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Formation of vortex dipoles
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Evolution of a two-dimensional flow induced by a jet ejected from a nozzle of finite size is studied
experimentally. Vortex dipole forms at the front of the developing flow while a trailing jet
establishes behind the dipole. The dynamics of the flow is discussed on the basis of detailed
measurements of vorticity and velocity fields which are obtained using particle image velocimetry.
It is found that dipoles do not separate (pinch-off) from the trailing jet for values of the stroke ratio
up to 15, which fact can be contrasted with the behavior of vortex rings reported previously by other
authors. A characteristic time scale that is defined differently from the formation time of vortex rings
can be introduced. This time scale (startup time) indicates the moment when the dipole starts
translating after an initial period when it mainly grows absorbing the jet from the nozzle. A simple
model that considers the competing effects of expansion and translation is developed to obtain an
estimate of the dimensionless startup time. The dynamics of a dipole after the formation is
characterized by a reduced flux of vorticity from the jet. The dipole moves forward with constant
speed such that a value of the ratio of the speed of propagation of the dipole to the mean velocity
of the jet is found to be 0.5. A universality of this ratio is explained in the framework of a model
based on conservation of mass and momentum for the moving dipole. © 2006 American Institute of

Physics. [DOI: 10.1063/1.2182006]

I. INTRODUCTION

Vortex dipoles (pairs) are a very well known feature of
(quasi-) two-dimensional (2D) flows. Two-dimensionality of
the flow can be due to different factors including geometrical
restrictions such as those for flows in thin layers or soap
films, background rotation of the system, or density stratifi-
cation. These flows often occur in a stratified rotating ocean.
In an oceanographic context, vortex dipoles are often called
mushroom-like currents since they resemble a sliced mush-
room. Vortex dipoles are formed in a viscous fluid when a
(continuous or impulsive) force is applied locally to some
volume of fluid. A useful idealization of a localized force is a
point force. If a jet from a nozzle is used to reproduce the
action of a force the point force can be obtained in the limit
when the size D of the nozzle tends to zero while the injec-
tion velocity Ui is increased such that the momentum flux
per unit depth proportional to szetD remains constant. The
volume flux per unit depth U D, on the other hand, becomes
negligible. This idealization was used to obtain theoretical
solutions for starting vortex dipole using the Stokes
(Cantwell') or the Oseen (Afanasyev and Korabel?) approxi-
mation. The same approach was used to interpret the results
of laboratory experiments. A review of the experimental and
theoretical results as related to 2D flows and flows in a strati-
fied fluid is given in Voropayev and Afanasyev.3 The finite
size of the source of the jet, however, can be important es-
pecially when the flow in the vicinity of the source is con-
sidered. The volume flux from the source is an additional
control parameter of the problem in this case. Dimensional
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analysis2 shows that the flow is governed by two dimension-
less parameters I1,=J¢"?/v*? and I1,=Ja/v?, which include
kinematic viscosity v, time 7, the momentum flux J (per unit
depth and unit density), and the size of the region where the
momentum flux (force) is applied, a (equivalent to D in
present notation). The parameter I, is effectively the Rey-
nolds number of the flow while the parameter 11, represents
the effect of the finite size of the source. The analy5152 of
both laboratory experiments and numerical simulations
where the forcing was applied in the area of finite size dem-
onstrated that the dynamics of the dipoles does depend on
the parameter II,. Furthermore, recent laboratory experi-
ments (Afanasyev and Korabel*) where a localized force was
placed in a uniform stream to simulate a motion of a bluff
body demonstrated that the finite size of the forcing area was
a necessary condition for the occurrence of regular vortex
streets similar to Kdrmdn-Bénard vortex streets behind a
cylinder.

