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Tunable hydrodynamics: a field-frequency phase
diagram of a non-equilibrium order-to-disorder
transition†

Somayeh Khajehpour Tadavani * and Anand Yethiraj *

We present experiments on a model system consisting of dielectric (silicone oil) drops in a ‘‘leaky

dielectric’’ (castor oil) carrier fluid that exhibits dynamic non-equilibrium phases as a function of the

amplitude and frequency of an external AC electric field. At high frequencies, the dielectric drops are

pinned to a periodic lattice by dielectrophoretic forces induced by a patterned bottom electrode.

Beginning with this state of imposed order, we examine the processes that take this system from order

to disorder, with decreasing frequency corresponding to an increase in the range of the hydrodynamic

forces. We find two kinds of disorder, shape- and translational disorder, that occur in frequency–

amplitude space. We also find regimes where drop breakup is dominant, and where order/disorder of

large drops can be probed without significant drop breakup. With decreasing frequency (i.e., increasing

hydrodynamic coupling between drops) and on timescales from seconds to minutes, the drops exhibit

motion that resembles Brownian motion of particles in a crystal, with an effective temperature that

increases with the strength of the electrohydrodynamic driving force. In this limit, the system behaves

like a thermal system and the lattice is seen to melt at an effective Lindemann parameter of Leff B 0.08.

This non-equilibrium thermodynamics, probed on timescales from seconds to minutes, likely arises from

the pseudo-random velocity fields in the carrier fluid, as evidenced by the fractional, t3/2, super-diffusive

tracer dynamics at shorter timescales.

1 Introduction

Self-organization in colloidal systems has uncovered new phases
that arise from competition between entropy and tunable interac-
tions between building blocks;1–5 controlling interactions has been
a powerful means to examine the nature of crystal phases and
phase transitions.6–10 While there remain significant challenges
to making highly ordered structures,11,12 controllable disorder
also has applications in natural systems: examples are the role
of amorphous structures in biomineralization13 and the role of
disorder in the brilliant whiteness in beetle scales.14 Thus,
a better understanding of self-organization either in systems
with greater complexity or in systems farther from equilibrium
is necessary.

Self-organization in systems with greater complexity has been
explored in Brownian colloidal suspensions by examining aniso-
metric particle shape,15–17 and soft and floppy microgel particles18,19

as well as particles with anisotropic6,20 and patchy interactions.21,22

In all these cases, the goal has been monodispersity in particle
geometry, in order to keep the systems simple.

An understanding of non-equilibrium phase transitions is
also relevant in biological systems: here, two examples are the
relevance of principles of polymer physics inside cells,23,24 and
the relevance of model active matter systems25,26 for transport
processes within cells. Granular systems with building blocks
of size 10 mm or greater are invaluable as model systems
that extend the statistical physics of phase transitions to non-
Brownian systems;27–29 this includes studies with single-
particle resolution of dynamical phase transitions such as
jamming. However, a key ingredient in biological cells is the
existence of soft liquid–liquid interfaces and the formation of
compartments with or without membranes.30 In contrast
with colloidal suspensions, even the particle size in liquid–
liquid emulsions is achieved by self-organization, so they are
inherently more complex.

A recently introduced model system in a liquid–liquid
emulsion31 with drop size on the 10–100 mm scale is directly
tunable via an electrically driven hydrodynamic interaction.
Decreasing the frequency of the driving electric field has
been shown to enhance the hydrodynamic coupling between
the drops,31 with multiscale flows reminiscent of turbulence
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observed in the zero-frequency (d.c.) limit.32,33 Moreover,
non-uniform fields have been employed to create periodic
droplet arrays for microlens applications.34 This tunability
of collective behaviors suggests that it could be valuable as a
non-equilibrium model system: this is the focus of the current study.
Aqueous media have been employed as well in order to induce
and control structure formation using electrohydrodynamics,35–38

so the concepts developed in this system could be transferred
to aqueous environments.

In this study we employ a time-varying external AC electric field
with two control parameters, the amplitude and the frequency, to
examine non-equilibrium order-to-disorder processes in a hexa-
gonal array of silicone oil drops, as an internal liquid, surrounded
by castor oil, as a partially charged external liquid. For a two-
dimensional array of drops, we study the shape deformation of
drops, as well as their translational and orientational dynamics,
as the driving force is increased in two ways, either by increasing
field amplitude or by decreasing frequency.

2 Methods and techniques
2.1 Samples and hardware

Fig. 1(a) shows the side view of a test cell with the electric field
perpendicular to the microscope slide (i.e. perpendicular to our
field of view) and parallel to gravity. Two indium tin oxide, ITO,
coated cover glass slides are separated by glass spacers with
defined thickness of h = 140 mm. As shown in Fig. 1(b), the ITO
bottom plate is selectively etched by photo-lithography such
that a hexagonal array of roughly circular ITO-free regions,
diameter B50 mm and with nearest-neighbor center-to-center
spacing dnn B 100 mm, is obtained. The plates and spacers are
held together with ultraviolet-curable epoxy, Norland Optical
Adhesive 61 and 68. The ITO slides are optically transparent and
electrically conductive, which enables their use as electrodes and
imaging through them as with regular glass. The cell is filled
by pipetting an emulsion of silicone oil, dielectric constant
ein/e0 = 2.4, conductivity sin = 3.95 � 10�11 S m�1, and viscosity
min = 0.137 Pa s, and castor oil, dielectric constant eex/e0 = 3.6,
conductivity sex = 4.0� 10�10 S m�1, and viscosity mex = 0.819 Pa s,
in a volume ratio of 1 : 16. The subscripts ‘‘in’’ and ‘‘ex’’ are used
to represent the droplet and the suspending fluid, respectively.
The lateral dimension of the cells is B0.75 cm.

