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Quantifying disorder in colloidal films spin-coated onto patterned substrates
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Polycrystals of thin colloidal deposits, with thickness controlled by spin-coating speed, exhibit axial symmetry
with local 4-fold and 6-fold symmetric structures, termed orientationally correlated polycrystals (OCPs). While
spin-coating is a very facile technique for producing large-area colloidal deposits, the axial symmetry prevents
us from achieving true long-range order. To obtain true long-range order, we break this axial symmetry by
introducing a patterned surface topography and thus eliminate the OCP character. We then examine symmetry-
independent methods to quantify order in these disordered colloidal deposits. We find that all the information
in the bond-orientational order parameters is well captured by persistent homology analysis methods that only
use the centers of the particles as input data. It is expected that these methods will prove useful in characterizing
other disordered structures.
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I. INTRODUCTION

Producing perfect, close-packed colloidal crystals is a
cheap means to fabricate photonic band-gap materials [1–3].
Numerous techniques have been used to obtain well-ordered
dried colloidal deposits [4–17]. However, it is challenging to
obtain defect-free colloidal crystals over large areas. There is a
growing realization [18] that nonequilibrium techniques might
need to be employed to achieve better control of colloidal
self-organization.

Spin-coating has recently been introduced in colloid science
as a far-from-equilibrium modality to fabricate colloidal
crystals [11,19–22]. It is very fast, reproducible, simple, and
needs less material [20]. However, the axial symmetry of
spin-coating makes the resultant colloidal films polycrystalline
in a peculiar way, i.e., the orientationally correlated polycrystal
(OCP) [11].

In spin-coating, the thickness and the uniformity of the
films are important and strongly dependent on several control
parameters, including the spin time and speed, the viscosity
of fluids, the density and the evaporation rate of the fluids, the
concentration of the suspension, as well as the substrate surface
characteristics [20,23,24]. Electric fields have been applied
during spin-coating of colloids to produce translationally
ordered structures in Refs. [25,26]. Thus, if one can overcome
the primary challenge set by the axial symmetry of spin
coating, i.e., the emergence of OCPs, numerous ways to
achieve better order would arise.

To achieve reliable and measurable improvements in order,
it is crucial to characterize the degree of structural order and
disorder systematically. Although there exist several methods
for characterizing colloidal structures in real space [27–30],
these translational- and orientational-order-based methods are
more suited to homogeneous structures of reasonably high
crystallinity. For example, a recent comparison of various
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different methods for making colloidal crystals [30,31] uses
bond-orientational order parameters that can sensitively dis-
tinguish crystals for which 0.8 < �6 < 1.

In this manuscript, we address two goals. We first report a
patterned surface topography technique to generate monolayer
colloidal polycrystals, while at the same time eliminating the
appearance of axial symmetry by spin-coating (i.e., the OCP
character). The effect of surface patterning geometry on the
morphology of spin-coated colloidal deposits is observed, and
the influence of the scale spacing of the patterning topography
on the structural order of colloidal deposits is presented.

Second, we introduce the use of persistent homology
methods to examine structural heterogeneity in these colloidal
polycrystals. One barrier to attempt at improving crystallinity
by varying one of the many control parameters is the absence
of reliable, quantitative measures of order in relatively poorly
ordered colloidal films. Reciprocal-space methods, e.g., using
small-angle and ultrasmall-angle scattering [32,33], are the
standard for characterizing crystalline structures; however,
spatial resolution is important both for identifying subtle
differences in disordered structures, as well as for following
the kinetics of crystallization. Real-space methods such as
those discussed here can also be used in tandem with new de-
velopments in coherent x-ray diffractive imaging [34]. In this
work, we show that information about orientational order in
spin-coated colloidal deposits, obtained by using orientational-
order based Minkowski structure metric [31,35,36], can be
complemented by an examination of structural heterogeneity
via persistent homology using the first Betti number [37].

