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Abstract

Laser scanning confocal microscopy was used to image a thin sediment of Brownian

colloidal spheres in 3 dimensions as a function of time. Using IDL image processing

techniques we were able to calculate the equation of state for this system as well

as the diffusive properties as a function of height in the sediment all from particle

positions in 3 dimensions and time. It was shown that there is deviation from the

Carnahan-Starling equation of state for the thin sediment, disagreeing with reults

found in bulk experiments. A study of the diffusion as a function of height shows

different trends for lateral and vertical diffusion in the different phase regions of the

sample, which solidify the result that the deviation from hard-spheres is real.
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Chapter 1

Introduction

1.1 What is a Colloid?

The term colloid was first coined by Thomas Graham in 1861, the term coming from

the Greek word for glue. While studying osmosis, Graham observed that particles in

an aqueous solution would not pass through a membrane. He found that the particles

had a low diffusion and estimated that the particles be at least 1nm in size. However,

he also observed that the particles did not fully sediment, and established an upper

limit on the size to be 1µm [1]. The modern definition of a colloid is such that all

the particles interaction energies such as gravitational and electrostatic. are the same

order of magnitude as kBT , where kB is the Boltzmann constant and T is the absolute

temperature [2]

However colloidal science can be traced back even further. It was in 1845 that

Francesco Selmi gave the first recorded description of a colloidal system. By defining
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common properties he assigned these clear or slightly turbid “pseudosolutions” (as

he called them) of silver chloride, sulfur, and Prussian blue in water in the same class

as alumina and starch. Other notable early work in colloids was done by Michael

Faraday in the 1850s on irreversible coagulated gold solutions. Some of his prepared

examples are still on display in the British Museum in London. Then by Albert

Einstein when developing the relationship between Brownian motion and diffusion in

1905. Work was also done by Jean Baptiste Perrin who used Einsteins findings to

determine a definite value of Avogadro’s number in 1909 [1].

Even though they might have not been of scientific interests, colloids have been

used by man since the earliest civilizations. Paintings in caves made by early man,

and the scrolls written by the ancient Egyptians, were all developed using colloidal

materials [1].

1.2 Motivation for Study

The simplest example of a system of particles is an ideal gas, non-interacting point

particles which has the equation of state of PV = NkBT . One of the next simplest

systems to look at is a system of hard-spheres, particles with a finite radius and a

step-function infinite potential at their surface. The equation of state for hard-spheres

is a relation between the osmotic pressure Π, and the volume fraction φ, and the is

well described by the Carnahan-Starling relation:

Π(φ) = nkBT
1 + φ + φ2 − φ3

(1 − φ)3
. (1.1)
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Colloidal suspensions consisting of monodisperse spheres in a solvent with a short

Debye-Hükel screening length (discussed more in Section 3.1) exhibit hard-sphere-

like phase behavior. It has been shown that colloidal systems agree considerably well

with the Carnahan-Starling relation [3, 4]. This is a very important discovery. Such

colloidal systems can thus be used as a way to learn more about atomic and molecular

phase transformation phenomena. Colloids when packed densely enough form random

hexagonal close packed (rhcp), or face centered cubic (fcc). The phase behavior and

the ordered structures formed can be altered by changing solvent properties or through

the use of external fields. Colloids are large enough so that we can study these effects

using conventional microscopy, i.e. studying their structure in real space and following

their dynamics in real time. This is impossible to do in actual atomic or molecular

phase transformations. Because of their proximity to hard-spheres, colloids allow us

a deeper understanding of these phenomena on a single-particle level.

The diffusion coefficient of a Brownian sphere (radius a) in a solvent (viscosity η)

is given by the Stokes-Einstein relation,

D◦ =
kBT

6πηa
, (1.2)

in dilute regions [5]. However, in low concentration and near a rigid boundary, it

has been shown that colloidal particles show deviation from dynamical hard-sphere

behavior. [6, 7]

For a sediment of hard-spheres it is expected show a crystal like layering at the

bottom wall due to a entropic volume exclusion effect, and an fluid phase on the

tail. These are the only two phases of hard-spheres as the fluid phase in this case

is not distinguishable from a liquid or a gas. In recent work done by Mr. Ning

3



Li, he observed that the plot of volume fraction (φ) as a function of height (z) of

an equilibrated sedimented colloidal suspension, hence forth sedimentation profile,

Figure 1.1: Sedimentation profile of silica spheres from [8].

did not match hard-sphere behavior [8]. The sedimentation profile in Figure 1.1

exhibits significant differences from the equation of state of hard-spheres. In this new

Sedimentation Profile, the volume fraction does not reach a value corresponding to

crystallization of particles (φ ≥ 0.49). Also there is a distinct “plateau” region in the

middle of the sample where the volume fraction remains constant, appearing to be in

a liquid-like state. Considering these drastic differences in the equation of state, as

well as the differences of the dynamics near a rigid wall as shown by Carbajal-Tinoco

et al [6] and Faucheux et al [7], this makes this system an interesting one to investigate

the static behavior as well as the dynamics as a function of height.
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Chapter 2

Background and Theory

2.1 Laser Scanning Confocal Microscopy

Laser scanning confocal microscopy (henceforth LSCM) uses two distinct methods in

order to ensure high image quality; pinhole apertures at the light source and detector,

and point by point imaging. This imaging technique shows significant benefits over

conventional bright field optical microscopy because of its ability to exclude areas

above or below the focal plane from being imaged. As well when one also uses laser

light along with fluorescent samples we only image the regions of the sample which

we wish to study, which we label with a fluorescent dye.

First we will discuss confocal microscopy on its own, as even without the aid of

using fluorescence it has great advantages over bright field microscopy. The way a

confocal microscope is constructed it has several key components thats we will discuss

and, which can be seen in Figure 2.1; a light source, a detector, a pinhole at the light
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source as well as the detector, a beam splitter, and an objective lens which is used to

focus the light source on the sample and the image on the detector. The pinhole at

Figure 2.1: A simple diagram of how a confocal microscope illuminates and images a
sample.

the light source allows for point by point imaging because the light passes through

the beam splitter and through the objective lens (shown in Figure 2.1 which focuses

the light to a diffraction limited spot in the plane of focus. This is in comparison

to bright field microscopy which illuminates the entire region of interest as well as

the areas above and below it. Illumination of a diffraction limited spot reduces the

effect of emission or refraction of light from areas other than the focal plane which

contribute to out-of-focus blur. By scanning an area in the focal plane we can get
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a two 2-dimensional image and if we scan the area as a function of time we can

get an image stack, like a movie. The light travels back along the same path to

the beam splitter (Figure 2.1 where it is now reflected toward the detector where

the second pinhole ensures that any light coming from the sample that is not in the

focal plane is rejected. For example the two light paths (dashed lines) in Figure 2.1

which emanate from planes above and below the plane of focus. These rays are out

of focus at the detector pinhole, and their coupling efficiency to the detector is very

poor. Because of its greatly increased resolution in the z-direction (height) of the

sample we can also take non-invasive 3-dimensional images of objects by adjusting

the position of the objective lens. This alone is one of the main advantages in confocal

microscopy where we can get a 3-dimensional profiles of surfaces and thick objects by

a non-contacting and non-destructive method.

To further increase the quality of imaging one uses LSCM which substitutes a laser

for the light source and detectors with narrower allowable wavelengths. This setup is

then used on samples of interest that are labeled with a fluorescent dye. These dyes

are excited by laser light in a narrow region and then emit some of the absorbed energy

at a different longer wavelength. So for example in the systems we will be discussing

in Chapter 3 we have “core-shell” silica spheres where the cores have been labeled

with a fluorescent dye. When imaged using the LSCM these spheres appear as white

spheres on a black background because of filters that exclude the wavelength of the

laser and allow a narrow band of wavelengths above the source’s into the detector [9].