A sinusoidal AC voltage, Tektronix model AFG3022, is applied
to the cell, while the output voltage of the power generator is
amplified by a high voltage amplifier, Trek model PZD2000A.
Bright field microscopy is used to observe and record the image
sequences.

2.2 Image processing

The long-time dynamics of trapped droplets, located on the
etched-out patterns, is studied by filtering out the periodic
oscillations via the expedient of stroboscopic imaging at the
frequency of oscillation. The usefulness of this technique has
been shown in Fig. 1(c) by 6 snapshots at equal intervals within
a full cycle of oscillation at 3 Hz. The first and last frames are

the beginning and end of the cycle, while the four intermediate
oscillations are ignored in the strobe technique.

The second channel of the AC function generator produces a
square wave with the driving frequency and a peak-to-peak
amplitude of 2.5 V in order to trigger image acquisition by the
camera. To get the maximum of drop deformation a phase
difference of +901 between the two periodic waves is applied to
the sinusoidal wave while the bottom and top electrodes are
connected to the negative and positive electrodes, respectively.

After recording the experiment, the shape deformation and
positions of the droplets are studied. A typical field of view
(such as those shown in Fig. 4) consists of 21 drops. All
the analyses were repeated in different regions of the same
cell and also for a new cell with the thickness roughly equal to
the current cell. To lowest order, a deformed circle may
be approximated as an ellipse. An ellipse-fitting algorithm
(http://www.asu.cas.cz/sos/software/mpfitellipse.pro), written
in IDL (Interactive Data Language) is used to fit an approximate
ellipse to the points forming the drops in a binary image. The
output consists of the major axis M, the minor axis m, centroid
(x,y), and the angle of the major axis with respect to the x-axis.

Fig. 1 (a) A schematic design: side view of the cell geometry. (b) Bottom
electrode with ITO-free regions shown by circles. (c) Drop shape within one
field cycle. When one images a drop rapidly, one sees periodic oscillations
at intermediate times of 0.06, 0.12, 0.18 and 0.28 s between the two
maximums of oscillation, at 0 s and 0.34 s. The dark edges show the edge
of the circular pattern and overlaid droplets. At intermediate times, the
edges of the drops are not overlaid on the edge of the patterns. f = 3 Hz,
E = 5.6 V mm�1 and is perpendicular to the page. Scale bar is 25 mm.
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The shape deformation of the drop is quantified by the unitless
‘‘roundness’’,

R = 4Acs/(pM2) = 1/S, (1)

where the area Acs = pMm/4 and S = M/m is the aspect ratio of
the drop. R can vary between 0 and 1 with unity representing
perfectly round objects. Using the centroid of the fitted ellipse,
one is also able to track droplet motion using standard particle
tracking techniques.39 From this, we obtain (Section 4.4) the
2D mean square displacement, hDr2i, where r is the magnitude
of the displacement of each ellipse as a function of the time t
(from a reference start time t0), and h�i is an average over all the
ellipses in the system, and over the reference time. Using the
centroid of the drops, one can also obtain the pair correlation
function, g(r), and bond order parameter, hC6i.

The time correlation of drop orientations, obtained for different
frequencies and amplitudes using an auto-correlation function,
is implemented in IDL (http://www.harrisgeospatial.com/docs/
A_CORRELATE.html).

2.3 Brief summary of experiments

The silicone oil drops are prepared prior to each experiment so that
they are located, using the negative dielectrophoretic force, described
in Section 3.2, at the patterned holes in the ITO-film electrode and
have a diameter of 50 mm. While the cell has a thickness of 140 mm,
there is free space (filled with the leaky dielectric, castor oil) above
the silicone oil drop, which thus assumes the shape of a section of a
hemisphere, which from the top view is circular.

The non-deformed state of each drop is roughly hemispherical;
this is the drop shape at low amplitudes or high frequencies. In
our experiments, we hold the electric field amplitude fixed
and observe the time dependence of drop deformations for a sweep
of frequencies. Then, we change the amplitude and repeat the
experiment. For each experiment, we image the drop stroboscopi-
cally (except in Section 4.5 where we probe dynamics at times much
shorter than one period of the sinusoidal electric field oscillation).
The drop is imaged close to the bottom substrate, 10 mm above it,
in order to put the edge of the ITO pattern area out of focus and yet
not change the detected drop area significantly.

3 Background and theory

In order to incorporate tunable hydrodynamics into a model gran-
ular crystal we combine three elements: electrohydrodynamics in a
two-fluid emulsion, dielectrophoresis as a means of droplet trap-
ping, and a methodology to measure displacement fluctuations in a
crystal. In what follows, we present the related background concepts.

3.1 Electrohydrodynamics of two-fluid emulsions

In an emulsion of two immiscible dielectric liquids (‘‘internal’’
and ‘‘external’’), the shape of a drop of the internal liquid is

spherical in the absence of external forces due to the mini-
mization of surface energy. An external electric field induces
bound polarization charge resulting in a force normal to the
liquid–liquid interface that changes the shape to a prolate
ellipsoid. This shape deformation occurs when the dimensionless
electric capillary number, which is a ratio of electric forces and
restoring interfacial tension acting on a drop, i.e., CaE B eexaE2/g,
is comparable to unity. In a suspension composed of a dielectric
internal fluid and a ‘‘leaky dielectric’’ external fluid with large
enough ionic conductivity, sex, an electric field results in con-
tinuous steady-state electrohydrodynamic flows. In an AC electric
field, the field amplitude and frequency can both be utilized
to tune the strength and the range of the resulting electrohydro-
dynamic (EHD) interactions. The generic behavior is rather well
described by the lumped-parameter leaky dielectric model
(LDM)40–42 which ignores the finite Debye screening length at
the liquid–liquid interfaces.43 The deformations of the internal
liquid are characterized by a balance of three forces: the bound
polarization charge (normal to the interface), the induced free
charge (normal and tangential to the interface), and viscous
forces (also normal and tangential to the interface).43 The drop
deformation D = (d8 � d>)/(d8 + d>) can be measured experi-
mentally, and may be related to the system parameters:

D ¼ F
aeexE2

g
; (2)

where a is the radius of a non-deformed drop and F is a shape-
discriminating function that is given by

F may be used to classify deformations as non-spherical (prolate or

oblate), or spherical.42 In eqn (3), for our system, S ¼ ein
eex
¼ 0:67,

H ¼ sin
sex
¼ 0:10, N ¼ Zin

Zex
¼ 0:17, t ¼ eex

sin
¼ e0kex

sin
’ 0:81 s, o = 2pf.