II. EXPERIMENTAL METHODS

A. Fabrication of patterned substrates

We designed different photomask geometries to make
triangular arrangements of equally sized regular hexagonal
pillars, as shown in Fig. 1(a). The hexagon sides were 0.55 mm.
We call the distance between adjacent pillars the “scale
spacing,” and this was varied from 0.18 to 1.5 mm, while
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FIG. 1. (a) Optical microscope image of the top surface of a
colloidal film deposited onto a patterned substrate (scale bar is
0.680 mm). (b) Sketch of the AFM scanning regions (rectangles),
at 2.24 mm intervals, where every scanned region makes an angle of
β = arctan(1/2) with radial direction (dash-dotted lines) away from
the center of rotation. (c) AFM image of a colloidal monolayer on the
hexagonal pillar with the detected particle centers indicated as red
marks (scale bar is 2 μm).

keeping the height of the pillars constant at 10 μm. To do
so, SU–8, 2010 (UV-sensitive photoresist, MicroChem [38])
was spin-coated at 3000 rpm for 30 s to achieve a thickness
of 10 μm on top of microscope cover slips (22 mm ×
30 mm). Thereafter, the templates were soft-baked at 95 ◦C
for 3 minutes and exposed to UV-light by using a maskless
patterning system (Intelligent Micro Patterning LLC) for
3–4 minutes. Then, the templates were heated to 95 ◦C for
3 minutes as a hard postexposure bake. The templates were
then developed for 2 minutes with ethyl-lactate and a 5%
NaOH aqueous solution. This photolithography step enhanced
the hydrophilic character of the template surfaces. Finally, the
patterned cover-slip templates were glued onto commercially
available microscope glass slides prior to performing the
colloidal spin-coating experiments.

B. Materials

Silica particles of diameter 458 ± 2 nm were dried
overnight at 150 ◦C in a convection oven to minimize the

amount of absorbed moisture. After removal from the oven
and cooling to room temperature, a volatile solvent (ethanol
95%) was added to the particles to prepare a suspension with
20% (v/v) concentration. Ultrasonication, typically for four
hours, was then used to obtain a homogeneously dispersed
suspension.

C. Experiments

Spin-coating experiments were performed in an air envi-
ronment at room temperature with a commercial spin-coater
(Laurell technologies, WS-650SZ-6NPP), which was housed
in a fume hood to protect users from solvent vapors. When
the patterned substrate reached a constant angular velocity
(3000 rpm), 60 μL of the colloidal suspension was pipetted
onto it. The spinning was stopped when the dispersion had
completely dried on the patterned substrate. A representative
example of a dried monolayer colloidal film is shown in
Fig. 1.

D. Characterization

The lithographic templates were inspected by optical
microscopy (Nikon Eclipse 80-i upright microscope) prior to
and after spin-coating. A representative optical micrography
of a dried spin-coated film on a template is shown in Fig. 1(a).
Atomic force microscopy (AFM, Asylum Research MFP-3D)
was used to get images that we could use to get particle
positions. Prior to AFM measurements, a thin layer (≈100 nm)
of poly(methyl methacrylate) (PMMA) was spin-coated on
top of the colloids to prevent the AFM tip from intermittently
picking up—and then dropping—colloidal particles. The AFM
was operated in contact mode. A representative AFM image
in Fig. 1(c) shows the microscopic structure of the top surface
of a monolayer colloidal deposit on top of an hexagonal pillar.
We scanned and captured regions of 20 × 20 μm2 at regular
intervals along the radial direction of each sample, choosing
an angle that was not along any high-symmetry direction. We
achieved this by making a series of 2 mm horizontal offsets,
coupled with 1 mm vertical offsets, so that each successive
image was equally along a radial direction that makes an angle
of β = arctan(1/2) ≈ 26.6◦, away from the center of rotation.
A schematic diagram is in Fig. 1(b).