The confocal microscope radically changed many different scientific fields such
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as cell and developmental biology, physiology, cytogenics, diagnostic pathology, and

materials science. The ability to not only scan an object in 3-dimensions, but to

take time series in 2D as well as 3D to get real space dynamics in time of everything

from a living cell to a particle diffusing in a fluid, was revolutionary for the field of

microscopy [9].

2.2 Structure and Equations of State

In a colloidal suspension the particles do not all sediment to the bottom due to gravity.

After the system has reached an equilibrium state the bottom of the sample has the

highest concentration but a gradient of concentration from top to bottom occurs due

to an osmotic pressure differential. Osmosis occurs in the sample due to difference in

concentration as the particles sediment. A higher concentration at the bottom than

at the top causes an osmotic pressure to arise due to the chemical potential difference

between particle-rich and particle-poor regions. This osmotic pressure acts upwards,

and counter-acts gravity and extends the sediment. Another way of thinking about

this is that particles increase their gravitational energy by moving up (unfavorable)

but also increase their entropy (favorable). This sedimentation profile allows us to

observe colloidal systems as a function of the volume fraction φ. We will show, later

in this section, that it is possible to directly measure the osmotic pressure in a given

plane of the colloidal sediment by counting the particles above that plane. From a

single profile we can obtain the osmotic pressure Π as a function of volume fraction

φ in the system giving the equation of state for the system.
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For us to understand phase transitions and equations of state we will look at

the simplest realistic system, one of hard-spheres. When we say “hard-sphere” we

only mean a system of spherical particles that interact with only impulsive forces

on contact, known as the hard-sphere potential. This is also the simplest system in

which a solid-fluid transition takes place. The crystallization of hard-spheres occurs

due to an entropic effect known as the excluded volume property. This states that

given a system of hard-spheres with diameter σ there is an upper limit of N particles

that can be contained in a volume V . When the particles have filled the volume to

the maximum capacity (N particles) the only way for them to arrange them selves in

in a face centered cubic or random hexagonal close packed structure, thus essentially

crystallizing. Well before they reach this maximum packing, there is a phase transition

driven by an interesting entropic mechanism. At low packing the entropy of the fluid

phase greatly exceeds the entropy of the crystal phase. This was shown using early

computer simulations that hard-spheres demonstrated a first order freezing transition

purely due to increasing density, and because the only source for internal energy for

the system is kinetic, the transition occurs purely from entropic effects [10].

Theoretically for any crystal the maximum packing fraction that can be obtained

is φ = 0.7405, however in practice hard-spheres never reach a packing fraction above

φ = 0.64. To understand this we divide out fluid into N cells, for which every particle

is contained in a cell. The cell is constructed by connecting the particles by lines

and then drawing the perpendicular bisectors of these lines, and the area enclosed

within these bisectors is our cell, which is known as a Voronoi polyhedron as seen in
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Figure 2.2. The particle then has a free volume in which it can move around in this

Figure 2.2: A basic lattice with lines drawn to nearest neighbors with perpendicular
bisectors. The volume enclosed by the bisectors is the Voronoi polyhedron.

cell without causing other particle surrounding it to move. In a system of a fluid

of hard-spheres at φ = 0.64 the spheres are totally constrained by their neighbor

particles, however in a crystal at φ = 0.64 packing fraction there is considerable free

volume and the molecules are able to be fully compressed φ = 0.7405. This led

to the thought that the freezing transition of hard-spheres may then occur at lower

packing fractions φ = 0.64 and this was verified by computer simulations [10]. It

was shown that a system of hard-spheres can show a freezing transition as low as

φ = 0.494 while increasing φ, or show a melting transition as high as φ = 0.545 while

decreasing φ. Hard-spheres exhibit a fluid-solid transition. The fluid phase itself is a

single phase indistinguishable from a liquid or a gas. The reason for this is that the

system of hard-spheres lacks the attractive force necessary to induce a liquid state, the

crystalline state requires a constant pressure to keep the spheres condensed. There is
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no transition from a low-density fluid (gas) to a high-density fluid (liquid). Therefore

in hard-sphere system we have a crystalline and a fluid state in which we can observe

melting and freezing phase transitions [10].

We now look back to the sedimented system of colloids. It was shown Rutgers

et al [3] and Piazza et al [4] that the experimental sedimentation profiles are in

excellent agreement with the hard-sphere equation of state for both the crystalline

and disordered states. The hard-sphere equation of state has a relation put forth

by Carnahan and Starling which is a simple relation of osmotic pressure and volume

fraction, much like the ideal gas law, P = NkBT
V

, and is given by

Π(φ) =
NkBT

V

(1 + φ + φ2 − φ3)

(1 − φ)3
(2.1)

where Π is the osmotic pressure, N is particle number, T is absolute temperature, V

is the volume, and φ is the packing fraction [11], or volume fraction given by

φ =
πNσ3

6V
(2.2)

where σ is particle diameter. The Carnahan-Starling relation has shown agreement

with computer simulations for hard-spheres. The osmotic pressure Π is related to the

concentration of particles by

Π

kBT
= l−1

g

∫ h

z
n(z)dz (2.3)

where n(z) is the particle number density, N number of particles in V volume, as a

function of height, and lg is the gravitational length, a constant expressing the relative

importance of the gravitational interaction. Gravitational length is described by the
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relation

lg =
kBT

4
3
πa3∆ρg

(2.4)

where a is the particles radius, ∆ρ is the density mismatch between particle and

solvent, and g is the acceleration due to gravity [2, 4]. The integration gives the

osmotic pressure at height z in the sample by integrating the number density from

the position z to some height h were there are no particles. Another useful property

that we could look at is the isothermal compressibility, χT , given by

χT =
kBT

∂Π/∂n
. (2.5)

For an incompressible fluid we expect χT = 0, and for an ideal gas (with no interpar-

ticle interactions) we expect χT = 1 [4]. If one samples a large enough cross-sectional

area one can test the equation of state in one sample. The particle density varies

from the very dense crystalline region at the bottom of the sediment, to the infinitely

dilute fluid region near the top. The osmotic pressure may be plotted as a function

of volume fraction as calculated experimentally using Equation 2.3 and see that it

indeed matches the Carnahan-Starling relation as stated in Equation 2.1. As we shall

see the reason for this project is because in our dilute sample close to a rigid boundary

we notice significant deviation.

2.3 Dynamics

When particles in the colloidal range are suspended in a liquid they behave quite

erratically, moving in completely random directions. They move perpetually seem-

ingly violating the second law of thermodynamics. Although this had been observed
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it had not been investigated. In 1827 a botanist named Robert Brown began looking

closer at this motion, for which the physical phenomena got its name of Brownian

motion. Although Robert Brown studied this phenomenon he was unable to deter-

mine its origin. It was not until work done in 1905 by Albert Einstein and in 1906

by Marian Smoluchowski that it was realized that this random motion was due to

the thermal collisions of the solvent molecules with the particles, which even occurs

in thermal equilibrium [5, 12]. Thus it is shown that a particle in a liquid is subject

to a fluctuating net force, causing the particle to undergo this random motion. In

experiments, we cannot observe the entire path of the particle but only observe its

position at set time intervals. We can connect the positions successively by straight

lines to get approximate trajectories for the particle. The smaller the time interval,

the closer we approximate the particles true motion.

We now consider a system of non-interacting particles where we are able to obtain

particles positions at time intervals of τ . In the time τ the particle is said to travel a

distance l. In addition for now we consider only one dimensional motion for simplicity.

Because of the stochastic nature of the particles positions we use averages to get

information from the positions. The mean value for the displacement,

〈x〉 = 0 (2.6)

because the distribution of particle displacements is Gaussian and peaked around zero.