The parameters e, s, and Z are absolute permittivity, conductivity,
and viscosity of liquids respectively, while k and e0 are the relative
permittivity and the vacuum permittivity respectively. The
frequency of the field f is the only variable in the equation.
The subscripts ‘‘in’’ and ‘‘ex’’ are used to represent the droplet
and the surrounding fluid, respectively. Prolate and oblate
deformations result when F 4 0 and F o 0 respectively, while
the drop stays spherical when F = 0. Fig. 2(a) represents F versus f
for the current system, where the crossover frequency from
oblate to prolate is roughly 6.1 Hz.

The strength of EHD forces, and the strength of the resulting
drop deformations, is governed by the electric field amplitude.
Feng44 wrote a modified electric capillary number for EHD
using the maximum velocity assuming creeping flows around a
non-deformed drop,

Ca0E �
9 S�1H � 1
�� ��N�1

10ðH þ 2Þ2 N�1 þ 1ð Þ
einaE2

g
; (4)

F ¼ 9

16
� 1�H�1ð11N þ 14Þ þH�2ð15ðN þ 1Þ þ Sð19N þ 16ÞÞ þ 15t2o2ð1þNÞð1þ 2SÞ

10ð1þNÞ ð2H�1 þ 1Þ2 þ t2o2ðS þ 2Þ2ð Þ

� �
: (3)
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where g C 3–4 mN m�1 is the interfacial tension between the
oils, ein = e0kin = 21.24 � 10�12 F m�1, a is the radius of the non-
deformed drop and E is the strength of the field. For the current
system, we can write Ca0

E = 0.9 � 10�9aE2 where a = 25 mm is
the initial drop radius (a and E are expressed in mks units). The
superscript ‘‘0’’ refers to the electric Capillary number at the
initial drop diameter. Variation of Ca0

E versus E is plotted in
Fig. 2(b): also shown are circles representing the values of
electric field amplitude used in this work.

The range of the electrohydrodynamic (EHD) interactions
can be modulated by changing the frequency, f. Varying f affects
the lengthscale of hydrodynamics interactions, lh = vd/f, where

vd = mEE is the ionic drift velocity, which is set by the electric
mobility mE and the electric field, E. The electric mobility in turn
is mE = zie0/6prZex,

45 where zie0 is the ions’ charge, and r is the
radius of the ions. The electric mobility of the current system
mE C 75 mm2 V�1 s�1. Fig. 2(a) shows the inverse relation of the
hydrodynamic length versus frequency for two field amplitudes.
At the crossover frequency of E6 Hz, lh is o50 mm for E =
3.5 V mm�1 and E100 mm for E = 8.2 V mm�1; i.e., it is smaller
than and equal to, respectively, the drop nearest-neighbor
spacing dnn = 100 mm, while at 2 Hz, lh 4 dnn for all field
amplitudes probed. The frequency regime below 6 Hz is there-
fore where we expect interesting electrohydrodynamic behaviors.

F is a function of frequency (and not field amplitude), while
the electric Capillary number, Ca0

E, is a function of field
amplitude (and not frequency). Both control deformation of
individual drops. The hydrodynamic length, lh, which is a
function of both, defines the lengthscale over which drops
couple with neighboring drops.

3.2 Dielectrophoretic trapping of drops

We employ dielectrophoresis to prepare a periodic lattice of
drops, using methods demonstrated previously.34 A patterned
electrode creates a non-uniform electric field. A dielectric drop
in a dielectric liquid responds to the field non-uniformily via
the dielectrophoretic force, FDEP,

FDEP ¼
1

2
ein � eexð ÞrðE � EÞ; (5)

which, in the long-time steady state, creates a spatially localized
array of silicone oil drops in castor oil, or more generally, a
patterned arrangement of two immiscible dielectric liquids with
different dielectric constants.34 Fig. 2(c) shows a simulation (using
Poisson Superfish http://laacg.lanl.gov/laacg/services/serv_codes.
phtml) of the equipotential lines, as well as the electric field
amplitude and direction (vectors on a grid) above a patterned
electrode. The region with holes in the conducting surface has
sparse collections of equipotential lines as well as vectors with
the most rapidly changing amplitude, and this region attracts
the oil with a lower dielectric constant. These holes in the
bottom electrode are thus a trap for the silicone oil, and thus
make this system quasi-two-dimensional.

