro=2.5, Re
=2000;t=5s (@), t=7s (b), t=9s
(c), t=11s(d).

nificantly alters the basic state flow. Although vortices may,are shown as a function @/=Ro ™ in Fig. 11, together with

in general, extend outside the boundary lajges, e.g., in the  the theoretical curves obtained by solvifig) and(18) for a

case of Galer vortices, this is not the case in our experi- stationary marginal state using Chandrasekhar’s method. The

ment, since the radial dimension of the vortices is smallegalues of 7 that represent the boundary conditioi24) for

then the theoretical estimate. This provides assurance that thige problem, were chosen to fit with the experimental data

dimension of the vortices may provide a reasonable estimat®r each cylinder. For this purpose, the dependence bk

of the width of the boundary layer. =0) uponz was calculatedFig. 12). The approximate val-
The second series of experiments that we performeges of T,(x=0) suggested by the extrapolation of experi-

were specifically designed to enable us to measure the critmental data were then used to obtain the valuegfodm the

cal Taylor numberT; as a function of the other governing relationship of Fig. 12. These values gfwere in turn em-

parameter, the Rossby number Ro. These experiments wepoyed to calculate the curves presented in Fig. 11. The val-

initiated with the absolute value of the rotation rate of theyes of 7 thereby obtained give the effective width of the

cylinder set to a value just slightly greater than the backannulus in which the perturbations appear initially as

ground rotation rate, i.e|Q21|>Q,. Then|Q,| was incre-

mented until the flow became centrifugally unstable. On this A’=R(7 1-1),

basis, the critical values @b, were determined and the val-

ues of T, given by (20) thereafter calculated. These results which is about 1 cm for all cylinders. Since the entire pro-

FIG. 5. The same as in Fig. 4 but for
an increased value of the Rossby num-
ber Ro=5.9;t=5s(a); t=7 s (b).
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b 2.0 .
(b) "
1.5
+
+
T+
+ L7 +
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e 1.0}
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FIG. 6. Kelvin—Helmholtz-type vortices at the periphery of the unstable S (1‘559 ¥ >K>K ¥ X ¥
annulus. 0800 6 O RS o
0

0 2 4 6 8 10 12 14 16

Ro
cess is transient in the sense that the onset of instability takesc. 8. Nondimensional vertical wavelength of the perturbations for differ-
place simultaneously with basic state flow development, onent values of the Rossby number. Different symbols indicate the experimen-
might reasonably expect that the instability could develop fortal data for different cylindersi+) R=1.5 cm; (x) 3 cm; (O) 5 cm.
smaller values ofT; if one were to wait for a sufficiently
long time that the annular region in which the velocity pro-
file (3) is established, becomes widey becomes smallger
However, this scenario is not realizable. SinEgc(), It is interesting to compare, at least qualitatively, our
and |Q| is always greater thaf),, one can makeT,  experimental results with those for Couette flow as well as
smaller by decreasing the rotation rédg of the experimen-  with numerical results for the centrifugal destabilization of
tal tank. However, when the tank rotates very slowly, theanticyclonic barotropic columnar vortices. Note that not only
three-dimensional background irregular motigméich al-  toroidal but also spiral vorticeig. 14 were observed in
ways exist in the tankdo not decay since they are not sup- our experiments when the large cylind&®=£5 cm) was em-
pressed by the background rotatiére., the Rossby number ployed, and hence the Reynolds number was largest. This is
for these motions is not sufficiently smalThis background consistent with a well-known flow regime diagrasee Fig.
turbulence then creates the effective initial conditions for the2 in Anderecket al®) for counter-rotating cylinders, where
perturbations by not allowing the annulus to become suffi-observations of Tayloftoroida) vortices have been docu-
ciently wide prior to the onset of the instability. The vertical mented for smaller values of the Reynolds number while
wavelength\ . of the perturbations at the onset of instability spiral vortices are observed for larger values of the Reynolds
(when T~T,) was also measured in the experiments. Thenumber. Since the primary aim of our experiments was to
values ofA./R as a function ofn are shown in Fig. 13 demonstrate the appearance of centrifugal instability of a
together with the theoretical curve, which represents the calvortex in a rotating fluid with a possible application to atmo-
culated values of the wavelength for=T, at x=0. spheric vortices rather than to present another example of