We therefore look at the mean squared displacement, or MSD, given by 〈(xt − x◦)
2〉,

or simply 〈x2〉. During a time t the particle makes N random steps to the left or

right. We denote XN
m , the displacement x after N steps of the particle in the m-th

13



choice of the random order. Since the total number of different choices is 2N the MSD

is then given by

〈x2〉t=Nτ =
1

2N

2N∑
m=1

(XN
m )2 (2.7)

when we then add another step so that t = (N + 1)τ , we get by induction [5]

〈x2〉t=(N+1)τ =
1

2N+1

∑
s=±

2N∑
m=1

(XN
m + s · l)2 = l2(N + 1) (2.8)

where s is simply the choice for the direction of the next step, in this one dimensional

case left or right, or +1 or −1. This is because upon expanding the square the sl ·XN
m

term vanishes due to Equation 2.6. The expression is then simply the sum of the

squared displacements (XN
m )2 and then adding the extra step ±l for a total of N + 1

steps. Defining a variable D = l2/2τ , we can write in general that

〈x2〉 = 〈(xt − x◦)
2〉 = 2Dt (2.9)

and we see that the MSD is linear with respect to time, and we now have this pro-

portionality constant D which we will recognize later to be known as the diffusion

coefficient. Because of the fact that the fluid (solvent) molecules have an extremely

short relaxation time (∼ 10−14s) we can treat the Brownian particles macroscopi-

cally by using a stochastic differential equation, similar to that of a simple harmonic

oscillator, known as the Langevin equation,

m
dv

dt
+ γv = f(t) (2.10)

here m is the particles mass, and f(t) is the macroscopic version of the random force

acting on the particles at time t, and γ is the drag or friction coefficient given in this

case by Stokes’ friction coefficient for spheres in a continuous viscous fluid,

γ = 6πηa
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where η is the dynamic viscosity of the fluid and a is the particle radius. We assume

then from our earlier statement of the mean position being zero that our average force

is also zero (〈f(t)〉 = 0) and has the relation

〈f(t1)f(t2)〉 = Cδ(t2 − t1). (2.11)

Here δ is the Dirac delta function, and C is a constant. Integrating Equation 2.10 one

can obtain an integral expression for v(t). On squaring an averaging the integral is

then an expression for 〈v(t)2〉. Then using 1
2
m〈v(t)2〉 = 1

2
kBT (equipartition theorem

for 1-dimensional diffusion) on gets (see Reference [5], Chapter 4)

C = 2γkBT

with already named constants. Solving the Langevin equation we obtain an expression

for the MSD

〈(xt − x◦)
2〉 = 2

kBT

γ
t (2.12)

or in the general case

〈(rt − r◦)
2〉 = 2k

kBT

γ
t (2.13)

where k is the number of dimensions. This is linear in time as in agreement with

Equation 2.9 and we now have a value for our proportionality constant, and it is one

that we recognize.

D◦ =
kBT

6πηa
(2.14)

This is known as the Stokes-Einstein relation. If we know the values of the viscosity

of the liquid, η, and particle radius, a, we can calculate the diffusion coefficient,

D◦, for non-interaction hard-spheres in a continuous viscous fluid [5]. The diffusion

coefficient is a value that can lend insight into the state that a system of colloidal
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particles are in. In the infinitely dilute region of a suspension the dynamics of colloids

are in agreement with hard-spheres and should have a diffusion coefficient, D, that

agrees within error to D◦, however in more concentrated regions the value should

theoretically decrease and in a perfect crystal, where the particles vibrate around

their mean position, the MSD would increase initially but saturate and stay constant

in time.

Although the derivation is a little dense it leaves us with a very simple yet ex-

tremely useful result. Beginning with something as simple as the position of particles

as a function of time as they exhibit their Brownian motion, we are able to extract a

characteristic constant of the system which helps us determine the state of the sys-

tem. For a low-density fluid (gas) the diffusion coefficient should be approximately

equal to the Stokes-Einstein value. In a high-density fluid (liquid) the particles are no

longer non-interacting. For interacting particles calculating the diffusion coefficient

gets a little more complicated. At short times their motion is still not affected by

other spheres and can be described by the self diffusion coefficient, Ds, which is close

to D◦. When the particles begin colliding with each other, at times greater than the

Brownian time, their motions begin to slow down resulting in the long time diffu-

sion coefficient, Dl. The long time diffusion coefficient is a function of the particle

concentration. The overall diffusion coefficient will be lower because of this and con-

stant throughout the entire constant density range. In a solid the diffusion coefficient

will be very small but non-zero due to the simple vibrations of the particle around

its mean. Because of the discrepancy of our sedimentation profile from hard-sphere

16



behavior we will use particle tracking techniques described in Section 3.3 to find our

particle locations and calculate the diffusion coefficients at different heights in the

sample using Equation 2.13.
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Chapter 3

Experimental Procedure

3.1 Sample Preparation

The particles we are using are fluorescent labeled core-shell silica spheres which were

fabricated by Mr. Ning Li [8]. The inner core of the particle (∼0.47µm) was cre-

ated first and labeled with fluorescein isothiocyanate dye (FITC). FITC’s excitation

wavelength peak is 490nm and its emission peak is 525nm with an average band-

width of 50-100nm. A shell of non-fluorescent silica is then grown around the core

to the diameter of 0.77m. After the synthesis is complete the particles are the stored

in ethanol. [8] This synthesis followed Stöber’s method [13] and Giessch conditions

[14, 15], as well as work in ’t Hart’s M.Sc thesis [16] and work by van Blaaderen et

al. [17]

To optimize for microscopy it is best to have a system that has the index of

refraction of the solution that is the same as the index of refraction of the particle.
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A mismatch in refractive index causes multiple scattering of light in the sample and

can degrade the quality of the image. The refractive index of our silica particles

is not known exactly but is estimated at np ≈ 1.46 and to get a refractive index

of solution nf to match this we used a mixture of dimethyl sulfoxide (DMSO) and

distilled water (indexes of 1.479 and 1.333 at 20◦C respectively). The ratio of 85:15

for our DMSO:water solution was the best match visually which corresponds to an

nf ≈ 1.46 as we had thought. In order to correctly match the refractive index one

can heat or cool (raise or lower nf ) the sample to see if the transparency gets better

or worse. This in turn indicates if our index is to high or low at room temperature,

and we can add DMSO or water to compensate.

Once the particles are suspended in their new solution another issue arises. Due to

the dissociation of some of the surface chemical groups on the silica spheres, positive

ions are dispersed throughout the solution leaving the surfaces of the particles slightly

negatively charged and thus electrostatically repulsive to each other. This is not an

effect we wish to see as it is not conducive to hard-sphere behavior. To compensate

for this we can alter the effective range of the particles, known as the Debye screening

length, by changing the ionic strength of the solution. The relation of the two is given

by

κ2 = e2 2C◦NA

ǫ◦ǫrkBT
(3.1)

where κ−1 is the Debye screening length, e is elementary charge, C◦ is the ionic

strength of the solution, NA is Avogadro’s number, ǫ◦ is the permittivity of free

space, ǫr is the dielectric constant of the solution, kB is Boltzmann’s constant, and T
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is absolute temperature. We can get the ionic strength of our solution by measuring

the electrical conductivity, σ, and the relation

C◦ =
σ

Λ◦(ηw/ηwd)
(3.2)

where Λ◦ is molar conductivity of electrolytes, which is 143.3 S cm2 mol−1 at 0.01

mol dm−3 [18], and ηw and ηwd are the viscosities of water (1.002 cP at 20◦C)

and water:DMSO (∼ 1.847cP at 20◦C) respectively. According to Walden’s rule the

product of molar conductivity and a viscosity of one electrolyte should be a constant.