3.3 Bond-orientational order

Order and disorder in two dimensions are characterized by a
bond-orientational order parameter.46 For 6-fold symmetric
structures, such as the symmetry of the periodic lattice imposed
by dielectrophoretic methods in this work, the relevant order
parameter is

C6 ¼
1

N

PN
j¼1

lje
i6yj

PN
j¼1

lj

���������

���������
; (6)

where N is the number of nearest neighbors at drop j, lj is the
line segment that connects the neighbors j � 1 and j, and yj is
the angle that the vector from the selected drop to the jth

Fig. 2 (a) The shape-discriminating function, F, is greater than zero at
high frequency (prolate drops), but becomes negative (oblate drops) at
roughly 6 Hz. The hydrodynamic length, lh decreases inversely with
frequency, but increases proportionally with field amplitude. (b) Electric
capillary number, Ca0

E, versus electric field amplitude, E. As Ca0
E approaches

unity, the smooth liquid–liquid interface should destabilize and lead
to drop breakup. The points indicate the experimental field values used.
(c) Simulation of electric field in a cell with a uniform top conducting
electrode and a bottom electrode with non-conducting holes. The low
electric field regions have less dense equipotential lines and smaller electric
fields vectors (denoted by arrows). The gradient of this non-uniform electric
field forces the liquid with lower dielectric constant, e, into low electric
field regions.
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neighbor makes with respect to the x axis.47,48 C6 can vary
between 0 and 1, with 1 indicating perfect 6-fold symmetry. For
drops designated as 6-fold sites (C6 4 0.7), hC6i is calculated in
one frame and then averaged over an image stack that repre-
sents a time series.

3.4 Study of dynamics in a soft crystal

When electric fields are applied in our leaky dielectric model
system, they generate pseudo-random flows in the carrier fluid.
These flows, in turn, generate drop motions, which can be exam-
ined as if it were effective self-diffusion.33 Since we have drops
on a lattice in this work, we examine our system by employing
an analog to that of colloid diffusion in a crystal lattice.

In a fluid and in a crystal, the mean-squared displacements
of atoms yield important information: the self-diffusivity in a
fluid, and the elastic constant in a crystal. In soft crystals, and
in two dimensions, one can write the mean-squared displace-
ment (MSD), following Weiss et. al.,49 as

MSD ¼ ðrðtÞ � rð0ÞÞ2
� �

¼
bkþ 1

4Dt

bk
2
þ 1

4Dt

� �2
; (7)

where b�1 = kBT, k is the spring constant, D is the effective
diffusion coefficient, and t is time. At t - 0, the behavior
is simply diffusive: MSDt-0 = 4Dt. Owing to the stroboscopic
imaging, the shortest time probed is t = 1/f, and we have limited
data with which to access short time behavior to extract the
effective diffusivity D; however, the asymptotic long-time value
of the MSD yields

MSDt!1 ¼ ðrðtÞ � rð0ÞÞ2ðt!1Þ
� �

¼ 4

bk
: (8)

A similar interplay of linear time dependence followed by a
plateau is observed in colloids (which display Brownian diffusion)
in the presence of an optical trap (which acts as a harmonic
restoring force50 at least at small trapping strengths51). One
may relate the long-time saturation value of the MSD with an
effective Lindemann parameter

Leff ¼
1

dnn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4
MSDt!1

r
¼ 1

dnn

ffiffiffiffiffiffi
3

bk

s
; (9)

where dnn is the crystal nearest-neighbor distance.52

4 Results and discussion
4.1 Electrohydrodynamic drop deformation

In the presence of an external AC electric field, for frequencies
below the crossover frequency shown in Fig. 2(a) where F o 0,
a silicone oil drop becomes oblate, i.e., it undergoes vertical
compression, and thus expands laterally. The two-dimension,
lateral view of this time-dependent, periodic expansion can
either be symmetric and circular or non-circular, depending on
the strength of the driving field, but it is roughly periodic due
to the time-dependence of the AC electrohydrodynamic forces.
By imaging the system stroboscopically, one can follow subtle

deviations from periodicity in the long-time lateral orienta-
tional and translational dynamics of the drops, once per cycle,
as a function of the amplitude and frequency of the driving
electrohydrodynamic forces.

One can measure F experimentally using eqn (2). When a
uniform sphere becomes an oblate spheroid, the lateral cross-
sectional image shows a circle with increased area. To measure
D from 2D snapshots, one needs to measure d8 (i.e., parallel to
the vertical electric field) and d> (in the image plane, which is
perpendicular to the vertical electric field). In actual fact, in
the image plane the drop is a deformed circle which can be
approximated as an ellipse. A fit therefore yields two values,
d1> = M/2 and d2> = m/2, where M and m are the major and
minor axes of an ellipse with area Acs = pd1>d2> = pMm/4.

The snapshots of a drop shown in Fig. 3(b) (E = 5.8 V mm�1)
show that with decreasing frequency, the drops become larger
in cross section and also increasingly non-circular. Below 1 Hz
in Fig. 3(c), the drop shrinks in size due to the breakoff of tiny
droplets from the large drops. The sudden increase or decrease
in area of the drops at low frequencies is due to the breakup/
coalescence of droplets. The variation of the fitted ellipse cross-
sectional area, Acs, of a drop at different frequencies is plotted
in Fig. 3(c) for the field amplitudes employed in this work.
While Acs is roughly the same at high frequencies for all field
amplitudes, with decreasing frequency there is first an increase,
corresponding to a shape change from spherical to oblate
spheroidal. This larger cross-section correlates with a smaller
vertical extent due to volume conservation of the drop.

For a non-deformed drop, close to the crossover frequency,
where a = d8 = d1> = d2>, the volume can be measured using
V0 = 4pa3/3. By lowering the frequency, before the breakup
of the drop, a spherical drop changes into an ellipsoid, while
the volume of the drop stays constant, Vellipsoid = V0, so one can
measure d8 = V0/(4pd1>d2>/3)� V0/(4Acs/3). In addition, we may

simply obtain d> using d? ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Acs=p

p
. The experimental values

of F, obtained from the experimental D using eqn (3), are
shown in Fig. 3(d) (the symbols refer to experiments at different
electric field amplitudes), and are in good agreement with the
theoretical value (solid black curve) in both the crossover
frequency, C6 Hz, and the decrease in the amplitude of F at
low frequency.