III. STRUCTURAL ANALYSIS METHODS

To characterize colloidal structures in terms of their local
order, we further quantify the AFM images of colloidal deposit
on the hexagonal pillar in depth with different methods. To
do so, in each AFM image, the positional coordinates of
the particles are obtained [a sample of which is shown in
Fig. 1(c) with tiny spots at the centroid of each detected
particle], using home-made routines which are based on the
scikit-image processing library [39]. First, we observed from
the pair correlation function g(r) that there is no long-range
translational order in any of the deposits, and that they
were qualitatively indistinguishable. Then, they were analyzed
with bond-orientational order parameters (characterized by a
Minkowski structure metric) and persistent homology tech-
niques. Finally, we present a comparison of structural order in
colloidal films based on these two kinds of analysis.
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A. The Minkowski structure metric ψmsm
s

The Minkowski structure metric (msm) is obtained by
modifying the conventional local bond-orientational order
parameters ψs for a given weight s [40]. ψs calculated for
particle a was expected to serve well for a measure of s-fold
symmetry in highly crystalline samples in the surrounding of
the aforementioned particle. The most common arrangements
in two-dimensional (2D) ordered structures are square (s = 4)
and hexagonal (s = 6). As a matter of fact, some fundamental
difficulties [36] were detected in this method. It assumes the
geometrical arrangement of a set of nearest neighbors NN (a)
around a particle (or vertex of the structure) a; where NN (a)
has greater influence on ψs(a) values specifically in the case
of a square structure [41]. Also, the discrete nature of NN (a)
is not a continuous function of the particle coordinates which
is responsible for the lack of robustness of ψs as structure
metric. As a result, the Minkowski structure metric (msm)
ψmsm

s is introduced to overcome these issues [31,35,36,42].
In the msm, the contribution of each nearest neighbor to the
structure metric is weighted by a relative length factor l(λ)/L,
where l(λ) is the length between two neighboring vertices of
the Voronoi cell of particle a that corresponds to a given bond
λ (or edge of the structure), and L = ∑

λ′∈B(a) l(λ
′) is the total

perimeter length of the Voronoi cell of particle a, as can be seen
in Fig. 2. B(a) is the set of bonds which link particle a with
its nearest neighbors NN (a). This simple modification leads
to a robust, continuous, and parameter-independent structure
metric ψmsm

s (a) which avoids the flaws of the bond order
parameters ψs . The Minkowski structure metric ψmsm

s (a) in
2D is defined as

ψmsm
s (a) =

∑

λ∈B(a)

l(λ)∑
λ′∈B(a) l(λ

′)
eisθab(λ), (1)

where θab(λ) is the angle of the bond λ (which links a to b; see
Fig. 2) with a reference axis.

B. Persistent homology

The msm successfully quantifies the degree of s-fold
orientational order in crystalline structures. Nevertheless, the

a
λ

b

l(  )λ

FIG. 2. Voronoi diagram, overlaid on part of an AFM image of
a spin-coated deposit. The heavy yellow line l(λ) shows the length
between two neighboring vertices (large and open green circles) of the
Voronoi cell of particle a (small and solid blue dots) that corresponds
to a given bond λ with particle b.

information given by it in the case of disordered systems is
limited, and the order (or disorder) characterization has to be
complemented by other, global, techniques.

Persistent homology is a tool with roots in algebraic
topology that has been applied to extract topological infor-
mation from geometric data. It has been notably successful
in the analysis of particulate systems [37,43–48]. To describe
what persistent homology measures, we first introduce the
Vietoris–Rips complex. Then we give an intuitive idea of
what the homology of a simplicial complex is and, finally, we
describe persistent homology. For more details on homology
and persistent homology we refer to Ref. [49].

Given a set of points (in our case the center of the particles),
a metric (Euclidean distance), and a “filtration” parameter
value δ we construct a two-dimensional simplicial complex,
called the two-dimensional Vietoris–Rips complex (VRC) that
has the set of points as vertices, an edge for each pair of vertices
vi and vj such that d(vi,vj ) < δ, and a face (a triangle in this
case) for each triplet of vertices with pairwise distance less
than δ. The resulting object with vertices, edges, and faces is
the two-dimensional Vietoris complex that we denote K(δ).
Note that, if δ1 � δ2, K(δ1) ⊆ K(δ2). An example of how the
VRC changes for increasing values of the filtration parameter
can be found in Fig. 3(a). Homology measures the number of
“holes” in different dimensions in simplicial complexes. More
concretely, given a simplicial complex K , homology assigns a
sequence Hi(K) ofZ2-vector spaces, where i is a non-negative
integer. The dimension of the vector space H0(K) is called the
zeroth Betti number β0 and counts the number of connected
components of our simplicial complex, and the dimension of