We can alter the electrical conductivity (EC) by adding potassium chloride (KCl), a

salt, which dissociates in the solution. The positive K+ ions will be attracted to the

negatively charges surfaces of the silica spheres and screen the charge of the spheres

from one another, reducing the repulsion. We measure the EC using an EC meter

(Amber Science) and then add KCl solution until we get a screening length of a

tenth the diameter to get hard-sphere behavior. We added 8.7µl of 1.94 g/l KCl

solution to 5ml of our colloidal system. This results in a solution of conductivity

of ≈ 1.87µ · S/cm, from which we can calculate the Debye screening length using

Equations 3.1 and 3.2 to be κ−1 = 50 ± 1nm. For hard-spheres the inverse of the

screening length multiplied by the radius, κa, is required to be much more than 1.

For our system we have κa = 7.7, which should be more then ample to screen the

charge of the colloids to make them effective hard-spheres. We will test this more as

will be discussed in Chapter 4.

Now that our colloidal suspension is prepared for imaging we need to create a

microscope sample cell. The 100x lens on the LSCM is optimized for No.1 microscope
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cover slips (≃ 170µm), so we wish to use that for the bottom of our cell (we say bottom

Figure 3.1: A sealed cell containing our colloidal suspension, ready for imaging.

as the microscope we use is inverted as will be seen in Section 3.2). We use a standard

glass microscope slide for our base, and we cut No.0 cover slips (≈ 100µm) to use as

spacers on either side. We now place the spacers parallel to each other along the slide

with a space in between them, this space is where the cell will contain the colloidal

suspension. We place a No.1 cover slip, which we have shortened on one side, on

top of the spaces and glue the cover slip, spacers, and slide together on the sides of

the spacers using glue that cures under UV light. Once the glue has cured we then

fill the empty area between the spacers via a pipet and capillary action. Once the

channel is full, we place glue along the other two sides sealing the sample, cover the

area with the solution with a piece of metal to shield the fluorescent particles from

UV light which can bleach the dye, and cure the final glue. The end result can be

seen in Figure 3.1.
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3.2 Imaging using the Confocal Microscope

The LSCM setup we are using is a Nikon Eclipse TE2000-U inverted microscope with

the Visitech VT-Eye laser confocal system as pictured in Figure 3.2. This microscope

has a white light, mercury lamp, and 491nm and 561nm laser light sources. After the

Figure 3.2: Nikon Eclipse TE2000-U with Visitech VT-Eye confocal.

sample cell is prepared we flip it over and place it on the mounting platform of the

microscope, called the stage. The lens we are using is the maximum magnification

we have available, 100x oil immersion lens with a numerical aperture NA = 1.40. The

first thing to do is to find the bottom of the sample. To do this we typically use

a mercury lamp and a blue light filter. With this we use the eyepieces to focus on

the bottom of the sample. We then block the mercury lamp and switch the output

to the Visitech confocal system where the image data is output into a computer.
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The apparatus includes a control tower which acts as the link between the computer

software, Voxcell, and the Visitech confocal. The software is able to choose from

different laser outputs, powers, as well as using an electrical focusing device that can

move the objective over a 100µm range in 0.1µm increments. We refer to the size of

the increments of this device we refer to as the z-step. We can control the position

of the focal plane in the sample. The program also allows the user to change the

imaging speed and the output image resolution, and to carry out a pre-programmed

set of operations. For our system of particles we used a 491nm laser for excitation of

the FITC labeled core-shell silica spheres at 20-30% power.

The first type of images we take is are designed to get particle positions in a

limited xy area but along the entire thickness of the sediment in order to plot our

sedimentation profile. We set our start position for the z-step device just before the

bottom of the sample and set the end position to a height where we no longer see any

particles. We then execute a “z-stack capture”. This is an automated experimental

procedure that will image at the set frame rate from the start position to the end

with the set z-step, where each frame is at a different height position. Because the

step size of the z-step device is normally set to at least one third of the particle

diameter we get approximately 3 pixels for the particle in the z-direction, giving us a

3-dimensional image as seen in Figure 3.3. However the resolution in this direction is

significantly less then in the x and y directions. Despite the slightly lower resolution,

because of the high speed of scanning we are able to get a semi static image of the

entire sedimentation. The Brownian time of the particle (time it takes to diffuse
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Figure 3.3: As the z-step focusing device moves through the sample we get a 3-
dimensional image of all the particles in the region of interest

the distance of one particle diameter) is approximately one second while we normally

image at a frame-rate of 74fps or higher. At this imaging speed we are able to image a

single particle in 0.04s, much lower than the Brownian time (≈ 1s for 0.77µm spheres

in water:DMSO). In Figures 3.4 and 3.5 we can get an idea of the 3 dimensional

image of this sediment looks like.

Figure 3.4: 2D slices of the image stack from the bottom (left) and top (right) of the
sediment
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Figure 3.5: A reconstructed image of the sediment in the y-z plane

The next method for imaging is for analysis of the dynamics of the system. In

order to get dynamics from 3-dimensional images we must take multiple image stacks

as a function of time. To do this we set up a z-stack capture procedure with a number

of iterations that we define depending on the amount of statistics needed. However

it takes approximately 2 seconds to scan the entire sediment. This is longer than the

Brownian time. By the time the microscope reaches its original starting position it

has been too long of a time to get accurate particle trajectories for dynamics. So we

image smaller regions of the sample (5µm sections) from bottom to top, which not only

allows to image the range fast enough but also will now give us the means to study the

dynamics as a function of height. The procedure completes a single image stack and

then returns to its original position to take the next, this however presents a problem.

The z-step focusing device operates using a piezoelectric crystal that has an intrinsic

relaxation time, and if we attempt to force it to jump a distance instantaneously, the

next image stack will have defects such as a “jittering” of the image from side to side

which will significantly distort any dynamical data. To compensate for this we set a

settling time which forces the z-step focusing device to take a defined time to go from

one point to the other. This increases our total time between successive images but
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as long as it is less then the Brownian time (≈ 1s) it is of little consequence. After

completing our experiments we export our image(s) to the hard drive for analysis.

3.3 Image Processing using IDL

The next logical step in the experiment is to take our visual data contained in the

3-dimensional image stack and turn it into particle positions. To do this we use

IDL, Interactive Data Language, which is a popular data analysis language among

scientists. From the positions of all colloidal particles in our chosen region of interest

we can obtain information such as the volume fraction as a function of height, for

sedimentation profiles. As well if we get positions as a function of time we can

calculate the diffusion coefficient from Equation 2.13. To do this we follow a particle

tracking tutorial provided by Eric Weeks [19] as well as several procedures written by

Weeks and his colleagues, files with the extension *.pro.

The image format that the LSCM software outputs is known as Tagged Image

File Format, or Tiff (*.tif). The file is a stack of greyscale images with a black

background, and the fluorescing spheres showing up white. It is essential for the

following procedures that the images be greyscale with white particles on a black

background, if the images are not originally in this state they can be edited so that

they are compatible using image processing software such as ImageJ which is available

free for download from rsbweb.nih.gov.

We can read the tiff image into IDL using readtiffstack.pro, which assigns the

image stack to a variable in the format of a 3-dimensional array which we can perform
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operations on and extract data from. It is necessary to first filter the image to discard

any unwanted brightness in the image that does not correspond to a particle (pixel

noise etc...). To do this we use a spatial bandpass filter, bpass3d.pro, which filters

the image 3-dimensionally by convoluting the image in the each dimension with a

Figure 3.6: An image of particles before (left) and after (right) a spatial bandpass
filter has smoothed out any noise.