4.2 An order–disorder transition

Fig. 4 shows pictorially the field- and frequency-dependence of
an order-to-disorder transition in a silicone oil drop array in a
castor oil background. A snapshot from each value of ampli-
tude and frequency may be observed in ESI,† Movie S1. At each
field amplitude, we see the effect of lowering the AC frequency,
and thus increasing the hydrodynamic length. For the lowest
field amplitude reported (E = 3.5 V mm�1, Ca0

E C 0.27), we find
that upon decreasing the frequency from 8 Hz to 0.2 Hz (top to
bottom in the first vertical panel in Fig. 4) we see a modest
increase in cross-sectional area of the drop (purple circles in
Fig. 3(c)). The drops are also slightly more displaced from their
equilibrium position at the lowest frequencies, driven by fluid
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motion; this can be deduced qualitatively from the motion of a
black dust particle (observed at different locations in the 1, 0.8,
and 0.2 Hz graphics).

At a higher field amplitude (E = 4.6 V mm�1, Ca0
E C 0.48), one

observes by decreasing the frequency from 8 Hz to 0.8 Hz (top
to bottom in the second left vertical panel in Fig. 4) that drops
not only have larger lateral area (blue squares in Fig. 3(c)), but
that below a threshold frequency, the circular droplets changed
into faceted drops, going from circular to polygonal, at 0.6 and
0.4 Hz and then to disordered and random shapes at 0.2 Hz.
No drop breakup/coalescence is observed for E = 3.5 V mm�1

and E = 4.6 V mm�1.
At the next higher field (E = 5.8 V mm�1, Ca0

E C 0.76) one new
element is introduced: the breakup. This is observed at and
below 1 Hz (middle panel in Fig. 4): the darker spots in Fig. 4 are
locations of drop breakup, and drops get depinned from their
trap locations. There is a balance between breakup of larger
drops and coalescence of smaller droplets, with the end result
being a shift of the peak in the drop size distribution to smaller
values; this has been discussed in earlier work.32,33 With the
consequent reduction in drop size and Ca0

E, the polygonal shapes
are transformed to curved-edge shapes at 0.8 Hz. For 0.4 Hz and
0.2 Hz, the drops appear rather detached from the traps.

At E = 7.0 V mm�1 (Ca0
E C 1.1) (the fourth vertical panels in

Fig. 4), much the same behavior is observed, except at a higher
frequency of about 2.0 Hz. Similarly, the polygonal deformation
is observed from 2.75 to 2.0 Hz, followed by curved-edge shapes
from 1.8 Hz to 1.4 Hz.

At the highest field, however, E = 8.2 V mm�1 (Ca0
E C 1.51),

rather than a transition from circular to polygonal, one observes
orientational deformation between 5.0 and 3.5 Hz. The increase
in drop area (black triangles in Fig. 3(c)) is also much less
pronounced than for lower field amplitudes, owing to earlier
onset of drop breakup. Drop breakup and coalescence are
nevertheless observed at frequencies below 4 Hz.

One can quantify these observations by tracking the height
of the first peak of the pair correlation function, g(s), and the
roundness, R (defined in eqn (1)), of droplets as a function of
frequency and amplitude: these are shown in Fig. 5(a) and (b),
respectively. A common transition at all field amplitudes is a
transition to non-circular lateral drop shapes with decreasing
frequency, which is followed by depinning of drops from
their trapped positions at slightly lower frequency: the latter
correlates with a decrease in the height of the nearest neighbor
peak. This happens (filled circles in Fig. 5(b)) at 4.5 Hz at
E = 8.2 V mm�1 and 0.6 Hz at E = 4.6 V mm�1. For all fields
above E = 3.5 V mm�1, the roundness reaches a low value
between 0.75 and 0.85. The highest field (E = 8.2 V mm�1) is
different, because there is a fall with decreasing frequency in
roundness, first near 3.75 Hz, then an increase, then a second
decrease near 2 Hz.

In general, the non-monotonic increase in R likely arises
from a decrease in CaE due to a reduction in drop size after
breakup. The dynamics of the droplets close to the frequency
threshold separating circular from non-circular droplets is
observed for different field amplitudes in ESI,† Movie S2.

Fig. 3 (a) A silicone oil drop in an emulsion of castor oil with fluorescent PMMA tracer particles is imaged at (i) 110 mm, (ii) 10 mm and (iii) 0 mm from the
bottom electrode by fluorescence microscopy. The drop is roughly hemispherical and does not touch the top electrode. f = 8 Hz, E = 7.0 V mm�1,
perpendicular to the page. Scale bar is 50 mm. (b) A binarized image of the drop at the first few lower (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4 Hz) and the highest
(8.0 Hz) frequencies with the fitted ellipse overlaid in red. E = 5.8 V mm�1 and is perpendicular to the page. Scale bar is 50 mm. (c) Variation of the fitted
ellipse lateral cross-sectional area, Acs, of one drop with frequency, for different field amplitudes. (d) Experimental plot of F, obtained from 2D images of
deformed droplets at different electric fields. A good agreement between the observations and the theoretical expectation for the frequency
dependence is observed, both in terms of (the negative to positive) crossover frequency and magnitude of F.
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The transition from order to disorder is quantified using
hC6i (defined in eqn (6)), and is shown in Fig. 6 for different
frequencies and field amplitudes. hC6i is close to 1 for all field
amplitudes at a frequency of 8 Hz; the small deviation from 1 at
this frequency comes from a small asymmetry in the lattice.
hC6i decreases from 1 as frequency is decreased: there is a
noticeable decrease already at 6 Hz for E = 8.2 V mm�1, while
for E = 8.2 V mm�1, the decrease in hC6i is only noticeable
below 1 Hz. At high enough fields or low enough frequency,
strong EHD flows result in the loss of drops due to escape or
breakup. Because hC6i depends on the existence of an intact
neighborhood, it is not so useful in characterizing the disordered
state. To quantify this state, we examine next orientational and
translational dynamics, both of which are accessible via single-
drop quantities.

