Field-driven self-assembly near and far from equilibrium

Anand Yethiraj
Associate Professor, Department of Physics & Physical Oceanography
Memorial University of Newfoundland
St. John’s, Canada
Visiting Professor, TIFR Hyderabad

ACS Colloids Symposium, 15 June 2015
Soft materials group at Memorial

- **Equilibrium:** diffusion in crowded multi-component macromolecular systems
- **Near equilibrium:** kinetics of crystal-crystal phase transitions
- **Far from equilibrium:** electrically driven hydrodynamic interactions in emulsions

Payam Bagheri (Memorial), Priti Mohanty (KIIT, India), Sofi Nöjd, P. Schurtenberger (Lund, Sweden)
Somayeh Khajehpour Tadavani (Memorial), Atul Varshney, Sheshagiri Rao, S. Ghosh, S. Bhattacharya (TIFR, India)
Soft materials group at Memorial

- **Equilibrium**: diffusion in crowded multi-component macromolecular systems
- **Near equilibrium**: kinetics of crystal-crystal phase transitions
- **Far from equilibrium**: electrically driven hydrodynamic interactions in emulsions

- **Phase transformation kinetics in colloids**: Payam Bagheri (Memorial), Priti Mohanty (KIIT, India), Sofi Nöjd, P. Schurtenberger (Lund, Sweden)
- **Electrohydrodynamics in emulsions**: Somayeh Khajehpour Tadavani (Memorial), Atul Varshney, Sheshagiri Rao, S. Ghosh, S. Bhattacharya (TIFR, India)
Phase transformations from solid to solid

- G. Olson & W. Owen, Martensite
- K. Otsuka & C. Wayman, Shape Memory Materials

Experimentally, we need a link between microstructural evolution and macroscopic phase transition kinetics.

www.lassp.cornell.edu/sethna/Tweed/What_Are_Martensites.html
Solid-solid transitions in colloids

 Melt crystallizes into a buckled single-layer triangular lattice, then a martensitic transition to a two-layer square lattice.
Solid-solid transitions in colloids

 Melt crystallizes into a buckled single-layer triangular lattice, then a martensitic transition to a two-layer square lattice.

 Crystallization in a colloidal sediment induced by electric field (perpendicular to gravity) happens layer by layer.

--

ayethiraj@mun.ca Anand Yethiraj

Soft Matter Lab
Solid-solid transitions in colloids

 Melt crystallizes into a buckled single-layer triangular lattice, then a martensitic transition to a two-layer square lattice.

 Crystallization in a colloidal sediment induced by electric field (perpendicular to gravity) happens layer by layer.

 The square-triangle transition has an intermediate melted state, with nucleation and growth. “Our findings suggest that an intermediate liquid should exist in the nucleation processes of solid - solid transitions of most metals and alloys”.
Solid-solid transitions in colloids

 Melt crystallizes into a buckled single-layer triangular lattice, then a martensitic transition to a two-layer square lattice.

 Crystallization in a colloidal sediment induced by electric field (perpendicular to gravity) happens layer by layer.

 The square-triangle transition has an intermediate melted state, with nucleation and growth. “Our findings suggest that an intermediate liquid should exist in the nucleation processes of solid-solid transitions of most metals and alloys”.

 The current work moves a step closer to 3D.
Phase transitions in hard-sphere colloids

Thermodynamics of monodisperse, hard spheres:

- An isotropic fluid at low densities. The particle excluded volume is much smaller than the total volume → lots of free volume.

Phase transitions in hard-sphere colloids

Thermodynamics of monodisperse, hard spheres:

- **An isotropic fluid at low densities.** The particle excluded volume is much smaller than the total volume \rightarrow lots of free volume.

- **At high packing, the crystal is entropically favoured over the fluid,** due to the limited free volume.

Phase transitions in hard-sphere colloids

Thermodynamics of monodisperse, hard spheres:

- **An isotropic fluid at low densities.** The particle excluded volume is much smaller than the total volume → lots of free volume.
- **At high packing, the crystal is entropically favoured over the fluid,** due to the limited free volume.
- **At high densities, a glassy state is seen,** for somewhat polydisperse hard spheres.