Gaussian-like function with a defined width that we set to the approximate particle

diameter. Now that we have a more well defined set of particles from the background

we use a procedure called feature3d.pro to find particle centers for all particles in

our 3-dimensional image array. To do this we give the procedure feature.pro the

inputs diameter, separation, and masscut, which are the approximate diameter in

x,y, and z pixels, the minimum allowable separation in x,y, and z pixels, and as well

the minimum allowable brightness, as user defined inputs. It first finds all the local

brightness maxima in the image using a 3-dimensional anisotropic parabolic mask
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with a width of the diameter we input, and from this finds all the x,y,z centroids and

all of the particles pixel values (brightness). The procedure returns seven columns of

Figure 3.7: The filtered image along with its output of the procedure feature.pro.
The x,y,z values are the coordinates of the particles in pixels.

data for the image, the first three being the x, y, and z coordinates for the particle

centers. The next two are integrated brightness of the object and the squared radius

of gyration, however it is of course not a true radius of gyration but one where one

substitutes integrated brightness for mass. The last two are the peak height of the

feature and the fraction of voxels above the threshold. However they are of little

consequence as they rarely give any information that can’t be gained from the other
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5 columns, so we will not discuss these. It is helpful to plot the fourth column

Figure 3.8: Squared Radius of Gyration vs. Integrated Brightness as given by the
procedure feature3d.pro for all the features found (left). Features found after the
data has been clipped according to brightness values (right).

against the third, “squared radius of gyration” vs. integrated brightness, as seen in

Figure 3.8. We can see in this figure that there are still many more features found

with considerably low brightness values then the number of particles we can identify

by eye in Figure 3.6 (about 17 that are in focus range). To discard these unwanted

features we can use the masscut option in feature to cut out all features below the

set brightness value, or we can use a procedure called eclip.pro, which just selects

array values in a given range and discards the rest, to remove them separately to

save run time, i.e. not having to re-run the procedure feature3d.pro. The procedure

feature.pro provides the most accurate results when the particles are at least 5 pixels

in diameter, the resulting centroid values will have errors of order 0.1 pixels for images

with low noise. The procedure is also mainly optimized for low density systems where
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particles are not densely packed, however it is stated that setting the separation value

to half of the diameter will help avoid particle loss in higher concentration regions.

These are the general steps for locating particles in a 3-dimensional sample. Now that

we have a means to do this we can use the data to get some scientific data out. [20]

We image the entire extent of the sedimentation of the colloidal system thus

giving us a 3-dimensional image of the suspension. After running a procedure called

ept3d.pro, which contains all the necessary steps for particle tracking as previously

explained, we have the center of every particle in the scanned 3D region of colloidal

suspension along with the extra data that the procedure feature.pro gives us. Having

Figure 3.9: Reconstructed 3-dimensional image of the entire colloidal sedimentation
with the z direction to the right.

the particle position for a single time step allows us to plot our sedimentation profile.

To do this we simply plot a histogram of the number of particles centers found per
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step in the z direction. Knowing the volume of our particles and the size of the bin it

is in allows us to plot this as the volume fraction vs. the height in the sample as seen

in Figure 4.11. We can also reconstruct a 3-dimensional computer generated image

of our system using a procedure called mkpov.pro that produces a *.pov file. Once we

have this *.pov file we use a light ray tracing program called POV-Ray to construct

Figure 3.10: Newer Sedimentation Profile with higher z resolution

the image in Portable Networks Graphics image form, or *.png, as seen in Figure 3.9.

POV-Ray is available for free to download from www.povray.org.

Another form of data processing we carry out is on images that are sections of

the sedimentation profile, same dimensions in x and y but only 5 microns in the z

direction, via the method discussed in the previous section. These images take much

less time then the full sediment at the same frame-rate, and we take 100 image stacks
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of a single region to ensure good statistics for times on the order of 10 seconds. If the

time between successive image stacks is considerably less then the predicted Brownian

time for a single particle then we can use the particle positions in each time step to

form particle trajectories so that we can get information about the dynamics of the

system. First we need to link up corresponding particles in successive time steps. To

do this we use another one of Eric Weeks procedures named track.pro. First the pro-

cedure feature3d.pro’s arrays from all the image stack time steps are concatenated so

that each position in each stack is assigned the timestamp associated with the order

of the image in the series. The procedure track.pro uses this new array along with

several mandatory as well as some optional inputs to assist in selecting the good data

from the bad. It requires the inputs of the concatenated position array, the maximum

displacement of a particle in one time step, as well as the number of dimensions you

are tracking in (track.pro can also be used for 2-dimensional tracking in time). Unlike

the previous method of finding the sedimentation profile, absolute number of parti-

cles is not important when studying dynamics. When calculating volume fraction or

other static system properties it is important to have as correct a count of features as

possible, while studying dynamics we can afford to lose particles and it may even be

necessary in order to ensure that we get true dynamics of a system. An example of

this is if several particles have sunk to the bottom of the sample and are stuck to the

microscope slide, it is still important to calculate them for correct volume fraction

measurements. However they will skew the data for the particles motion. To eliminate

troublesome particles such as this example the procedure track.pro uses the optional

parameters “memory”, and a parameter called “goodenough”. The parameter “mem-

ory” can be set to a number of time step values. If a particle is “lost” (goes out of
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frame or focus) for less time then the “memory” value, if it returns the procedure

track.pro will continue tracking it as the same particle. If the particle is lost for more

time then the memory value, when it returns it will be tracked as a new particle. The

parameter “goodenough” is set to eliminate all particles with fewer valid positions

Figure 3.11: Trajectory of a random particle

than the value of “goodenough”. This is useful for removing positions generated from

image noise. The procedure track.pro then goes through the new timed position array

and links which particles correspond to which in the successive frames by using the

maximum displacement value to calculate the most probable result and assigns each

particle a unique identification number and reorganizes the array according to these

values. Now that we have positions as a function of time for individual particles we

are able to display trajectory information as seen in Figure 3.11. This data allows us
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to calculate the dynamical data, MSD’s vs time, as described in Section 2.3, and can

be seen in Figure 3.12.

Figure 3.12: Example of calculated MSD vs time at different positions in the sample.
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Chapter 4

Results and Discussion

In this chapter we will report on the sedimentation profile for our colloidal system and

how its equation of state shows significant deviation from the hard-sphere equation

of state, and also the diffusion coefficient behavior as a function of height in the

sediment. We test different experimental procedures including the equilibration time

for our system as well as the checking the Debye screening lengths effect on the

equation of state. We find an error yet to be understood in the method for calculating

the diffusion coefficients and repeat the experiment using another analysis technique

using the fit of the particles displacement distributions to a Gaussian.

4.1 Sedimentation Profile

We obtain the equation of state of our system from the sedimentation profile using

Equation 2.3 so that we may compare it to the Carnahan-Starling relation. The first

thing needed was to ensure that our particle finding techniques returned accurate

representations of particle positions in the colloidal sediment. Initially we imaged
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at different frame rates as well as different image resolutions in the z-direction, or

distance between the image slices in z, to check for any anomalies. We found that

when we increased the image resolution in the z-direction by decreasing the distance

between images in z that the analysis procedure found a greater number of particles.

These types of problems arise because we are operating close to the effective resolution

limits of confocal microscopy. We are imaging particles that have a diameter σ =

0.77µm with a Brownian time

τB =
σ2

6D◦

=
πησ3

2kBT
≃ 0.35s, (4.1)

which makes it more difficult to distinguish them from imaging noise. However with

particles of this size we can be more certain that they are in the Brownian regime.

For example, particles twice as big are easier to resolve, but τB is 8 times larger.

Figure 4.1 shows sedimentation profiles taken from the same sample, only having

the step size in the z-direction changed. Due to the significantly lower resolution in

the z-direction as opposed to the x and y, it is possible that two particles that are

on top of one another may be confused in our image-processing scheme as a single

particle. A step size that is too big will not detect the non-fluorescent shell of two

such particles that are in contact. This would cause an under counting of particles for

step sizes in z that are too large. If this is the only issue then one would expect the

sedimentation profiles to increase in total volume fraction until they have plateaued

at the maximum resolution, however it does not seem to be the case. However it

can be shown that the sedimentation profiles can be overlaid onto one another when

scaled by a constant as shown in Figure 4.2. The approximate value of the scaling
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Figure 4.1: A technical issue of getting different sedimentation profiles from the same
sample but with the distance of between z positions differing. Plots are shifted for
clarity.