4.3 Orientational dynamics of drops

Having measured roundness, we next look at the dynamics of
deviation of the lateral shape of a drop from roundness. For
small fluctuations, each drop can be treated as an ellipse with a
major and minor axis. We follow the orientational dynamics
of drops as a function of frequency and amplitude, using the
auto-correlation of angular variation in ellipticity of the drop.

The auto-correlation function, C(t), with respect to t = 0, i.e.,
C(t) = cos(y � y0), where y and y0 are the angles of the fitted
ellipse on the binary drop at times t and t0, respectively. Then,
in the frame of interest, a spatial average of C(t) over all the
drops is calculated. An example, at 8.2 V mm�1 and 4 Hz, is
shown in Fig. 7(a): here the correlation decays rapidly to a value
close to zero in around 10 s. Note that C(t) can be negative, but
the negative values are small. Other methods to analyze image
time series exist; one example is differential variance analysis
reported in ref. 53. We find that this analysis results in char-
acteristic times that are comparable to those obtained using the
above orientational correlation analysis (see Fig. S1 in ESI†).

The decay of C(t) shows no clear functional form (it is
neither exponential nor a power law) but if one identifies
C(t) as a dynamic order parameter, there is a characteristic
time t = t when C(t) reaches a fraction 0.5 of its maximum value
of 1, and one can then plot t versus 1/f (Fig. 7(b)).

The ‘‘universal’’ low curve for all fields (corresponding to a
straight line with a slope of 1, i.e., t B 1/f ) is an intrinsic limit:
we cannot probe shorter times due to the stroboscopic imaging.
For low t (i.e. at high frequency or low 1/f ), the drops are
essentially static. At each field amplitude, as the drop is driven
more strongly by lowering frequency, the timescale increases

Fig. 4 Order-to-disorder phase transition of the silicone oil array, surrounded by castor oil, by decreasing the frequency (top to bottom) and increasing
the strength (left to right) of an AC electric field. The darker spots are out of focus droplets. A snapshot from each value of amplitude and frequency may
be seen in ESI,† Movie S1. Scale bar is 200 mm; and the electric field is perpendicular to the page.
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(very significantly for E = 8.2 V mm�1 and less so for lower
amplitudes) and then decreases again. As an example, at
E = 8.2 V mm�1, the peak in t occurs at 0.25 s, correlating

very well with the minimum in roundness in Fig. 5(b). The
subsequent decrease in t at lower frequency corresponds to
breakup of the drop, and consequent decrease in electric
Capillary number.

4.4 Long-time dynamics: translational dynamics of drops

The translational dynamics of drops as a function of frequency
and amplitude was studied by measuring the mean-squared
displacement (MSD) of drop centroids. Fig. 8(a) shows the
trajectory of each drop in a small region consisting of 7 drops
over 600 s for four different frequencies, 0.2, 0.6, 1.0, and 1.4 Hz
at E = 5.8 V mm�1. It is clear that the trajectories are most
localized at 1.4 Hz and the least localized at 0.2 Hz. The mean-
squared displacement (MSD) of the entire drop array, for the
same frequencies and amplitude, is plotted in Fig. 8(b). Since
we employ stroboscopic imaging, the minimum time we can
probe (for t 4 0) is t = 1/f. The maximum time probed (600 s)
is much longer than the typical orientational decay times of
interest, which are of the order 10 s or less. We observe that for
each frequency, the MSD increases linearly until it saturates.
With increasing frequency, the saturation value of the MSD
decreases. This is consistent with the localization of trajectories
seen in Fig. 8(a).

For translational dynamics of charge-stabilized colloidal
particles in a crystalline suspension, the individual particle
dynamics is constrained by the harmonic interactions with its
neighbors. In the colloidal study of Weiss et al.,49 this behavior

Fig. 6 Average local bond-orientational order parameter hC6i versus
frequency and for each field amplitude. The 6-fold symmetry decreases
by lowering the frequency.

Fig. 7 (a) The auto-correlation function, C(t), at E = 8.2 V mm�1 and
f = 4 Hz. C(t) decays from 1 at t = 0 s to a value close to zero in roughly
10 s. (b) Identifying C(t) with a dynamic order parameter, the characteristic
time t when C(t) reaches a fraction 0.5 of its maximum value of 1 is plotted
against 1/f. The slope of 1 corresponds to t = 1/f, which is an intrinsic lower
limit of measurable t.

Fig. 5 (a) The height of the first peak of the g(r), i.e. g(s) where s is the
nearest-neighbor distance versus frequency and for different field ampli-
tudes. g(s) decrease with decreasing fresquency for each field amplitude.
(b) Roundness, R, as a function of frequency and field amplitude. For a
perfect circle drop, roundness is close to 1. R decreases with either
increasing field amplitude or decreasing frequency, with a low value of
about 0.75. (c) The characteristic frequency, fc, versus field amplitude, for
non-circular deformation (filled circles) and for breakup (squares). fc in all
cases increases with field amplitude.
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has been analyzed as the combination of diffusive particle
motion and harmonic (elastic) restoring force. In our system,
a similar restoring force from the negative FDEP, attracts the drops
to the ITO-free regions. In the colloidal crystal, each colloidal
particle diffuses with a self-diffusion coefficient, D, but is con-
strained by the potential of mean force.

In our droplet system, the diffusion of droplets is provided
by hydrodynamic interactions, characterized by the fractional
dynamics in the outer fluid shown in Fig. 10, which tends to free
the drops from their trapped potential. Decreasing the frequency
increases the range of the hydrodynamic interactions, and thus
enhances the effective-diffusive contribution. We can thus use
the formalism represented by eqn (7)–(9) to extract effective self-
diffusion coefficients D and Lindemann parameter Leff as we
disorder the droplet lattice by EHD forces.