FIG. 3. Examples of persistence homology analysis on three
compact artificial lattices (see text). (a) Vietoris–Rips complex (VRC)
for square (I), sheared square [II, C in panel (b)] and hexagonal (III)
at the same filtration parameter (δ = 1.2σ ) [open circles in panel
(c)]. (b) VRC for increasing values of filtration parameter δ [stars
on dashed, red line in panel (c)], δA = 1σ , δB = 1.1σ , δC = 1.2σ ,
δD = 1.3σ . (c) βnorm

1 vs δ/σ for the three artificial lattices, where
βnorm

1 is normalized in such a way that the maximum value for a
perfect square lattice is 1. The widest plateau appears for the square
lattice.
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the vector space H1(K), which is called β1, counts the number
of loops in our graph that are not covered with triangles (the
number of holes or uncovered loops in the two-dimensional
complex). We can find bases of these vector spaces which
correspond to the loops that we are counting.

Now we are ready to give an idea of what persistent homol-
ogy is. For δ1 < δ2, the inclusion K(δ1) ⊆ K(δ2) induces a
linear map in each dimension Hi(K(δ1)) �→ Hi(K(δ2)). Given
a maximum value of the filtration parameter δmax, the collection
of all the simplicial complexes K(δ), 0 � δ � δmax is called
a filtered complex. The persistent homology will capture the
information of the homology groups (in our case Z2-vector
spaces) for all possible values of the filtration parameter
between 0 and δmax giving us a persistence diagram with the
birth and death of each connected component in dimension
0 or the birth and death of each loop in dimension 1. Notice
that a persistence diagram is just a collection of intervals in
each dimension, and hence it is sometimes referred to as a “bar
code.” For simplicity, we proceed to explain the β0 case. We
order all the vertices. Each represents a connected component
at δ = 0 and hence β0(0) is the number of vertices. As the
filtration parameter δ is increased, each component will “die”
at the δ value where it gets connected with a point that appears
earlier in the order. Hence, at δ = 0, K(0) will have as many
connected components as the number of points. The number
of connected components will decrease as δ increases until
everything is connected (provided δmax is large enough) and
we have only one component, i.e., β0 = 1.

We will not work with persistent diagrams, but with a
summary called the Betti profile, a graph that represents, for
each dimension, the corresponding Betti number as a function
of δ. In particular the one-dimensional Betti profile presents the
number of loops [β1(δ)] that we have as δ varies from 0 to δmax.
A series of free packages are available for computing persistent
homology [50–52]. Here, we use the R package TDA using
“DIONYSUS” to perform persistent homology calculations [53].

In Fig. 3 we provide a simple example of the above
explanation for persistent homology measurements, using data
given by the centers of particles extracted from three different
artificially generated 2D lattices with low noise. We compare
compact square (I), sheared square (II), and hexagonal (III)
lattices, with a 10% additive noise to each coordinate of
the particle centers and with a nearest-neighbor separation of
σ = 10 pixels. VRC diagrams [Fig. 3(a)] at the same filtration
parameter δ distinguish among these three different structural
orders. The effect of increasing the filtration parameter values

above the diameter of the particles has two possible results,
as shown in Fig. 3(b), using the example of a sheared
square artificial lattice. At moderately high filtration-parameter
values, new connections may lead to the creation of a larger
number of loops (one-dimensional holes), as shown in part B;
this corresponds to higher value of β1 in Fig. 3(c). At even
higher filtration parameter values, the lattice is covered by
triangles, as shown in parts C and D; this corresponds to a
decrease in β1 in Fig. 3(c).

Profiles of the first Betti number β1 for artificial lattices
[square, sheared square, and hexagonal; Fig. 3(c)] show that
the lowest β1 peak height corresponds to the hexagonal
structure, and the widest plateau is associated with the square
structure. For all lattices, the rise in β1 corresponds to a
filtration parameter δ that equals the nearest-neighbor distance.
For an almost perfect square lattice, the β1 peak exhibits
a plateau that decreases abruptly beyond the next-nearest
distance (at δ/σ ≈ √

2). For sheared square lattices, which are
intermediate between square and hexagonal (50%), the sudden
decrease of β1 occurs for δ/σ ≈ (1 + √

3/4)1/2. Furthermore,
its plateau collapses into a peak that is narrower. For sheared
structures that are closer to hexagonal, the β1 peak value
decreases below 1.