It is important to review here some results on vortex
rings since the approach to this problem was somewhat dif-
ferent although the flow itself is in fact a three-dimensional
(3D) (axisymmetric) analog of a vortex dipole. An experi-
mental arrangement where fluid is ejected from a round
nozzle by a piston is most often used to generate vortex
rings. This method of generation is natural considering nu-
merous practical applications in nature and industry where
the dynamics of vortex rings is important. These applications
include in particular the propulsion of some aquatic animals
(Dabiri et al.’). The method of generation that includes a
cylindrical pipe with a piston implies that the size of the
source is important. Note that an alternative example where a
jet from a very small nozzle was used was demonstrated in
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experiments by Voropayev and Filippov.(’ In the experiments
of Gharib et al.” the nozzle-piston geometry was used to
consider large ratios of the stroke of the piston to the nozzle
diameter (long jets) in contrast to previous experiments of
other authors where only short ratios were investigated. Two
distinct states of the flow were observed in their experiments.
While the flows generated by small stroke ratios were in the
form of single vortex rings, the flows for large stroke ratios
showed a leading vortex ring with an unstable trailing jet
posterior to the ring. The transition between the regimes oc-
curred at a mean stroke ratio of approximately 4. The sepa-
ration of the leading vortex ring from the trailing jet was
referred to as vortex ring pinch-off. The circulation of the
vortex ring attained a maximum value at this point and did
not grow further. Gharib et al.” and Mohseni and Gharib®
showed that experimental results are consistent with the
Kelvin-Benjamin variational principle, which states that a
steady vortex ring must have maximum energy for a given
impulse and circulation. Linden and Turner’ offered a theo-
retical model where the properties of the ejected fluid were
matched to the corresponding properties of the family of
vortex rings of different core size and found the same limit-
ing values of the stroke ratio. Existence of a formation time
scale for vortex rings was further confirmed in numerical
simulations by Rosenfeld et al.'® The idea of a universal
formation time that proved to be valid for the formation of
the vortex rings was then extended to 2D flows by Jeon and
Gharib.'" These authors considered the initial development
and subsequent shedding of vorticity behind a cylinder,
which was brought to motion from the state of rest. They
found a similarity between the cylinder flow and the forma-
tion process of the vortex rings in the fact that a character-
istic time exists for bluff-body flows. They attributed this
formation time to the onset of asymmetry in the wake behind
the cylinder.

Taking into account a general importance of studying the
effect of the finite size of the source for the dynamics of
starting vortex dipoles as well as looking from another per-
spective, which includes the investigation of formation and
possible separation similar to that discovered for the vortex
rings, it is interesting and important to investigate the 2D
flow in a geometry similar to that used for vortex rings.
Herein we present the results of a new series of experiments
where the starting dipoles were generated in a relatively thin
layer of fluid by a jet ejected from a channel with a piston.
We will also present the results of the theoretical analysis
that allows us to obtain the translational velocity of the di-
poles during both the initial period of their development as
well as for larger times.

Il. THEORY

A. Potential flow generated by forces or sources
distributed along a line

Consider the initial development of a 2D flow induced
by a jet ejected from a nozzle in the form of a line between
the points y=—D/2 and y=—D/2 on the y axis (Fig. 1). For
the sake of simplicity, let us choose a “top hat” distribution
of velocity in the jet such that u="Uj on the line and u=0
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FIG. 1. Sketch of the flow induced by injection of fluid from the nozzle.

otherwise. Here u is the x component of velocity. The jet
delivers a volume Q=Uj,D and kinematic momentum J
= jzetD per unit time that are the main control parameters of
the flow. These parameters are therefore fluxes of mass and
momentum normalized by the density of the fluid. The jet
generates vorticity when it enters initially quiescent fluid.
This vorticity is in the form of two starting vortices of op-
posite sign located at both flanks of the jet. These vortices
together with the jet between them constitute a starting vor-
tex dipole. The vorticity is transported in the fluid with a
finite rate by advection and viscous diffusion and remain
concentrated in the dipole. Consider a (Lagrangian) fluid par-
ticle located at the x axis just in front of the propagating
vortex dipole where the flow is approximately irrotational.
To obtain the distance traveled by the particle (or equiva-
lently the distance traveled by the front of the starting dipole)
we have to integrate the potential flow field induced by the
distribution of velocity and pressure at the nozzle. However,
it is not a straightforward procedure because, strictly speak-
ing, the distributions of velocity and pressure at the nozzle
that constitute the boundary condition for this problem are
not known. The top hat velocity profile in the jet can be
considered only in the asymptotic steady-state limit. Both
pressure and velocity at the boundary may evolve with time
in the developing flow. Consider two cases that correspond to
potential flows generated either by a distribution of force or
the distribution of sources at the boundary. Although neither
of these flows provide “ideal” boundary conditions (as we
will see later), they do satisfy integral boundary conditions
such that these flows are governed by the total force J or the
total mass flux Q. These cases are therefore important and
can be considered in a sense of providing intermediate as-
ymptotics of the general flow.

The solution of a problem for the flow generated by a
point force' can provide us with a Green’s function for the
present problem of a force distributed along a line. The so-
Iution is obtained by solving a linearized equation of motion
with a singularity at the origin:

—:—1Vp+A5(x), (1)
p

where u is the velocity vector, p is pressure, Xx=(x,y) is the
position vector, and 8(x) is the Dirac delta function. The
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vector A represents the force of magnitude JH(¢) applied in
the positive direction along the x axis. Here H(r) is the
Heaviside step function. The solution of (1) together with the
equation of continuity gives a pressure field in the form

l — J—x (2)
pp T 2m(x2+y?)