Colloids with electrostatic repulsions

- **Left:** $\phi = 0.002 \kappa^{-1} \sim 10 \mu m$. A. Yethiraj & A. van Blaaderen, *Nature*, 2003
- **Middle:** $\phi = 0.02$, **face-centred cubic (FCC)**, no salt (large κ^{-1}).
- **Right:** $\phi = 0.02$, **fluid phase**, salt added
Colloids with electrostatic repulsions

- **Left:** $\phi = 0.002 \kappa^{-1} \sim 10 \mu m$. A. Yethiraj & A. van Blaaderen, *Nature*, 2003
- **Middle:** $\phi = 0.02$, **face-centred cubic (FCC)**, no salt (large κ^{-1}).
- **Right:** $\phi = 0.02$, **fluid phase**, salt added

An intervening body-centred cubic (BCC) phase emerges at $\kappa R \sim 2$

(see earlier in reciprocal space: Y. Monovoukas & A. Gast, *JCIS*, 1989)
Colloids with electrostatic repulsions

- **Left:** $\phi = 0.002 \kappa^{-1} \sim 10\mu m$. A. Yethiraj & A. van Blaaderen, *Nature*, 2003
- **Middle:** $\phi = 0.02$, face-centred cubic (FCC), no salt (large κ^{-1}).
- **Right:** $\phi = 0.02$, fluid phase, salt added

An intervening body-centred cubic (BCC) phase emerges at $\kappa R \sim 2$

(seen earlier in reciprocal space: Y. Monovoukas & A. Gast, *JCIS*, 1989)

- **More complexity with both electrostatic repulsions and attractions**

Colloids with electrostatic repulsions

- **Left:** $\phi = 0.002 \kappa^{-1} \sim 10 \mu m$. A. Yethiraj & A. van Blaaderen, *Nature*, 2003
- **Middle:** $\phi = 0.02$, face-centred cubic (FCC), no salt (large κ^{-1}).
- **Right:** $\phi = 0.02$, fluid phase, salt added

An intervening body-centred cubic (BCC) phase emerges at $\kappa R \sim 2$

(seen earlier in reciprocal space: Y. Monovoukas & A. Gast, *JCIS*, 1989)

- **More complexity with both electrostatic repulsions and attractions**

But to have a knob to control kinetics \rightarrow tunable interactions

AY, Soft Matter review (2007)
Colloids with electric dipolar interactions

Spheres form chains:

The external electric field \vec{E}_{ext} induces dipoles in each microsphere.

The dipolar interaction energy is

$$U_{\text{dipolar}}(d)/k_B T = -\frac{\Lambda}{(d/\sigma)^3} \left(\frac{3 \cos^2 \theta - 1}{2} \right)$$

where

$$\Lambda = \frac{\pi \epsilon_0 \epsilon_f \beta^2}{16k_B T} \sigma^3 E_{\text{ext}}^2$$

and

$$\beta = \frac{\epsilon_p - \epsilon_f}{\epsilon_p + 2\epsilon_f}.$$
Colloids with electric dipolar interactions

Spheres form chains:

The dipolar interaction energy is

\[
U_{\text{dipolar}}(d)/k_BT = -\frac{\Lambda}{(d/\sigma)^3} \left(\frac{3\cos^2 \theta - 1}{2} \right)
\]

where \(\Lambda = \frac{\pi \varepsilon_0 \varepsilon_f \beta^2}{16k_B T} \frac{1}{\sigma^3} \) and \(\beta = \frac{\varepsilon_p - \varepsilon_f}{\varepsilon_p + 2\varepsilon_f} \).

The external electric field \(\vec{E}_{\text{ext}} \) induces dipoles in each microsphere.

Spheres interact via dipole-dipole interactions to form chains.

Structures are 3D, but can be tracked in quasi-2D.

ayethiraj@mun.ca Anand Yethiraj Memorial University of Newfoundland Soft Matter Lab
Colloids with electric dipolar interactions

Spheres form chains:

![Diagram showing spheres forming chains](image)

The dipolar interaction energy is

\[U_{\text{dipolar}}(d)/k_B T = -\frac{\Lambda}{(d/\sigma)^3} \frac{3 \cos^2 \theta - 1}{2} \]

where

\[\Lambda = \frac{\pi \epsilon_0 \epsilon_f \beta^2}{16 k_B T} \sigma^3 E_{\text{ext}}^2 \]

and \(\beta = \frac{\epsilon_p - \epsilon_f}{\epsilon_p + 2 \epsilon_f} \).