The self-diffusion coefficient, D versus frequency f for various
field amplitudes, shown in Fig. 8(c), allows us to cross-check
some assumptions. While the data for self-diffusion are limited
at short times, we nevertheless can obtain reasonable data for
f o 2 Hz and at all field amplitudes except E = 8.2 V mm�1, due
to breakup events that have an onset at higher frequencies,
which make the identification of the patterned drops difficult.
There is a common plateau, for E 4 3.5 V mm�1, at around
15 mm2 s�1. Given that the orientational correlations have
a lifetime t of between 0.1 and 10 s, this implies that the
contribution of drop deformation to the centroid MSD is
of order Dt B 7–70 mm2. As can be seen in Fig. 8(a), the low-
frequency results are those where the MSD plateaus at a value

larger than this, i.e., true translational dynamics dominates,
while at higher frequencies, orientational and translational
dynamics are not clearly separable in the mean-square displace-
ments. The plateau diffusion coefficient of 15 mm2 s�1 (Fig. 8(c))
corresponds to a thermal system with an effective temperature
Teff = 6pZexaD/kB B 4 � 108 K.

The effective Lindemann parameter, Leff, is shown in Fig. 8(d).
With decreasing frequency, a transition from Leff C 0 to values
greater than zero is seen at a characteristic frequency, fc, for each
field amplitude. fc is plotted versus field amplitude in Fig. 11. The
regime of strong hydrodynamics is expected to occur at higher
frequencies with increasing field amplitudes, consistent with
Fig. 8(d). ESI,† Movie S2 shows the dynamics of a sub-region of
a lattice of drops very close to the threshold of drop breakup.
Two values of fc when Leff Z 0.01 and 0.02 are considered for
possible correspondence with the characteristic frequencies for
non-circular deformation and breakup in Fig. 5(b), because all the
Leff are observed to increase in that range.

For comparison, Zahn and Maret54 saw melting manifest itself as
a second rise of the MSD (they refer to this as gL) above the plateau
value beyond a critical value of an interaction strength. This critical
plateau value of MSD is around 0.02–0.03dnn

2 B (0.15dnn)2. The
static Lindemann parameter (in units of dnn) is generally of order
0.1 at the onset of melting in 2D.55,56 While this particular criterion
for melting is not valid in usual 2D melting because it diverges in the
crystal as well, in the current study, i.e., a crystal with an imposed
lattice (and fluctuations suppressed), it is probably a reasonable
disorder parameter.

Fig. 8 (a) Trajectories of droplets over 600 s (E = 5.8 V mm�1). (b) Mean-squared displacement (MSD) of the droplets in (a). (c) Self-diffusion coefficient
obtained for different field amplitudes and frequencies. (d) Effective Lindemann parameter, Leff, for all frequencies and amplitudes. With increasing field
amplitude, the transition from order to disorder occurs at higher frequencies.
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It should be noted that our measurements contain self-
selection: only drops that remain trapped are included in either
R or Leff. Therefore, the measurements of the trapped-drop
lattice are a very good representation of the entire system in
the ordered state, but less so as one approaches the onset of
melting. We observe that Leff increases to a maximum value of
about 0.08 for E = 4.6 V mm�1 and E = 7.0 V mm�1, and to 0.12
for E = 5.8 V mm�1. These increases occur in the frequency
range B0.2–0.4 Hz. Shown in ESI,† Movie S3 is the dynamics at
0.2 Hz for E = 4.6 V mm�1 and E = 5.8 V mm�1. For E = 4.6 V mm�1

(Ca0
EC 0.48), there is no drop breakup, and the lattice is near

the disorder threshold: further lower frequency would corre-
spond most closely to the straightforward phenomenon of
lattice melting. At the higher amplitude, most of the original
drops have broken into tiny droplets, and the lattice is melted
concurrently.

Next, we discuss the role of drop breakup at higher Ca0
E.

Breakup (Fig. 8(d)) already begins at the low value of Leff E 0.02
for field amplitudes E = 5.8 V mm�1 (Ca0

E C 0.76) and higher.
Note that this corresponds to frequencies f B 1 Hz, 2 Hz, and 4
Hz, respectively for E = 5.8 V mm�1, 7 V mm�1, and 8.2 V mm�1,
which is very close to the thresholds that can be identified with
first breakup in the image panels in Fig. 4, and the threshold
frequencies obtained in the roundness plot (Fig. 5(b)). Since
we are only tracking the dynamics of the trapped drops, there
are numerous unrecorded smaller droplets generated after
breakup which are moving much faster. Shown in ESI,† Movie
S4 is the dynamics at 0.8 Hz and 1.6 Hz for E = 7.0 V mm�1. At
both frequencies, there is simultaneously an increase in drop
breakup and drop translational motions.

At higher driving, the system re-adjusts, via drop breakup, to
lower Ca0

E by reducing the trapped drop size, and thus the
system remains at the threshold of disorder without the lattice
melting. In addition, at E = 8.2 V mm�1 (Ca0

E C 1.5), the circular-
to-noncircular transition occurs without faceting (as observed
in the right panel ESI,† Movie S5 at 3.5 Hz), and the frequency
threshold (4 Hz) is much closer to the crossover of 6 Hz, thus
implying a mechanism of drop breakup that has a much
stronger dipolar contribution.

A strong correlation between hC6i and Leff is observed in
Fig. 9. hC6iC 1 deviates from 1 to lower values as Leff increases.
While either parameter is useful in characterizing disorder, Leff

is practically easier to obtain from our image time series, as it
depends on single-particle trajectories.