The velocity potential can be found simply by integration of
pressure (2) with respect to time:
1
@=—-—pt. (3)
p

The velocity field is given by

1 X
=—Jt-—V ) 4
" 27 (x2+y2> @

The potential for the flow induced by the force distributed

along the line can then be found by integration in the Green’s
function sense:

Jtx fD/2 dyl
e=- B
27D ) _pp X7+ -y )?

Jt -D/2 +D/2
= —[arctan(y ) - arctan(y )] . (5)
27D X X

The distribution of pressure at the boundary (x=0) for this
flow is in the form of a top hat with a value

along the line representing the nozzle. The velocity field can
be easily obtained by finding a gradient of (5). It can be
easily shown that the velocity field has singularities at the
points y=+D/2. To describe the motion of a particle along
the x axis we have to solve an ordinary differential equation:

ar TR T\ 2 o2 )

This allows us to obtain the time as a function of distance L,
traveled by the front of the dipole:

V5[5 (5)

D 1(L:\> 1L
=—\/4w —(—1> +==Lf, (7)

Uit 3\D 4D
Consider now the second case of interest when the flow
is induced by sources distributed along a line rather than by

a force. Integration along the line similar to that performed in
(5) but with the Green’s function in the form

@= glog\"xz +y7, (8)
2

allows us to obtain the velocity potential. The expression for
the potential is not given here because it is quite lengthy. The
x component of velocity can be obtained in a more compact
form as follows:
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-D/2 +D/2
u:-i[arctan<y )—arctan(y )} 9)
27D X X

The potential and the velocity field for this case are station-
ary in contrast to the previous case when these fields increase
linearly with time. The boundary conditions at the nozzle are
also different. For the latter case the distribution of x com-
ponent of velocity (9) is of top hat form at x=0, but the
pressure is singular along the line representing the nozzle.
The distance traveled by the front of the flow can again be
easily obtained in the form of the following relation:

_T f T dr (10)
t_U- o arctan[D/(2x)]

jet

B. Steady-state regime

Finally, let us consider larger times of the evolution of
the flow when the dipole has moved far away from the
nozzle and the trailing jet is established behind the dipole. A
simple physical model of the flow can be developed based on
the integral relations expressing some conservation laws
(e.g., Voropayev ef al."?). A vortex dipole can again be re-
lated to a finite volume of fluid within which the motion is
essentially vortical and outside of which the motion is ap-
proximately irrotational. This volume moves in the fluid and
its size increases. The balance of mass and momentum for
the fluid volume V are

dV

— == UpD. (11)
dVU,

(1+ k)7I = Ujo(Uje = U))D, (12)

where k is the added mass coefficient. (Precisely speaking, V
is the area of the dipole in our 2D model.) Here it is assumed
that the dipole moves slower than the trailing jet ( U< Ujet)
such that the jet constantly delivers mass and momentum
into the dipole. The additional influx into the dipole due to
entrainment of ambient fluid is assumed to be small com-
pared to influx from the jet and is neglected in (11). Note that
the entrained fluid can constitute a significant part of the
volume of a single vortex ring (without trailing jet) accord-
ing to measurements by Dabiri and Gharib."? The relative
unimportance of entrainment in our case is due to either the
different (planar) geometry of our problem or to different
dynamics because of the effect of the trailing jet is subject to
verification by comparison of the results of the model with
the experiments. Making the further assumption that the ve-
locity of the dipole U does not depend on time (which will
be confirmed later in our experiments), a simple relation be-
tween the velocity of the dipole and the velocity of the jet
can be obtained:

U=—1u (13)
T

Since the potential flow induced by a moving dipole is
equivalent to that of the moving cylinder, the same value of
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FIG. 2. (Color online) Sketch of the experimental setup.

the added mass coefficient k=1 can be employed here to
yield Us=Uj. /2. Note that the analogy between the flow
around a dipole and the cylinder flow is quite straightforward
and follows in particular from the Chaplygin-Lamb solution
(e.g., Meleshko and van Hejst') for the inviscid dipole.