- The external electric field \(\vec{E}_{\text{ext}} \) induces dipoles in each microsphere.
- Spheres interact via dipole-dipole interactions to form chains.
- Chains **stack** or chains **stagger**:

![Graphs showing energy vs. distance for different chain configurations](image)

Colloids with electric dipolar interactions

Spheres form chains:

The dipolar interaction energy is

\[U_{dipolar}(d)/k_B T = -\frac{\Lambda}{(d/\sigma)^3} \frac{3 \cos^2 \theta - 1}{2} \]

where

\[\Lambda = \frac{\pi \epsilon_0 \epsilon_f \beta^2}{16 k_B T} \sigma^3 E_{ext}^2 \]

and

\[\beta = \frac{\epsilon_p - \epsilon_f}{\epsilon_p + 2 \epsilon_f} . \]

The external electric field \(\vec{E}_{ext} \) induces dipoles in each microsphere.

Spheres interact via dipole-dipole interactions to form chains.

Chains **stack** or chains **stagger**:

Structures are 3D, but can be tracked in quasi-2D

Interactions plus tunable dipolar interactions

- **Attraction-dominated:** BCT-string fluid coexistence (Tao & Sun, *PRL*, 1991) and a low-density cluster phase (A. Agarwal & AY, *PRL*, 2009).

- **Short-range attractions + dipolar:** more compact complex tubular structures (Yan et al., *Nature*, 491, 578 (2012)).
Interactions plus tunable dipolar interactions

- **Attraction-dominated**: BCT-string fluid coexistence \((Tao \& Sun, \textit{PRL}, 1991) \) and a low-density cluster phase \((A. \text{Agarwal} \& AY, \textit{PRL}, 2009) \).

- **Repulsion-dominated**: more open space-filling body-centred tetragonal (BCT) and body-centred orthorhombic (BCO) phases \((AY, \textit{Soft Matter} 3, 1099 (2007); AY \& A. van Blaaderen, \textit{Nature} 421, 513 (2003)) \).
Interactions plus tunable dipolar interactions

- **Short-range attractions + dipolar**: *more compact* complex tubular structures (Yan et al., *Nature*, 491, 578 (2012))
“Ultra-soft” microgel colloids

What about short-ranged repulsions and longer ranged dipolar forces?

- What happens when soft steric repulsions compete with dipolar forces?
“Ultra-soft” microgel colloids

What about short-ranged repulsions and longer ranged dipolar forces?

- What happens when soft steric repulsions compete with dipolar forces?

A strong field effect!

- Low ϕ_{eff}: strings - BCT
“Ultra-soft” microgel colloids

What about short-ranged repulsions and longer ranged dipolar forces?

- What happens when soft steric repulsions compete with dipolar forces?

![Diagram showing phase transformations under different electric fields](image)

A strong field effect!

- Low ϕ_{eff}: strings - BCT
- Intermediate: FCC - BCT
“Ultra-soft” microgel colloids

What about short-ranged repulsions and longer ranged dipolar forces?

- What happens when soft steric repulsions compete with dipolar forces?

A strong field effect!

- **Low** ϕ_{eff}: strings - BCT
- **Intermediate**: FCC - BCT
- **High**: glassy - arrested phase separated state
Phase Transition kinetics: FCC - BCT
Field on: FCC to BCT ($\phi_{\text{eff}} = 1.36$)

$E = 0$

FCC

$E = 0.11$

BCT
Field on: FCC to BCT ($\phi_{\text{eff}} = 1.36$)

- Melting near grain boundaries precedes crystal formation.

ayethiraj@mun.ca Anand Yethiraj

Soft Matter Lab
Field on: FCC to BCT ($\phi_{\text{eff}} = 1.36$)

- Melting near grain boundaries precedes crystal formation.
Field on: FCC to BCT ($\phi_{\text{eff}} = 1.36$)

- Melting near grain boundaries precedes crystal formation.
- **Quantify:** bond order parameters (ψ_6 and ψ_4) and population fractions f_6 and f_4.
Melting near grain boundaries precedes crystal formation.

Quantify: bond order parameters (ψ_6 and ψ_4) and population fractions f_6 and f_4.