In summary, we use persistent homology analyses to extract
three quantities that describe the structure of colloidal films
(see Sec. IV, especially Figs. 7 and 8 and text): the value of
δ/σ at which β1 first becomes nonzero, the height of the β1

peak, and the width of the β1 peak plateau (or peak).

IV. RESULTS AND DISCUSSIONS

A. Qualitative aspects

A series of experiments were performed in order to examine
the role played by a patterned substrate on the spin-coated
deposit. An unpatterned substrate, acted as the control sample;
it was coated with SU-8 to have comparable wettability
to the patterned substrates. Figure 4(a) shows a colloidal
sediment on an unpatterned substrate, while Figs. 4(b)–4(d)
show sediments on substrates that were patterned with a
lattice of hexagonal pillars with scale spacing of 0.3, 0.55, and
0.82 mm, respectively. The unpatterned substrates [Fig. 4(a)]
produce deposits with large-scale orientationally correlated
polycrystalline (OCP) character that exhibits colored arms
[11], as well as large cracks or big holes. In contrast, the
patterned substrates produce polycrystalline deposits that do

FIG. 4. AFM images of colloidal deposits, obtained at the same distance [(4,2) mm] from the spinning center of each sample. (a) An
unpatterned substrate produces deposits with OCP behavior. (b)–(d) Patterned substrates remove any OCP behavior, at intermediate scale
spacing between hexagonal pillars: (b) 0.3 mm, (c) 0.55 mm, and (d) 0.82 mm. All images are 20 μm × 20 μm.
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not show evidence of the orientation correlation that is typical
for spin-coated colloidal crystals [Figs. 4(b)–4(d)].

Preliminary experiments showed that the OCP charac-
ter disappeared only for intermediate scale spacing (0.30–
0.82 mm). At higher and lower scale spacing, the surface
appears to function similar to an unpatterned substrate for the
drying suspension. This dependence of the structural order
on the scale spacing may be related to hydrodynamics or
surface tension. Intermediate-spaced hexagonal pillars behave
as obstacles that prevent the fluid flows that are responsible for
OCP behavior. We note that all subsequent results discussed
here are restricted to the range of scale spacings where the OCP
does not appear. These data are also compared with results
from unpatterned substrates.

In what follows, the positions of colloidal particles, ex-
tracted from AFM images, are analyzed in detail to assess
4-fold and 6-fold structural ordered regions separately using
different methods: Minkowski structure metric analysis and
persistent homology.

B. Minkowski structure metric analysis

The colloid positions derived from AFM images allow us
to obtain the (complex) Minkowski structure metric ψmsm

s for
both 4-fold and 6-fold symmetry (s = 4 or 6), and for each
particle independently. Then, its absolute value |ψmsm

s | and
argument arg(ψmsm

s ) provide useful information about the local
s-fold degree of order and local orientation, respectively.

Figure 5 shows a plot of 〈|ψmsm
4 |〉 vs 〈|ψmsm

6 |〉 for regions at
different distances from the spinning center, where the average
is over all particles in a given image. For example, the AFM

0.4 0.5 0.6 0.7 0.8
<|ψ6

msm
|>

0.2

0.3

0.4

0.5

<
|ψ

4m
sm

|> (4,2) mm

(6,3) mm

(8,4) mm

0.30 mm
0.55 mm
0.82 mm
unpatterned

FIG. 5. Average Minkowski structure metric values 〈|ψmsm
6 |〉 and

〈|ψmsm
4 |〉 for particle positions extracted from AFM images of spin-

coated deposits. The three different scale spacings, 0.3, 0.55, and 0.82
mm, are represented by circles, squares, and diamonds, respectively,
while AFM images at distances corresponding to vectors (4,2) mm,
(6,3) mm, and (8,4) mm (all at the same polar angle but at the distances
4.47, 6.71, and 8.83 mm from the center) are represented by black,
dark gray (magenta), and light gray (orange) symbols, respectively.
For the scale spacing of 0.55–0.82 mm we have greater values for
〈|ψmsm

6 |〉 and smaller for 〈|ψmsm
4 |〉. The dashed line shows a linear

fit for data. The results for unpatterned substrates are shown as well
(triangle symbols) but are not considered in the fit.

images shown in Fig. 4, at a distance (4,2) mm from the center,
are represented in this plot by black triangle [Fig. 4(a)], circle
[Fig. 4(b)], square [Fig. 4(c)], and diamond [Fig. 4(d)].