lll. EXPERIMENTAL TECHNIQUE

The laboratory experiments reported herein were carried
out in a long rectangular tank of dimensions 120X 30 cm
where a channel-piston arrangement was installed. The sche-
matics of the setup is shown in Fig. 2. The tank was filled
with two layers of water of different density. The upper layer
was fresh water while the lower layer was saline water of
concentration 250 g/1. Most of the experiments were per-
formed in water where the depth of each layer was 1.1 cm,
although lower values of 0.4 and 0.8 cm were also tested in
different experiments. No significant dependence on the
depth of the layers was observed. Two layers were used to
minimize the vertical component of velocity, providing the
two-dimensionality of the flow (e.g., Paret et al.”). The two-
layer system was similar to that used in our previous experi-
ments with 2D turbulence (Wells and Afanasyev'®). That sys-
tem was shown to work well in achieving the purpose of
two-dimensionality of the flow. In a thin layer system bottom
friction is an important factor that prevents the flow from
being purely 2D. Bottom friction as well as friction due to
ordinary viscosity causes the total energy of the flow to de-
cay (e.g., Danilov et al.'"). Tt is important therefore to main-
tain a rate of energy decrease due to bottom friction that is
somewhat less than that due to ordinary viscosity. This was
demonstrated to be the case in Wells and Afanasyev,16 where
the depth of each layer was 0.5 cm. We assume that this is
also true for the present experiments where the depth of the
layers was greater then that used previously.

Another important phenomenon associated with flows in
a thin stratified layer is generation of internal waves. The
parameters of the flow under study should then be chosen
such that the effect of internal waves is negligible. To esti-
mate the characteristics of the internal waves in the system
consider the parameters of the stratification in the tank. The
tank was initially filled very carefully to avoid any mixing.
The filling process typically took 5—10 min. Assuming that
diffusion starts immediately we can estimate the evolution of
the vertical density distribution in the system. Solving the
equation of diffusion with no-flux boundary conditions at the
surface and at the bottom and step-like initial distribution of
concentration, one obtains by separation of variables

Phys. Fluids 18, 037103 (2006)

2 2 <27m ) ( 4n2772t>
—sin| —z |exp| — .
i 7 z|exp| — k T

n=1,n—odd ™

c(z,1) =

Here H=2.2 cm is the total depth of the fluid and «=1.1
107 cm/s is the coefficient of diffusion of salt in water.
Vertical profiles of the concentration ¢ can then be calculated
easily for different times. Immediately after the filling stops
the initial step-like distribution is smoothed by diffusion. Al-
though the diffusion is very fast initially when the gradient of
concentration is very high, it slows down with time such that
even after 1 h, the density difference still remains large.
Typically, one series of experiments was finished within a 1
h period after what the tank was refilled. The value of buoy-
ancy frequency at the interface varies from N=10 s~! imme-
diately after the filling to N=6 s~! after a 1 h period. These
values of buoyancy frequency correspond to the values of the
period T=0.6—1 s. The characteristic time (6—45 s) of the
piston translation was much larger in our experiments such
that we can reasonably expect that the flows are hydrauli-
cally well adjusted. Indeed, further measurements of the ve-
locity field of the flow show no significant unsteady effects
that might be associated with internal waves. Note that the
energy loss associated with the emission of the internal
waves by unsteady quasi-2D dipoles is small (of the order of
a few percent) even when the stratification is much weaker
and the flow is closer to a resonance. It was shown to be the
case for colliding vortex dipoles (Afanasyevlg). In our
present experiments internal waves were only observed when
the piston was stopped suddenly after translation in the chan-
nel at the end of each run. The waves can then be noticed by
the modulation of the interface. Although there was no evi-
dence of significant wave emission at the start or during the
motion of the piston certain precautions were made to elimi-
nate the effects of possible reflection of the waves from the
side walls of the tank. For this purpose the sloping beaches
made from sponge were installed at the sides of the tank.

The flow in the tank was induced by a jet ejected from a
channel located in the middle of the tank. A jet was induced
by a piston translating along the channel in the horizontal
direction. The piston extended through the depth of the fluid
in the container such that the distance between the lower
edge of the piston and the bottom was less than 0.1 cm. The
piston was towed by a traversing system driven by a com-
puter controlled stepping motor. The piston was started im-
pulsively with a very short (~0.1 s) acceleration period and
then moved with constant velocity. The piston velocity was
varied in the range U,=0.4-4 cm/s for different experi-
ments. Channels of width 1.2 and 1.8 cm with the walls
made of thin Plexiglas were used in our experiments. A few
series of experiments were also performed in a different ge-
ometry. A channel of larger width D4,=2.4 cm with a slit at
the exit was used for this purpose. The width of the slit was
D=0.7, 1.2, or 1.7 cm. While for the experiments with the
channel the mean velocity of the jet Uy, at the exit was equal
to the velocity of the piston, for the experiments with the slit,
the value of Uy, was obtained from the volumetric relation
Uje;=U,D¢/ D. Direct measurements of velocity at the exit
of the slit confirmed the accuracy of this relation.