Figure 4.2: Scaled sedimentation profiles with different z-step sizes.
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factor can be found from the ratio of the input diameters

da · za

db · zb

≈ c

where d is the input value in pixels, z is the z-step or distance between z pixels for

two sedimentation profiles a and b, and c is our scale factor. To choose the profile

that has the correct number of particles we measure the volume fraction by weighing.

We take a known volume of suspension and weigh it, and by evaporating the liquid

of the suspension via oven or hot plate drying we can get the mass of the particles.

Using the known density of the particles we calculate the volume of the particles after

drying and know our volume of the sediment used thus giving us our volume fraction.

For this series of experiments we found our volume fraction to be 4.4±0.1%, which

corresponded to the sedimentation profile with a 0.26µm z-step size. Since they all

overlay with a single scaling factor c, we simply force the normalization implied by

this measured volume fraction.

After checking the accuracy of the particle counts the validity of the distribution

of the particles in the sediment comes into question. We find that the sedimentation

profile seems to deviate from what is expected of a hard-sphere system as defined

by the Carnahan-Starling equation of state given in Equation 2.1. As can be seen

in Figure 4.3 there is a region of constant volume fraction from approximately the

beginning of the sample to 15 dimensionless units (z∗ = z/σ). A constant volume

fraction as a function of height corresponds to an incompressible fluid, or liquid, as

given by Equation 2.5, but as stated in Section 2.2 bulk suspensions of hard-spheres

do not exhibit this phase. We see more clearly in Figure 4.4 when the profile is
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Figure 4.3: Sedimentation profile obtained from system used for final diffusion experi-
ment shows a “liquid-like” flat region, which is a deviation from hard-sphere behavior.

Figure 4.4: Sedimentation profile obtained from system used for final diffusion exper-
iment. When φ is plotted on a logarithmic scale, the “gas-like” exponential tail is the
linear region indicated.
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plotted on a logarithmic scale that after the liquid-like region there is an exponential

tail corresponding to a a low-density fluid phase (referred to as “gas-like” in Figure 4.3

and Figure 4.4). Hard-sphere systems exhibit a similar exponential tail for the low-

density fluid phase however the fluid range extends to φ = 0.49 where the spheres start

the fluid-solid phase transition. However our systems fluid region ends much lower at

approximately φ = 0.20 and then plateaus. The difference between the theory and

Figure 4.5: A comparison of the equations of state from our experimental system of
colloids in a confined geometry to the hard-sphere equation of state.

experimental results can be seen more blatantly in a plot of the experimental equation

of state calculated from Equation 2.3 (solid line) and the hard-sphere equation of state

(dotted line) in Figure 4.5.

The deviation could have different possible origins:

1. We are not seeing true equilibrium behavior.

2. We don’t have perfect hard-sphere-like interaction for some reason.
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3. Some other unexplained effect, perhaps related to proximity to a surface.

First we look at the progression of the sedimentation profile in time. After the

sample is prepared it is then overturned to mount onto the inverted microscope. This

instant coincides with the initial time. From this point it takes approximately a

minute or so to get the sample cell into position for imaging. We then take image

stacks of the full sediment as a function of time as seen in Figure 4.6. As can be

seen in early times (e.g. curve (1)) the particles are spread throughout the sample,

with some already building up at the bottom of the sample. After 15 minutes the

Figure 4.6: Sedimentation profiles as a function of time shown to approach an equi-
librium after approximately 15 minutes. Smaller area under the curve for (3) is due
to slow lateral drift of particles lowering total φ over long times, but the structure of
the profile is retained (φ∗ here is simply the approximate plateau height).

sedimentation appears to be taking the shape that we have previously seen, which

it appears to be at equilibrium for certain after 30 minutes (e.g. curve (2)) as seen

in Figure 4.7. The time it takes to reach this equilibrium is significantly longer then

41



Figure 4.7: Logarithmic sedimentation profiles as a function of time shown to reach
an equilibrium after approximately 15 minutes. Smaller area under the curve for
(3) is due to slow lateral drift of particles lowering total φ over long times, but the
structure of the profile is retained (φ∗ here is simply the approximate plateau height).

the Brownian or Stokes times for this system. Brownian time is the time it takes a

particle to diffuse the length of its diameter, given by Equation 4.1 (≈ 1 s), and the

Stokes time is the time it takes a single sphere to fall from the top to the bottom of

our sample (≈ 1 min). The system has even been observed 24 hours after inversion

and although overall number of particles has decreased due to longitudinal drift in

the sample caused by the microscope stage being slightly off level, the sedimentation

profile still retains the same shape and the same extrapolated value of φ∗. If we shift

curve (3), corresponding to 24 hours, we see that its exponential tail representing the

low-density fluid region also overlaps with the other profiles in equilibrium as seen in

Figure 4.8.

From the above discussion it is clear that we are indeed obtaining true equilibrium

sedimentation profiles. Why then the deviation from the Carnahan-Starling hard-
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Figure 4.8: Shifted long time profile to compare with equilibrium sedimentation profile
due to the loss of particles due to drift within the sample over long times.

sphere behavior? It was proposed by Piazza et al [4] that at the bottom of the sample

the Debye screening length may not be what we measure it as in a bulk solution.

The reasoning behind this is if the particles are not being screened properly at the

bottom of the sediment then then they are electrostatically repulsive and can cause

an upward force prohibiting crystallization and causing an extended sediment. Due

to the higher concentrations of particles at the bottom wall this also means that the

positive ions surrounding the particles for charge screening also have a concentration

buildup at the wall compared to more dilute regions in the sample. In this case the

osmotic pressure will cause a flow of ions upward as seen in Figure 4.9, but unlike

the particles themselves gravity will have negligible effect of the ions due to their

small gravitational length as defined by Equation 2.4. In this case the electrostatic

attraction between the free positive ions and the negative ions on the surface of

the particles on the bottom of the sample will counteract the osmosis. This would
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Figure 4.9: Diagram of possible osmosis of ions. Figure (a) has no sedimentation
so counter ions are uniformally distributed, while (b) has particles sedimented, and
counter-ions are depleted in the particle-rich region.

44



account for a sedimentation profile that differs from hard-sphere behavior in the way

our system does.

Such an effect should surely be a function of the Debye length. Therefore we re-

peated the time equilibrium experiment for a system with no charge screening, with

our normal system of Debye screening length 50±2nm, as well as a system with a

Debye screening length of 10±2nm, 20% of our standard value. In Figure 4.10 we

have shown three plots of the calculated osmotic pressure vs. the volume fraction

from the sedimentation profiles using Equation 2.3. Also shown for comparison is

the Carnahan-Starling relation. The “no salt”, “salt 1”, and “salt 2” plots corre-

spond to 53 ± 2nm, 50 ± 2nm, and 10 ± nm Debye screening lengths respectively.

Figure 4.10 shows us that the equilibrium sedimentation profile is not affected by

decreasing the Debye length by 80%. It also shows the significant differences of our

system from a true hard-sphere system as given by the Carnahan-Starling relation in

Equation 2.1. The results showed little difference from the previous experiment. The

final system we prepared for our 3-dimensional diffusion experiments is represented

by the sedimentation profile shown in Figure 4.11.
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Figure 4.10: Osmotic pressure vs. volume fraction for equilibrium sedimentation
profiles with three different Debye screening lengths compared to the plot of the
equation of state of hard-spheres given by the Carnahan-Starling relation.