V. DISCUSSION AND CONCLUSIONS

() y (b)

FIG. 7. A sequence of photographs showing the evolu-
tion of the vortex after the cylinder was withdrawn
from the water. Top view. Experimental parameters:

id) R=3cm, Ro=3.8, Re=700.
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FIG. 9. Normalized values of the vertical wavelength versus the Rossby
number. The symbols are the same as in Fig. 8. 1030 - . .
.4 8

Taylor-vortex flow, we did not follow the routine that has
be(?ome Standarq for Couette flow gxperlments. .Smce thEIG. 11. Critical values of the Taylor number as a function of the inverse
typlcal aspect r_atlo of the atmospherlc VOftICG_S _Of_ mter?St Isiossby number. Solid lines represent the solution§ldf, (18) for a sta-
not large, we did not try to model a vortex of infinite height tionary marginal state with different boundary conditions=0.85, 0.75,

in our experiments. However, the typical ratio of wavelength0-59. The symbols are the same as in Fig. 8.

of primary instability to the depth of the fluid is not particu-

larly small in our experiments,/H=5-8 for the small cyl- ] . ] ]
inder (R=1.5cm) and 7-11 for the large cylindeR( Same path in all experiments: first the state of solid-body

—5cm). Note that in the experiments on flow regimes in thegotation was established and then the cylinder was started
Couette system by Anderedit al,*® the typical value of from rest impulsively. An important feature of the flows in
M/H=15. Obviously finite-length effects will play some role OUr experiments is that they are, in fact, strongly unsteady
in our experiments, although their influence cannot be deteldue to the continuous viscous diffusion of momentum from
minant. For example, due to the vortex-number quantizatiod€ cylinder(the process that establishes the basic fland
condition (Park and Donnelf#) the number of vortices may also due to the simultaneous development of toroidal vorti-
vary in such a way as to contribute to the scatter of experi¢e€S(Primary instability together with the barotropic Kelvin—
mental data. The Ekman cells of height 0.5—1 cm adjacent thi€/mholtz-like vorticegsecondary instability The develop-
the top and bottom boundaries can also be detected in odpent of these instabilities leads finally to a fully turbulent
system. Regarding the critical Taylor number, we may refeflow. Thus, a steady state with embedded toroidal vortices is
to the experiments of Calewho has shown that the value of Never achieved in this case as it would be in conventional
T, at which axisymmetric Taylor vortex flow occurs is rather COuette flow. This explains the pronounced complexity of
insensitive to annulus length. Having in mind the nonunique-

ness of the stable flow states in the Couette system demon-

X 8
strated by Cole&® we have followed a certain patthough 10
not a so-called thermodynamic path parameter space, the .,
107
3.0 . . . . , ‘ 1061
2.5 ? 105 ]
2.0 =
. [ 1<}
& qot]
= 1.5}
3 103}
1ot
2
5t 10
1 .
% 0%, 2 4 .6 8 1.0

FIG. 10. The nondimensional width of the unstable annulus for different
values of the Rossby number. The symbols are the same as in Fig. 8. THdG. 12. Calculated values of the critical Taylor numbekatO for differ-
solid line represents the relationship. ent values of the boundary parametgr

Downloaded 30 Mar 2006 to 128.208.71.131. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



3202 Phys. Fluids, Vol. 10, No. 12, December 1998 Y. D. Afanasyev and W. R. Peltier

2.0 T
+
1.5
+
o, +
S Lol
~ +
X W
>K é T - e R

S5t 1 1
/\ FIG. 14. Typical spiral vortices observed in the experiment with a large

Reynolds numbetRe=2500.

0o 2 4 6 8 10 ized. On this basis one may estimate the ratio of the
horizontal scale of the perturbation to the vertical scale. For
n d=2, this ratio is near 0.7 while in our experiments the ratio
FIG. 13. The nondimensional wavelength of perturbations measured in thén\ varies betwee_n, 1 a,nd 2 for d',fferent values of R_O' We
experiments where the Taylor numbers were near their critical values. Th@'€ therefore justified in concluding that our experiments
values of 7 are the same as in Fig. 11. The solid curve represents thdhave successfully captured the essence of the “edge-mode”
calculated values of ; for T=T, and x=0. of centrifugal instability to which anticyclonic columnar vor-
tices are susceptible for Rossby number©dt ).
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