The flow was recorded using a digital video camera with
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FIG. 3. (Color online) Velocity (arrows) and vorticity (contours) fields: 7=5.3 (a) and 14.2 s (b). Parameters of the experiment: D=1.8 cm (channel), Uy,
=0.75 cm/s. Arrow in the right upper corner of each panel represents the velocity scale 2 cm/s. Color bar shows the vorticity scale in s~'. Unit step in x and

y direction is 0.18 cm.

an array resolution of 12881032 placed above the con-
tainer. The horizontal velocity field in the flow was measured
using a particle image velocimetry (PIV) technique. A de-
scription of the particular methods used in our PIV code is
given by Fincham and Spedding19 and Pawlak and Armi.*
Filtration and interpolation of velocity data during the post-
processing stage of the PIV analysis were performed using a
variational technique (Afanasyev and Demirov®'). The seed-
ing particles were polyamid spheres of mean diameter
50 wm and density 1.03 g/cm?®. The density of the particles
corresponds to the density of water with a salt concentration
of approximately 37 g/1. A suspension of particles in water
of neutral density was introduced into the interface between
the layers. The particles were made visible by illuminating
the interface between the layers with a sheet of light from a
1 W argon ion laser. Image sequences with a frame rate of
12.5 fps were recorded directly into the memory buffers of a
computer. Further processing of the images that had a pixel
resolution of approximately 90 pixels/cm was performed us-
ing the PIV code to obtain velocity fields of dimensions 44
X T7 vectors.

IV. EXPERIMENTAL RESULTS AND INTERPRETATION

In order to identify different regimes of the flow a num-
ber of experiments were performed where the main control
parameters, namely the velocity of the jet Uiy, the width of
the slit (or the width of the channel) D, and the length of
translation of the piston along the channel L have been var-
ied. A typical evolution of vorticity in the flow is shown in
Fig. 3. Part of the flow within the channel near the exit is
also visible at the right-hand side of the pictures. The images
show that when the jet emerges from the channel it splits and

wraps around two starting vortices [Fig. 3(a)]. Later the vor-
tices join to form a dipole that starts propagating forward
[Fig. 3(b)].

Although our initial expectations were to observe the
separation (pinch-off) of the dipole from the trailing jet such
as that reported for vortex rings (see, e.g., Figs. 13 and 18 in
Ai et al.?), these expectations were not realized. The pinch-
off was not observed in any of our experiments. The image
in Fig. 4 demonstrates the dipole with a trailing jet visualized
by particles. The photograph was taken with a large exposure
such that the streaks show the regions of high velocity. The
boundary of the jet is clearly visible in the picture and the
dipole forms a continuous flow with the trailing jet. Only
after the motion of the piston was stopped, the dipole en-
trained the remainder of the trailing jet and then propagated
on its own. However, the issue on whether the separation
occurs can only be resolved on the basis of measurements of

FIG. 4. Vortex dipole with a trailing jet visualized by particles. Parameters
of the experiment: Uj=2.7 cm/s, D=0.7 cm, L/D=51, slit geometry.
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FIG. 5. Area integrated absolute value of vorticity for the entire flow
(squares) and for the dipole (circles) for two different experiments. Arrows
indicate the formation times of the dipoles and the times when the piston
was stopped in each experiment. Parameters of the experiments: Uiy
=1.6 cm/s, D=1.2 cm, and Ujm=2.7 cm/s, D=1.7 cm, slit geometry. The
graph for the second experiment is shifted up by 20 to avoid the
overcrowding.