Figure 4.11: Equilibrium sedimentation profile for the system used for diffusion ex-
periments.
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4.2 Measuring Diffusion in 3D

Now that the equilibrium sedimentation profile has been obtained and shown to be

a true physical phenomena, we need to try to understand what is causing the devi-

ation from hard-spheres. To this end, we wish to obtain information about particle

dynamics as a function of height/depth in the colloidal sediment. We probed 5µm

sections of the sedimentation profile from bottom to top in 2.5µm steps. From these

sections we were able to extract particle trajectories in 3 dimensions as described

in Section 3.3. Having the particle positions as a function of time now allows us to

calculate the MSD of each particle as a function of time. These values for MSD are

averaged over all particles for the same trajectory length or times. This gives us an

array of average MSD as a function of time. For infinitely dilute systems the slope of

a plot of MSD as a function of time should be linear and proportional to the diffusion

coefficient. We see the results of our experiment in Figure 4.12. Points in the plot

at long times that have no error bars in fact have error bars that are larger than

±0.5 × 10−12 in the MSD value, but they have been removed for clarity. Only parts

of the curves with reasonable error will be considered for further analysis. As one can

see, the errors for long times for sections closer to the bottom surface (e.g. curve (1))

are much lower then higher in the sample (e.g. curve (2)). This is due to a higher

concentration of particles allowing us to obtain better statistics from the sample. In

deeper (larger z∗) regions of the sample where the concentration is low we have few

particles contributing to the average, causing noisy data with larger uncertainties.

The slope of the line increases as we move deeper into the sample and as we reach

a height of approximately 15 − 20µm (z∗ = 19.5 − 26.0) the slope stops increasing.
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Figure 4.12: Plot of MSD vs time in 3-dimensions for different heights in the sample
calculated from particle trajectories. Also a plot of the MSD vs time corresponding
to D◦ (errors larger than 0.5 × 10−12m2 have been removed for clarity and have not
been used in analysis).

This is the region in the sample as seen in Figure 4.11 that corresponds to the end of

the flat, high-density fluid, region in the profile and the beginning of the low-density

fluid region. However as shown in the figure even in the most dilute region of the

sample the slope of the plot is much lower than the plot corresponding to the Einstein

value D◦. The diffusion coefficient calculated for this system using Equation 2.14 is

D◦ = 3.07× 10−13m2/s at a temperature of 298K and with an approximate viscosity

of our water:DMSO mixture of 1.847cP . The highest value of diffusion coefficient we

are able to get from this method is D = 6.0× 10−14 ± 0.4× 10−14m2/s nearly 5 times

less than the predicted value.

An issue that we noticed in our tracking technique was that when we changed

the input parameter for allowed maximum displacement in the procedure track.pro

it changes our MSD plots and gives us different values of diffusion coefficients. This
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however cannot be true error therefore there is a programming issue that we are

currently trying to understand.

Due to the stochastic nature of the particles’ random movement from Brownian

motion, the histogram of particle displacements should be a Gaussian distribution

centered around 0, given in Equation 4.2. If random intensity noise is being detected

as particles then these histograms would be flat. As a check (and to help shed light

on the above programming issue) we plot the displacement histograms for a region

Figure 4.13: Displacement histograms in x and z directions for different input values
of the maximum displacement input parameter for a single time step, fit to Gaussians.
There are two plots for each value, one for x-direction and one for z-direction. The
latter corresponds to the sharply peaked, noisy data sets. They are peaked around
multiples of 0.26 due to this being the pixel size in z.

of our sample with different values of the input parameter as shown in Figure 4.13.

This shows that the histograms are also different as the parameter is changed. The
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plots look similar but obviously have significantly different coefficient values for the

Gaussian fit. What we would expect to see is as the maximum displacement input

parameter is lowered the histograms would have the same number of particles at all

displacements lower then the parameter but be cut off at that value and drop straight

to zero. This can be seen in Figure 4.14 where we have clipped a generic Gaussian,

Figure 4.14: An example of clipping a Gaussian distribution.

obtained from a random number generator, at two distinct values. Instead when

the parameter is changed from 1.0 to 0.5 for some reason the program is no longer

counting the same number of particles between 0 and 0.5.

f(x) = y◦ + A◦e
−

1

2
(x−x◦

σ
)2 (4.2)

The coefficients stated here in Equation 4.2, the equation we used for our Gaussian fit,

are a vertical shift, y◦, a horizontal shift x◦, and the amplitude A◦. The amplitude

will simply be related to the number of particles, and the distribution is centered

around zero as expected. The vertical shift, y◦, however should be zero for this
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case as a shift would mean that particles exist below the sample limits and above.

But instead the fitted value for y◦ is different for all values of the input parameter for

maximum displacement. There is another output variable here called the width, which

is equivalent of
√

2σ from Equation 4.2. The variable σ is known as the standard

deviation of this plot, and σ2 is the variance.

We can show that σ2 equals the MSD, 〈x2〉, and is therefore very relevant to our

studies. We use Equation 4.2 (with x◦ = 0,y◦ = 0) as the probability function to find

the expectation value for 〈x2〉.

〈x2〉 =
1√
2πσ

∫
∞

−∞

e−
1

2
( x

σ
)2 · x2dx (4.3)

The factor in front of the integral in Equation 4.3 is the the normalization constant

for the integral of the Gaussian. This can be solved analytically as

〈x2〉 =
1√
2πσ

· σ2
√

2πσ2 (4.4)

=
1√
2πσ

·
√

2πσ3 = σ2 (4.5)

thus the MSD and variance from the Gaussian are equivalent, 〈x2〉 ≡ σ2. This

is relevant because we found from fits to the distribution in Figure 4.13 that even

though the displacement histograms were all different and the coefficients are also

not equal, the Gaussian fit returns the same value for the width, within error, for

all four plots. This means that when we use the variance of the Gaussian fit of a

histogram of displacements for calculating the MSD, it is unaffected by the input

parameter of maximum displacement for the procedure track.pro. To get another

plot of MSD as a function of time from this method we simply increase the number of

steps between particle positions, dt. For each dt we get a histogram of displacements
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and we can then fit each one to a Gaussian. We can then plot the variance from

each histogram as a function of time, for different sections of the sample as shown in

Figure 4.15.

Figure 4.15: MSD vs time in x-direction plotted from the extracted variance from
Gaussian fits of histograms of displacements with increasing time steps (errors larger
than 0.05×10−12m2 have been removed for clarity and have not been used in analysis).

Unfortunately, due to having to fit the physical distribution to a defined function,

a Gaussian, the uncertainty when investigating very low concentration areas is poor

due to low statistics. Also we have used only the x displacements for this analysis.

Therefore at regions deeper in the sample the MSD vs time plots are extremely noisy,

but this method is believed to be less problematic as its output remains constant

regardless of the input parameter for maximum allowable displacement. However we

are still able to get plots for the MSD as a function of time as deep as 27.5µm (35.75

in z∗) into the sample, but only for short times. There remain problems with the
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Figure 4.16: MSD vs time in z-direction plotted from the extracted variance from
Gaussian fits of histograms of displacements with increasing time steps (errors larger
than 0.05×10−12m2 have been removed for clarity and have not been used in analysis).

MSD calculations:

• the MSD vs time does not extrapolate to (0, 0) but to (0, yint) where yint =

0.021 ± 0.001.

• calculation of diffusion coefficient from the initial slope of the MSD vs time

curve still yields values much smaller than the Stokes-Einstein value D◦.

Even though our data does not exhibit this agreement with theory, we can still

view the diffusion coefficients relative to a maximum value, showing us how it changes

with depth. As we saw in Figures 4.12 and 4.15 as the depth of the sample increased,

the slope of the MSD vs time plots stopped increasing and reached began to overlay

upon one another, or at least had very similar slopes. We also see in Figure 4.16 that

the diffusion in the z-direction appears to be much more constrained at the bottom
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Figure 4.17: (a) Ratio of diffusion coefficients calculated from the variance of the
Gaussian fit, with the maximum value found as a function of height in the sample. (b)
The sedimentation profile of the system used for calculating the diffusion coefficients
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Figure 4.18: Ratio of diffusion coefficients calculated from the variance of the Gaussian
fit, with the same maximum value from before found as a function of height in the
sample.