Avrami form: $f_4 \sim 1 - \exp(-Kt^\alpha)$, with $\alpha = 4.0$. $V \sim N_g \times V_g$
Field off: BCT to ??

- BCT to body-centred orthorhombic (BCO), the action ~ 50 s.
Field off: BCT to ??

- BCT to body-centred orthorhombic (BCO), the action ~ 50 s.
- The reverse transition is collective ("martensitic").
Order parameters start to change everywhere close to $t = 50s$.

- **High ϕ_{eff}:** final state is not the (FCC) field-off state.
- **Lower ϕ_{eff}:** final state is the (fluid) field-off state.
Field off: BCT to BCO

Forcing into Avrami form: \(f_4 \sim 1 - \exp(-Kt^\alpha) \) yields \(\alpha = 8.5 \): not classical nucleation and growth.
Field off: BCO to FCC

- The BCO state is long-lived, but anneals back to FCC at higher temperatures.
Kinetics of a solid-solid transition

- The ionic microgel colloidal system is a great model system to gain microscopic insights into 3-dimensional solid-solid phase transformations. *Phys. Rev. X* 5, 011030 (2015)
Kinetics of a solid-solid transition

- The ionic microgel colloidal system is a great model system to gain microscopic insights into 3-dimensional solid-solid phase transformations. *Phys. Rev. X* 5, 011030 (2015)

- The forward FCC to BCT transition is polymorphic and **diffusive**, similar to phase transformations in metals and ceramics
Introduction

Phase transformation kinetics in colloids

Electrohydrodynamics in emulsions

Conclusions

Kinetics of a solid-solid transition

The ionic microgel colloidal system is a great model system to gain microscopic insights into 3-dimensional solid-solid phase transformations. *Phys. Rev. X* 5, 011030 (2015)

The forward FCC to BCT transition is polymorphic and diffusive, similar to phase transformations in metals and ceramics.

The reverse transition - the BCT to BCO structural sequence - is diffusionless and martensitic, and occurs through cooperative rearrangements.
Kinetics of a solid-solid transition

In both the 2D study (Peng et al) and our electric-field studies in the forward direction, there is an external field that picks out the orientation of the c axis in addition to simply driving the transition.
Kinetics of a solid-solid transition

- In both the 2D study (Peng et al) and our electric-field studies in the forward direction, there is an external field that picks out the orientation of the c axis in addition to simply driving the transition.

- Therefore, the new crystal structure cannot pick out the most favourable face to show to the old crystal, and melting occurs as an intermediate → this is not generically true.
Kinetics of a solid-solid transition

- In both the 2D study (Peng et al) and our electric-field studies in the forward direction, there is an external field that picks out the orientation of the c axis in addition to simply driving the transition.

- *Therefore, the new crystal structure cannot pick out the most favourable face to show to the old crystal, and melting occurs as an intermediate → this is not generically true.*

- On the other hand, *the reverse (martensitic) transition* into a metastable crystalline intermediate is likely to exist “in solid-solid transitions of most metals and alloys”
Unanswered questions

- What governs the 50 s waiting time in the martensitic transition?
 - Waiting time could be related to finding the collective “golf hole”, i.e. finding the right collective deformation that gets you into the new state in a large landscape.
 - Waiting times should be a function of quench depth.
Unanswered questions

- What governs the 50 s waiting time in the martensitic transition?
 - Waiting time could be related to finding the collective “golf hole”, i.e. finding the right collective deformation that gets you into the new state in a large landscape.
 - Waiting times should be a function of quench depth.

- the metastable-BCO to BCT transformation is reversible!, so we can carry out the BCO to BCT transition as a function of quench depth

- bond order parameters are convenient, but there are other suggestions, e.g. measuring non-affineness of deformations (S. Sengupta, TIFR-Hyderabad)
Can we tune hydrodynamics?
Can we tune hydrodynamics?

- Nucleation of large-scale *coherent* crystalline structures...

Can we tune hydrodynamics?

- Nucleation of large-scale *coherent* crystalline structures...

- Large-scale *incoherent* structures such as clouds involve both electrostatics and hydrodynamics.
 - E. Bodenschatz et al., *Can we understand clouds without turbulence*? Science 327, 970 (2010).
Can we tune hydrodynamics?

- Nucleation of large-scale *coherent* crystalline structures...