the total vorticity in the dipole rather than on a visual assess-
ment. These measurements were performed in all of our ex-
periments using the following method. A rectangular region
that includes the entire dipole (determined by the extent of
the contour line of 5% of maximal vorticity) was drawn
manually on vorticity maps obtained by the PIV for each
time step. The area integrals of the absolute value of vorticity
were calculated for the selected region as well as for the
entire flow field. These quantities have units of circulation
and, if calculated only for a vortex of either positive or nega-
tive sense in the dipole, do represent the circulation in the
vortex. Typical results of these measurements showing the
evolution of the total vorticity in the dipole and in the entire
flow are demonstrated in Fig. 5 for two experiments with
different values of the jet velocity Uj. Both plots show that
the vorticity for the entire flow increases in an approximately
linear fashion until the motion of the piston stops (=9 and
15 s). The vorticity of the dipole initially follows the total
vorticity (in fact, the dipole cannot be separated from the jet
at this stage). The dipole is not translating appreciably during
this initial period but rather growing in size, absorbing all of
the fluid ejected from the channel. At some moment of time
(t,=3 and 4.5 s) the flow exhibits a change of regime when
the growth of vorticity in the dipole becomes slower than
that for the entire flow. We will call this a startup time of the
dipole to distinguish it from the formation time (as intro-
duced in Ref. 7 for vortex rings), which is rather associated
with the pinch-off of a leading vortex. After the startup time
the dipole starts translating while being continuously at-
tached to the jet. The dipole is fed by the fluid from the
trailing jet such that the total vorticity of the dipole continues
to grow linearly with time although with a somewhat lower
rate than that of the entire flow. The rest of the vorticity
supplied by the flow from the channel is accumulated in the
growing trailing jet. Thus two distinct regimes of the flow
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FIG. 6. Maximum value of the area integrated vorticity in the dipole for
different values of the maximum piston displacement. Parameters of the
experiments: Uj=2.7 cm/s, D=1.2 cm, slit (circles), and channel geometry
(squares); Uj;=1.9 cm/s, D=1.8 cm, channel geometry (triangles).

can be identified before and after the transition at the char-
acteristic startup time. Note that after the piston was stopped
the total circulation of the leading vortex must approach that
of the entire flow. Indeed, if the dipole is not detached from
the trailing jet it eventually entrains all of the circulation
ejected by the vortex generator. One might argue that the
trends in the plots in Fig. 5 (upper curves) do not suggest this
behavior. However, a dip in both plots that is observed after
the piston is stopped is rather due to a perturbation by an
interfacial wave that is generated when the piston is stopped
suddenly at the entrance of the channel (this effect is dis-
cussed in the previous section). After the perturbation, the
total circulation returns to a plateau while the circulation of
the dipole continues to grow until it reaches the value of the
total circulation. Since the perturbation was quite strong, the
data collected after the perturbation were considered to be
unreliable and was discarded in most of our experiments.
To further confirm the observation that the dipole is con-
tinuously attached to the jet for the entire range of piston
strokes available in our experimental setup, we conducted a
few series of experiments where the piston performed limited
excursions along the channel. Here we followed the method
used by Gharib et al.” in their experiments with vortex rings.
The maximum distance traveled by the piston normalized by
the diameter of the channel, L/D, is equivalent to the dimen-
sionless time of piston translation. Note that in the experi-
ments with the slit, the distance L was obtained from the
volumetric relation L=L,D.,/D, where L, is the maximum
distance traveled by the piston in channel of width D,. This
distance represents the translation the piston would perform
in the channel of the width equal to the width of the slit to
push the same volume of fluid. Figure 6 depicts the maxi-
mum values of total vorticity in the dipole for different val-
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FIG. 7. The Roshko number vs the Reynolds number for different experi-
ments. Parameters of the experiments: D=0.7 cm (slit), Uj;=0.9-2.8 cm/s
(squares); D=1.2 cm (slit), Uj=0.5-3.3 cm/s (circles); D=1.2 cm (chan-
nel), Uj=0.5-3.3 cm/s (diamonds); D=1.7 cm (slit), Uj=0.7-2.7 cm/s
(triangles).

ues of L/D. While for vortex rings the circulation reaches a
plateau at L/D~4 (e.g., Fig. 6 in Gharib er al.”), for vortex
dipoles it continues to grow at least until L/D=15.

Values of the startup time 7, were measured in all of our
experiments that were performed for different values of the
dimensional control parameters Ui, and D for both the chan-
nel and slit geometries. In order to better understand the
behavior of f,, it is useful to first perform a simple dimen-
sional analysis. The startup time 7, depends on a set of 3D
quantities including Uy, and D and the kinematic viscosity.
In fact, this set of parameters is exactly the same as that for
the flow around a circular cylinder. The width of the channel
is then equivalent to the diameter of the cylinder while the
velocity of the jet corresponds to the velocity of the stream.
The dimensional analysis then gives

D? U..D
;=q’<4—2‘ ) 14

where @ is an unknown function of one dimensionless argu-
ment, the Reynolds number Re. To follow the analogy with
cylinder flow we will call the dimensionless parameter in the
left-hand side of (14) the Roshko number Ro. Note that the
dimensional analysis can be done also in terms of other di-
mensionless parameters, namely the Reynolds number and
the Strouhal number defined as St=Uj,/(t,D). The Strouhal
number is the reciprocal of the dimensionless startup num-
ber. Figure 7 demonstrates the plot of Ro versus Re, where
linear fit gives Ro=0.18Re+0.02. Hypothesizing that a simi-
larity exists between the starting dipole flow and the flow
around the cylinder, the data in Fig. 7 can be compared with
a well-known linear dependence between the Roshko and the
Reynolds numbers for the cylinder flow, Ro=0.212(Re
-21.2) (Roshko™).