There is no clear systematic dependence of 〈|ψmsm
s |〉 on

the distance from the center of spinning: the intermediate
distance (6,3) mm appears to yield the highest value of
〈|ψmsm

6 |〉. In addition, there is no optimal scale spacing, since an
intermediate value (0.55 mm, squares) appears to yield the best
order at two radial distances [dark gray (magenta) and black
squares], but not for the third [light gray (orange) square].

For all samples that were spin-coated onto patterned sub-
strates, there is, however, a strong correlation between 〈|ψmsm

6 |〉
and 〈|ψmsm

4 |〉 which is shown by the dashed line in Fig. 5
(linear fit with absolute value of correlation coefficient 0.995).
We do not understand the origin of the linear relation between
〈|ψmsm

6 |〉 and 〈|ψmsm
4 |〉 in this specific kind of experiment, but it

is worth noting that the relationship is statistically significant.
This correlation implies a trend that needs to be explored
further.

Although the points from the unpatterned substrate (trian-
gles) are not in the confidence interval of the linear model
(confidence >0.999), they lie very close to those of the
patterned substrates with highest 〈|ψmsm

4 |〉 and lowest 〈|ψmsm
6 |〉

(dashed rectangle in Fig. 5). At this point, it is not clear if we
can robustly distinguish the differences in disorder [refer to
Figs. 4(a) and 4(b)] by using the msm method, despite the fact
that the structures are very different; namely, OCP vs not OCP.
Thus, it is more useful to classify these structures through the
distribution of the cells’ orientation with respect to the radial
direction, rather than by means of the orientational degree of
order.

Hence, we show histograms of the phase of ψmsm
6 and

ψmsm
4 for AFM images of samples from experiments using

unpatterned substrates which lead to OCP behavior [Figs. 6(a)
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FIG. 6. Histograms of the local phases of ψmsm
6 and ψmsm

4 that are
obtained in AFM images taken at different distances from the rotation
center [(4,2) mm for panels (a) and (b); and (6,3) mm for panels (c) and
(d)]. Gray thin (red) bins correspond to 6-fold symmetries and black
thick bins to 4-fold symmetries. (a), (c) Using unpatterned substrates
where crystalline domains are aligned along the radial direction, i.e.,
with OCP character. Here the histograms are narrower. (b), (d) Using
a patterned substrate with 0.82 mm spacing between hexagon pillars
without OCP character. Here the histograms are broader.
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and 6(c)], and patterned substrates which do not lead to OCP
character [Figs. 6(b) and 6(d)]. In the histograms, we only
select the particles which have |ψmsm

6 | � 0.5 and |ψmsm
4 | � 0.6

for 6- and 4-fold symmetry, respectively.
Here, gray thin (red) bins correspond to ψmsm

6 symmetries
and black thick bins to ψmsm

4 symmetries. In Figs. 6(b) and
6(d), the images from top to bottom indicate histograms
at increasing distances along the radial direction for the
same experiment (patterned substrate with 0.82 mm spacing
between pillars). Here, one sees a broad distribution of angles
for both ψmsm

4 and ψmsm
6 , which impede the OCP character.

However, for the unpatterned substrate [Figs. 6(a) and 6(c)]
both the ψmsm

4 and ψmsm
6 evince sharper angle distributions

around the radial direction (0◦). It is, thus, clear that one can
have long-range OCP structure even when the local bond order
parameters are small, e.g., ψmsm

4 < 0.6 and ψmsm
6 < 0.5 for the

unpatterned substrates (Fig. 5, triangles).