Figure 4.19: Ratio of experimental diffusion with value Ds, as a function of h/σ (z∗)
from Carbajal-Tinoco et al. [6]
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of the sample (curve (1)).

At the bottom of the sample (curve (1)) the MSD (obtained from histograms of

x displacements) as a function of time (Figure 4.15) does not appear to be linear. In

concentrated suspensions the hydrodynamic interactions of the particles have a larger

effect on each other due to their proximity. The diffusion coefficient we measure in

a dilute system, which should be close to the Stokes-Einstein value, is also known as

short time diffusion coefficient, Ds, which refers to free diffusion of a simple sphere

which does not interact with other particles. However in a concentrated system for

short times particles should exhibit free diffusion, but at slightly longer times the

particles will begin bumping into each other and being affected by other particles [5].

This results in a second diffusion coefficient known as the long time diffusion coeffi-

cient, Dl, which is much less then the value for the short time diffusion coefficient.

The non-linearity of the MSD vs time in the x-direction at the bottom of the sample

could be due to the slowing of diffusion due to the particles interaction due to a higher

concentration.

In Figure 4.16 where we are looking at vertical dynamics (z-direction), we see a

much more predominant effect, with the plot being nearly flat. This is thought to be

due to the same reasons as discussed for the x-direction, but in this case we also have

gravity impeding the motion of the particle upwards and a hard wall below impeding

the motion downwards. For our data from Figure 4.15 we calculate the diffusion

coefficients for each line using Equation 2.9 in this case because it is 1-dimensional

(only used displacements in the x-dimension).

We then calculate the ratio D/Dmax, which is a ratio of the diffusion coefficient

and the maximum value of diffusion coefficient from the data set. This is plotted as
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a function of height and can be seen in Figure 4.17(a). We can see that D/Dmax

increases until it reaches an area of the profile that coincides with the low-density

fluid region of the sample, where the diffusion ratio plateaus at 1, within error.

We compare our results to work done by Carbajal-Tinoco et al [6]. In their work

they observed diffusion in a density matched system (no sediment) near a rigid wall.

Their findings can be seen in Figure 4.19. Here the value Ds is the average diffusion

deep in the sample. They found that near the wall the diffusion was lower than

D◦ but deeper into the sample it was within 2% of of D◦. Note that the z∗ value

at which D/Dmax reaches its maximum value is much higher than that seen in the

data of Carbajal-Tinoco et al as seen in Figure 4.19. So this may not be simply a

wall-induced geometric confinement effect.

On the other hand Dz/Dmax approaches 1 much quicker, and consistent with the

Carbajal-Tinoco results [6]. Having a constant diffusion coefficient in the low-density

fluid region is expected. A long as the spheres are disperse enough and not interacting

with one another they should have a diffusion coefficient close to D◦. In the high-

density fluid region one would expect that because the concentration is constant, then

the diffusion coefficient would be constant as well. The fact that it is not points to

something besides the concentration of the particles effecting the speed of diffusion.

This is clearly a very interesting dynamical behavior that is worth further study. For

example, it is possible that the effect of the wall transmits much further because it is

a dense fluid.
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Chapter 5

Conclusions

5.1 Summary of Results

The technique used in this work is a powerful one as it can calculate equations of

state as well as dynamical data simply from particle positions in a sediment as a

function of time. This type of experiment and analysis has not been done on a

colloidal suspension in a dilute and thin sediment. As was shown in other works [3,4]

colloidal suspensions in bulk sediments agree with the hard-sphere equation of state.

However we have shown that at low concentrations and near the rigid boundary of a

microscope sample cell wall, there is significant deviation from hard-sphere behavior

as shown in Figure 4.10.

The equation of state for charge screened colloids in a thin colloidal sediment was

obtained and shown to have real deviation from the hard-sphere equation of state

given by the Carnahan-Starling relation. Diffusion coefficients were calculated as a

function of height in the sample. A deviation exists from hard-sphere diffusion coef-
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ficient that is not yet understood. Using the first method of calculating the average

mean-squared-displacement (MSD) averaged over all particles as a function of time

proves to provide good statistics and allows us to obtain time scales that are signif-

icantly longer than the Brownian time with little noise. However there is a internal

normalization error that is causing computer procedure inputs to greatly change our

values for diffusion coefficients by producing different values of MSD. We worked

around this error by discovering that although the MSD’s were being altered when a

histogram of the displacements was fit to a Gaussian, the variance of the fit did not

differ as the input parameter was changed. This is useful because the variance in this

case is the equivalent of the MSD. The primary limitation, higher uncertainties at

longer times or larger z, can be easily addressed in the future with much more data.

The resulting diffusion coefficients calculated are observed to disagree with the Stokes-

Einstein 2.14 value even in the dilute limit. This could be computational. However,

it is unlikely that we are undercounting fast particles, because the (Gaussian) dis-

tribution is not skewed. We thus think that we can get meaningful information be

plotting the diffusion coefficients at a given height relative to the maximum value

deep in the sediment. We then see a trend in our data that shows that the lateral

(in plane) and vertical diffusion coefficients are both functions of height but with

different dependencies.

Looking at the change in relative diffusion coefficients as a function of height

provides us with dynamic information about the phase of the system in that region.

In the region where the sedimentation profile is “gas-like” (the exponential tail) both

the lateral and vertical diffusion coefficients have reached their maximum value. In

the region where the sedimentation profile is “liquid-like” (the flat region) the lateral
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diffusion coefficient increases with height while the vertical saturates quite early. This

indicates there is dynamical evidence to show that the “liquid-like” region is real and

not an artifact. We do not rule out a subtle wall effect or residual electrostatic

repulsions, although the latter seems unlikely as there is clearly no impact on the

equation of state of a 5-fold decrease in the Debye length of the bulk solution.

We have shown throughout this work the possibilities of information that one can

gain simply from particle positions for a colloidal sediment. Particle positions for

the whole sediment allow us to determine the equation of state for a system, and

obtain data for different concentration regions in our sample. We can then image

small sections of our sediment in time which allows us to probe the dynamics of the

sediment and provides valuable information even with unnormalized data.

5.2 Future Work

Due to the significant difference between the Stokes-Einstein value for diffusions co-

efficient and the value obtained in the dilute regions for both methods tried, there is

much to be done if figuring out the problems on the computational side of the exper-

iment. It is necessary to further investigate the issues that even arose early on when

first obtaining the sedimentation profile. We obtained different particle counts when

the experiment was executed with different values for the distance between images in

the 3-dimensional stack. A possible step toward resolution of this issue is to create a

computer generated 3-dimensional system of particles. In this system we can define

it to have a specific diffusion coefficient as well as an equation of state. Then create

an image stack of this system and perform the same analysis on this image as was
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presented in this paper. In a more controlled system it will be easier to work through

the procedures step by step and determine the cause of the issues whether they are

computational or physical.

Another possible step toward resolution of the question of obtaining proper dif-

fusion coefficients would be to attempt to experimentally calculate the velocity auto-

correlation function, or VACF. There are limitations to this experiment due to the

extremely short times, on the order of microseconds, that are needed to properly cal-

culate it. It is expressed as a time average of velocities and had the benefit of being

related to the diffusion coefficient by the expression

D ∝
∫

〈v(0) · v(t)〉dt (5.1)

where v(0) and v(t) are the velocities initial time and some subsequent time t. Similar

tracking procedures to those used in this work could be used with confocal microscopy

to obtain velocities, and by relation the diffusion coefficient.
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