It is interesting and important to investigate the details of
the physical process that leads to the formation of the dipole
and its subsequent translation at the front of the trailing jet.
Some insight into the evolution of a starting dipole can be
provided by measurements of the propagation of the front of
the flow. The distance L, measured from the exit of the chan-
nel towards the front of the dipole is shown in Fig. 8 as a
function of time for two experiments. These experiments

Phys. Fluids 18, 037103 (2006)

FIG. 8. Distance from the nozzle to the front of the dipole for two experi-

ments: D=1.2 cm, Uiel=0.8 cm/s, channel; D=1.2 cm, Uje= 1.6 cm/s, slit.

The data for the channel experiment are shifted down by a decade to avoid
the overcrowding. Labels 1 and 2 indicate the lines representing relations
(10) and (7), respectively.

were for slit and channel geometries with the same value of
D. The results, however, are typical for all of our experi-
ments. The results demonstrate that during the initial period
for times smaller than the startup time (z<t,), the dipole
propagates relatively slow. Observations show that the vorti-
ces of the dipole grow during this stage without significant
translation forward. The solid lines in Fig. 8 show the theo-
retical relations (7) and (10) that describe the motion due to
potential flow generated by the injection from the nozzle.
Comparison of theory with the experimental data shows that
the model where the expansion of fluid is due to sources
distributed along a line describes well an initial development
of the flow immediately after the startup. Another model
where the forces distributed along the line are considered
provides reasonable intermediate asymptotics for the flow
evolution during the initial period. After this initial period
the vorticity generated at the nozzle becomes dynamically
important and the flow can no longer be described by poten-
tial flow theories. At later times (1>1,), L, varies approxi-
mately linearly with time such that the dipole moves with
constant speed. The values of the speed of the front U, were
measured in the experiments with different values of Uj, and
are shown in Fig. 9. The data collapse well on the straight

Ufront
N
T
o
)

0.5r b

Ujet

FIG. 9. Speed of the propagation of the front of the dipole for the experi-
ments with different values of the injection velocity Uje.
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line. A linear fit gives the dependence Uy=cUj, where the
value of the slope is ¢=0.50+£0.02. This value is in good
agreement with the theoretical prediction (13).

On the basis of these observations a simple model can be
proposed to elucidate (at least in the qualitative manner) the
dynamics of the startup of the flow. Consider an idealized
setup where a nozzle is represented by a source of mass and
momentum. Suppose that a dipolar vortex has just occurred
within a circular patch of fluid of diameter D. The source
supplies fluid with a rate Uj,D (per unit depth) such that the
patch expands. The area V of the patch increases linearly
with time:

V=mD*4+ UyDt, (15)

such that the radius R of the patch grows as R=(V/)"?. The
source also supplies (kinematic) momentum szep per unit
depth. As a result, the patch starts translating. The speed U of
the patch can be estimated from momentum balance (12),
where the right-hand side is simply the momentum supplied
by the source and V is substituted using (15). Integration of
the resulting equation gives

T

T ET) "

where 7=1U;/D is the dimensionless time. Thus the leading
vortex dipole translates as a whole with velocity U while
expanding uniformly according to (15). When the rear end of
the dipole passes the origin, a trailing jet must form. This
corresponds to the startup time as defined above. Subtracting
the distance that a point at the rear end of the dipole would
cover due to expansion and translation and equating the re-
sult to zero, one obtains a simple transcendental equation.
The numerical solution of this equation gives the dimension-
less startup time 7,=3.8. This result is shown by a dashed
line in Fig. 7. The model clearly underestimates the startup
time. However, it is hardly possible to expect a better perfor-
mance from this relatively crude model that does not in par-
ticular take into account the effects of friction or the presence
of solid walls within the flow.