C. Persistent homology analysis

Since the local order in 2D systems is almost 6-fold or
4-fold, local measures like the Minkowski (bond-orientational
order parameter) analysis may not provide enough information
to distinguish different kinds of structural disorder [54]. The
goal here is to test persistent homology techniques by using
parametrized first Betti number with filtration parameter δ

to analyze the disorder in structure of our 2D spin-coated
colloidal films in view of what we learned from a look at well-
ordered artificial lattices (Fig. 3 and corresponding text). First,
we show the Vietoris–Rips complex for increasing values of δ

[Fig. 7(a)], for structures on unpatterned (left) and patterned
(right) substrates. Hexagonal domains are seen as regions with
cells covered by triangles [light gray (pink)]. It is seen that the
number of loops (empty polygons with more than three sides)
decreases significantly in all examples as one goes from a
filtration parameter δ of 1.2σ to 1.8σ . The corresponding pair
correlation function in Fig. 7(b) shows that this corresponds to
a distance that is well beyond the first peak of the g(r).

In Fig. 8(a) we represent the number of loops, βnorm
1 , for

increasing filtration parameter δ for several experiments [data
at (4,2) mm from the center of rotation]. βnorm

1 is normalized in
such a way that the maximum value for a perfect square lattice
is 1. The four βnorm

1 curves are obtained from VRCs such as
the one in Fig. 7(a).

The width of each βnorm
1 vs δ/σ curve at 10% below its max-

imum value is another useful measure of the heterogeneous
openness of the structure, and it is represented in Fig. 8(a)
as well. We have seen, in our example with artificial lattices
[Fig. 3(c)] that the lowest βnorm

1 peak corresponds to hexagonal
structure. In the example in Fig. 8(a), we see, consistently
with the artificial lattices, that all the β1 profiles for all the
patterned samples have the same rising slopes, and the sample
with the highest 〈|ψmsm

6 |〉 shown in Fig. 5 has the lowest βnorm
1

peak. Similarly, as we saw for artificial lattices [Fig. 3(c)], the
widest plateau corresponds to square structure. Therefore, the
structure atop the unpatterned substrate [black dotted curve of
Fig. 8(a)] shows the strongest 4-fold order. In that case, we
observe that the rising slope is smaller relative to the case of
patterned substrates, where the presence of hexagonal pillars
forces more compact structures.

1 1.5 2 2.5
r/σ

0

1

2

3

4

g
(r

)

patterned
unpatterned

1.4

1.2

1.8

δ/
σ

(a)

(b)

unpatterned patterned

FIG. 7. (a) Vietoris–Rips complex for three values of the filtration
parameter for a unpatterned substrate (left) and for a scale spacing of
0.55 mm (right) both at the radial distance (4,2) mm from the center of
rotation. δ is the filtration parameter and σ is the particle diameter. (b)
In disordered lattices, a good quantifier for nearest-neighbor distance
is the position of the first peak of the pair correlation function g(r)
(seen to be at about 1.05σ ). Thus, r = 1.2σ , 1.4σ , and 1.8σ exceed
the nearest-neighbor distance and are thus reasonable values to use
for the filtration parameter.

In Fig. 8(b), we plot the maximum of the β1 curve against
its width. At the top right, the black circle (scale spacing of
0.3 mm) corresponds to the Vietoris–Rips complex (VRC) in
Fig. 8(c): here, good hexagonal order (pink shaded regions)
barely exists. At the bottom right of Fig. 8(b), the black
triangle (unpatterned substrate) corresponds to the VRC in
Fig. 8(d). We see that both the white and pink shaded domains
are spatially correlated in Fig. 8(d) and less so in Fig. 8(c).
Moreover, in the latter there are other shapes (=disorder), but
their areas are similar to the squares. In the former, we have
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FIG. 8. Persistent homology analysis of the experimental results. (a) As in Fig. 3, βnorm
1 , which represents the normalized number of loops

(one-dimensional holes), versus the normalized filtration parameter δ/σ . σ is the mean size of the particles in the AFM images. For clarity,
only the curves for (4,2) mm results are included. Recall that a wider plateau means more square structure and a sharper peak means more
hexagonal structure. (b) Summary of persistent homology analysis by using the maximum of βnorm