- Large-scale *incoherent* structures such as clouds involve both electrostatics and hydrodynamics.
 - E. Bodenschatz et al., *Can we understand clouds without turbulence?* Science 327, 970 (2010).

Hydrodynamics is important, but hard to include.
Electric stresses on a liquid drop

Dielectric liquid drop in a dielectric liquid medium

- Dipolar forces \rightarrow normal stresses \rightarrow prolate deformations.
- Electrohydrodynamic forces \rightarrow tangential stresses \rightarrow oblate deformations.

Silicone oil drop in castor oil. $E = 10$ kV/mm, pointing along y.

5 kHz

70 Hz
Electric stresses on a liquid drop

Dielectric liquid drop in a dielectric liquid medium

- Dipolar forces \rightarrow normal stresses \rightarrow prolate deformations.
- Electrohydrodynamic forces \rightarrow tangential stresses \rightarrow oblate deformations.

Silicone oil drop in castor oil. $E = 10 \text{ kV/mm}$, pointing along y.

Droplet shape prolate or oblate depending on electrical properties of the two fluids, which is frequency-tunable.
Electric stresses on a liquid drop

Electrohydrodynamics forces for a single drop in a leaky dielectric medium have been well-studied

Electric stresses on a liquid drop

- Electrohydrodynamics forces for a single drop in a leaky dielectric medium have been well-studied

Our challenge now is to study the collective, many-particle behaviours.
Above 70 Hz, drops adopt a steady-state shape, balancing dipolar forces and electrohydrodynamic (EHD) flows.

- High-frequency, dipolar forces \rightarrow prolate
- Low-frequency, EHD forces \rightarrow oblate

\[\tau_c = \epsilon_m \epsilon_0 / \sigma_m \sim 0.01 \text{s} \]

\[f_c^{\text{expt}} = 100 \text{Hz} \sim 1 / \tau_c \]

\[0.7 < f / f_c^{\text{expt}} < 50 \]

Silicone oil drop in castor oil. AC field along y. 5 kHz

ayethiraj@mun.ca Anand Yethiraj

Soft Matter Lab
Frequency-tunable hydrodynamics

Below 70 Hz, drops exhibit time-dependent deformations due to electrohydrodynamic (EHD) flows.

\[\frac{f}{f_{c}^{\text{expt}}} < 0.7 \]

\[E = 3V/\mu m, \frac{f}{f_{c}} = 0.035 \]
Onset of collective motions

- $f = 3 \text{ Hz}, 2 \text{ Hz}, 1 \text{ Hz}$.
- $f / f_c^{\text{expt}} < 0.03$

A critical size above which drop is unstable to break up.
Chaotic flows in DC fields

- $f / f_c^{\text{expt}} \rightarrow 0$
- Onset of convective flows
- Apparently turbulent behaviours

Forcing is DC, but a 1 to 3 Hz oscillation emerges: its like Rayleigh-Bènard convection.
Chaotic flows in DC fields

\[E = 6\text{V/\mu m, DC} \]
Chaotic flows in DC fields

$E = 6V/\mu m$, DC

$E = 10.7V/\mu m$, DC
Measurement modalities

Optical microscopy and PIV

Rheometry

Cantilever sensing
Temporal power spectra

Low frequencies: $a -1.4$ power law, reminiscent of Rayleigh-Bénard turbulence.

1 Hz

0.00 s

ayethiraj@mun.ca Anand Yethiraj

Memorial University of Newfoundland

Soft Matter Lab
Temporal power spectra

Low frequencies: a -1.4 power law, reminiscent of Rayleigh-Bénard turbulence.
Spatiotemporal power spectrum

also a -1.4 power law!
Summary

Electrohydrodynamics

- a model system for tunable hydrodynamics
- rich, dynamical phase diagram in field frequency and amplitude
- turbulence at low Re
Summary

Electrohydrodynamics
- a model system for tunable hydrodynamics
- rich, dynamical phase diagram in field frequency and amplitude
- turbulence at low Re

Phase transformation kinetics
- a model system for controlling field quenches
- two-parameter space: temperature and electric field.
Looking beyond near-equilibrium self-assemblies, new coherent structures emerge far from equilibrium.

Frequency quench from 3 to 8 Hz
Void phase: is hydrodynamics important?

Void size scales with sample thickness and chain length.