V. DISCUSSION

In summary, it can be concluded that the results of the
laboratory experiments reported in this article provide evi-
dence that a time scale that characterizes the dynamics of
starting vortex dipoles can be introduced. This time scale is
named a startup time. It indicates the moment when the di-
pole starts translating after an initial period of time when it
mainly grows absorbing the jet from the nozzle. A simple
model that considers the competing effects of expansion and
translation allows us to obtain an estimate of the dimension-
less startup time. Note that a similar model was earlier de-
veloped for 3D flows where dipoles were generated by in-
jecting fluid from a round nozzle in a stratified fluid.** Due to
the different geometry of these problems the dynamics is
different. In a stratified case a regime when a dipole is de-
veloping within an intrusion was observed. In that case the
expansion prevails over the translation. This is due to the fact
that both the speed of expansion and the speed of translation
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are proportional to #~'/2. It is then the ratio of the coefficients
of proportionality that defines the regime of the flow. For the
2D flows considered here, translation always prevails with
time due to the different time dependence of the speed of
translation. As a consequence, a characteristic startup time
can be introduced. Note that the simple model developed
here to describe the startup dynamics does not take into ac-
count viscous effects that can reduce the translation speed of
the dipole, especially for low values of the Reynolds number.
This effect might cause the occurrence of the regime where
the dipole does not propagate but just expands such that the
startup time is infinite. Whether a limiting value of the Rey-
nolds number below which the dipoles do not form the trail-
ing jet exists is certainly an interesting question that deserves
further attention.

When the dipole translates, the trailing jet establishes
behind the dipole. As a result, the total vorticity flux supplied
by the jet issuing form the nozzle is shared between the
dipole and the trailing jet such that the growth of total vor-
ticity in the dipole becomes slower than that in the entire
flow. Our experiments demonstrate that vortex dipoles do not
separate from the trailing jet for the values of the stroke ratio
up to L/D=15. This observation can be contrasted with the
results for the vortex rings (Gharib ef al.”) where a complete
separation (pinch-off) was observed at a dimensionless for-
mation number of approximately 4. Although the pinch-off
of the leading vortex dipole from the trailing jet was not
observed in any of our experiments, the existence of finite
“pinch-off” time (formation number’) is certainly a possibil-
ity for larger values of the stroke ratio L/D. After the present
paper had been completed, results of numerical simulations
(Winckelmanszs) were brought to our attention. The 2D flow
from a channel was simulated by the viscous vortex particle
method. The sequence of vorticity maps of the flow demon-
strates that, at dimensionless time 7= Uj,t/ D=25, the leading
vortex dipole is clearly pinched off from the trailing jet while
at 7=20 it is yet completely attached. While further numeri-
cal simulations and perhaps newly designed laboratory ex-
periments are required to obtain more details of the pinch-off
of the vortex dipoles, some predictions can be made using
theoretical arguments similar to those used in Refs. 8 and 9
for vortex rings. A plug model of the flow from the channel
gives the volume V), per unit depth, the circulation (in the
half-plane) and the energy per unit depth E,, in the following
form:

V,=DL, (17)
L,=UglL/2, (18)
E,=U,V,/2=U;,DL/2. (19)

These properties can be matched to those of the vortex di-
pole resulting from the injection of the plug fluid. To param-
eterize the properties of dipoles, a theoretical model similar
to that by Norbury26 for vortex rings is required.
Pierrchumbert”’ constructed a one-parameter family of
steady translating vortex dipoles with uniform vorticity dis-
tributed within some closed area. The properties of the di-
poles, including the normalized kinetic energy E,, were com-

Downloaded 30 Mar 2006 to 128.208.71.131. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



037103-9 Formation of vortex dipoles

35 T T T T

30
25
o 20

15
10

FIG. 10. The aspect ratio L/D of the plug generated by the piston/channel
arrangement plotted against the parameter A,/A, for the corresponding vor-
tex dipole, calculated using (20) and the data tabulated in Table 1 of Pier-
rehumbert (Ref. 27).

puted and tabulated. Assuming that circulation and energy
are conserved in the formation process of the dipole, we use
(18) and (19) to obtain

L = 3 (20)

D E,
This ratio is plotted in Fig. 10 as a function of parameter
Ap/A; that parameterizes the dipole family.27 Here A is the
minimum distance of the boundary of the vortex patch from
the symmetry axis and A; is the maximum distance. The
ratio Ay/A; therefore defines how concentrated the vorticity
is in the dipole. The limiting cases are Aj/A;— 1 when the
dipole consists of almost point vortices and Ay/A;— 0 when
the vortices touch the symmetry axis. Since all of the dipoles
observed in our experiments belonged to a category with the
axis touching vorticity, it is reasonable to expect high values
of the stroke ratio, perhaps in the range between 15 and 32.
Given such high values of the stroke ratio, we must also take
into account that the actual time when the pinch-off is ob-
served can be significantly higher than the formation time
because it takes additional time for the dipole to absorb all of
the fluid from the trailing jet. Thus the experimental obser-
vation of the pinch-off seems to require a large size appara-
tus. Perhaps numerical simulations provide a better opportu-
nity here, especially because higher values of the Reynolds
number can be achieved and consequently vortex dipoles
with thinner cores can be produced for which the formation
number is significantly lower.
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