1 curves as a function of their width (measured
at 10% below the peak value of the curve). All data points are included. Symbols and colors correspond to those in Fig. 5. (c) Vietoris–Rips
complex (VRC) for the experiment 0.3 mm of scale spacing at (4,2) mm from the center of rotation. The filtration parameter corresponds to
the maximum value of the corresponding βnorm

1 curve. It is indicated as (c) in panels (a) and (b). The field of view is 20 μm. (d) Vietoris–Rips
complex (VRC) for the unpatterned experiment at (4,2) mm from the center of rotation. The filtration parameter corresponds to the maximum
value of the corresponding βnorm

1 curve. It is indicated as (d) in panels (a) and (b). The field of view is also 20 μm.

an appreciable amount of bigger holes which are related to
cracks or local lack of compactness. All these features are
quantitatively shown in Fig. 8(b).

V. A COMPARISON OF ANALYSIS TECHNIQUES

Minkowski analysis that involves local measures, such as
Voronoi cells, defines local order in 2D systems as 6-fold or
4-fold. However, we show in this work that the Minkowski
analysis is not sensitive enough to structural disorder in
colloidal crystals that we induced by changing substrate
wettability and scale spacing.

The persistent homology analysis method is introduced
here in the analysis of colloidal order and disorder. A perfect
triangular lattice will produce the smallest β1, and the perfect
square lattice will produce the largest β1, which will last from
the value of the filtration parameter δ at which the squares
are first detected (length of the side) until the value δ that is
equal to length of the diagonal of the square. For a slightly
sheared square lattice instead of a perfect square lattice, β1

achieves its maximum value for a shorter range of filtration
parameters. This trend stops when the filtration reaches the
length of the shortest diagonal of the diamonds. This means
that structures with the same β1 magnitude for low filtration
values (which are comparable to the size of the particles
themselves) can be distinguished with an appropriate higher
value of the filtration parameter. Thus, square domains can be
distinguished by applying different filtration parameter values.

The key advantage of the persistent homology method
in this study is highlighted in a comparison of Figs. 5 and
8(b). Points that are very close in bond-order correlations, and
highlighted in Fig. 5 with a dotted rectangle are appreciable
separated in Fig. 8(b) [the collection of proximate points that
are enclosed by the dotted rectangle in Fig. 5 are in fact in the
top and bottom right in Fig. 8(b)].

VI. CONCLUDING REMARKS

This work is admittedly not about the high degree of order in
colloids spin-coated onto patterned substrates: we found that
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the patterns, at least with the geometry and pattern spacing
considered in this work, yielded colloidal films with high
degrees of disorder. Instead, this work deals with strategies
to assess the disorder, as a precursor to improving specific
structures in future work. In this study, two methods to
characterize disorder in colloids structure spin-coated on
patterned and unpatterned substrates—Minkowski measures
of bond-orientational order and persistent homology—are
compared. These analysis methods present a complementary
and unified strategy for comparing degree of structural disor-
der. We find that structures very close in the 〈|ψmsm

6 |〉–〈|ψmsm
4 |〉

space (Fig. 5, dotted-line box) can be properly distinguished
in the width(βnorm

1 )–max(βnorm
1 ) space [Fig. 8(b), dotted-

line boxes], which also provides an intuitive explanation
of the differences in the observed disorder [Figs. 8(c)
and 8(d)].

Spin-coating of concentrated colloids on patterned sub-
strates breaks up the axial symmetry (eliminates the emergence
of color arms). Polycrystals of monolayer on hexagon pillars
are obtained. We found that scale spacing between hexagons
is an important parameter to control the process of structure
formation. For a range of substrate pattern spacing, we
find that we can clearly free the system of the long-range

orientational (OCP) structure that is characteristic of colloid
spin-coating.

Minkowski analysis that involves local measures such as
Voronoi cells defines local order in 2D systems as 6-fold or
4-fold and is less sensitive to structural disorder which in this
work is influenced by substrate wettability and changes in the
scale spacing.

This work has shown that persistent homology techniques
can be used for distinguishing disorder in colloidal systems
of spherical particles. We suggest that these methods can be
extended to identify the structures of systems of nonspherical
colloidal particles in liquid as well in solid phases, or even in
glasses.
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