4.5 Short-time dynamics: the underlying flow mechanism

Prior to the drop deformation experiments, non-stroboscopic
experiments were carried out in emulsions with castor oil seeded
with fluorescent PMMA tracer particles with diameter of B1 mm.
After an external AC electric field is imposed, the MSD of PMMA
particles around the silicone oil drops was measured for various
frequencies and amplitudes. The colloidal particles used are not
ideal passive tracers, because a small fraction of these particles
tend to adhere to drop interfaces. Thus, it is best to study drop
dynamics without tracers; nevertheless, it is informative to first
probe the fluid flow of the drops using tracer motions. One can

write MSD p tg, where g = 1 represents diffusive motion while
g4 1 represents super-diffusive (enhanced) motions. Fig. 10 shows
log(MSD) versus log(time), at very short times, 0.05 o t o 10 s,
for the current system at 30 mm above the bottom electrode
where g = 1.42 � 0.17.

Super-diffusive motion with a 3
2

power law has been observed
before in active motor-driven motion inside cells57 and ascribed

Fig. 9 The average bond order parameter, hC6i correlates well with Leff:
hC6i is close to 1 where Leff - 0, and decreases monotonically with
increasing Leff; the solid line is a guide to the eye. Unlike hC6i, however, Leff

can be obtained far into the disordered regime.

Fig. 10 (a) Fractional tracer particle dynamics in the outer fluid is
observed by linearity of a log(MSD) versus log(time) plot (the slope yields
the power law g). Data are obtained from an image time series obtained
30 mm above the bottom (patterned) electrode, i.e., in the plane of
the drop. g is measured to be equal to 1.42 � 0.17, showing enhanced
super-diffusive dynamics consistent with a 3/2 power law that is indepen-
dent of frequency and field amplitude. (b) From the prefactor Kg we can
construct an experimental hydrodynamic lengthscale lh ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Kg=f g

p
, which

increases with decreasing frequencies.
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to Brownian motion in the presence of random fluid velocity
fields58,59 (alternatively termed fractional Brownian motion60).
The g B 1.5 power law for the super-diffusive dynamics of the
carrier fluid at very short times, observed in Fig. 10(a), is thus
consistent with random velocity fields in the carrier fluid. These
random flows would give random kicks to the large drops.
Brownian motion in colloidal systems arises from random kicks
from solvent molecules at much shorter timescales. The appar-
ent Brownian motion of the drops at long times (t c 1 s) and
large spatial scales (drop diameter of 50 mm) also likely arises
from the observed fractional dynamics at short (0.05 o t o 10 s)
times. We may write

MSD = Kgt
g. (10)

Fitting the MSDs with g = 1.5, we obtain Kg, a generalized
diffusion constant with units of m2 s�1.5. Each log(MSD) in
Fig. 10 was shifted vertically by subtracting log(Kg) and thus
achieving collapse of all the data onto one master curve. We can

plot lh ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Kg=f g

p
, which gives us a (frequency- and amplitude-

dependent) lengthscale that is the experimental analog of
the hydrodynamic lengthscale introduced in Fig. 2(a). The
distances traveled by tracer particles in the outer fluid between
successive images are a meaningful lengthscale flow between
trapped drops for the stroboscopic imaging of drops employed
in the remainder of this work. It should be noted that lh is
difficult to measure under strong driving conditions, but lh o lh

in all cases where it is measurable.

5 A non-equilibrium field–frequency
phase diagram

The structural study of order to disorder in Section 4.2 found
first a loss of circularity, and then a second characteristic
frequency that we identified with the first incidence of drop
breakup. The increase in fc (corresponding to either drop
deformation or breakup) with E is nonlinear and not fittable
to a quadratic E2 dependence that would be expected from a
dipolar system. Indeed, the importance of hydrodynamic flows
(i.e., interactions beyond dipolar) is seen clearly in the super-
diffusive t3/2 tracer particle motions in the outer fluid that is
observed (Fig. 10) even when there is minimal drop deforma-
tion; e.g., at 8 Hz and E = 5.8 V mm�1.

In Fig. 11, we see that these characteristic frequencies that
we identified with a transition from circular to non-circular
shape and for a transition into the drop breakup regime
(Fig. 5(b)) correspond rather closely to those from translational
dynamics (Fig. 8(d)) when Leff = 0.01 and 0.02, respectively.
This correspondence is only strictly valid at amplitudes of
E = 4.6 V mm�1 and above; i.e., Ca0

E C 0.5. No breakup is
observed for lower amplitudes.

On the other hand, Leff continues to increase at low frequen-
cies, and a higher Leff near 0.08 likely corresponds to an
approach to melting, given that the Lindemann criterion used
in Gilvarry55 is directly applicable to the 2D lattice in this study
where fluctuations in the mean lattice position are suppressed

by the dielectrophoretic trap. This also corresponds visually
(see ESI,† Movie S1) to the amplitude and frequency where tiny
droplets leave the pattern for CaE = 0.75 and higher. The solid
black line between fc = 0.2 and 0.45 Hz is close to the criterion for
melting; this line is close to the drop deformation transition at
the smaller field amplitudes, but is distinctly lower at higher E.

In between, in the green region of the dynamic phase
diagram (Fig. 11), the system remains self-organized with
drop breakup decreasing CaE while keeping the system at the
threshold to disorder. In both the regimes of strong driving
force (the green region and the dark gray region at the bottom
of the phase diagram), the system behaves like a thermal
system with an effective temperature Teff B 108 K.

6 Conclusion

Far-from-equilibrium systems for studying two-dimensional dis-
order exist: examples are shaken granular media27 and complex
plasmas.61 The advantage of the current system is that it is a
simple driven, dissipative system with liquid–liquid interfaces
where there are two continuously variable parameters with which
to directly control the strength and range of hydrodynamic
interactions. In addition, it is a real-space far-from-equilibrium
system which affords the possibility of droplet trapping (via
dielectrophoresis in this case), thus providing a great degree of
control of droplet shape and kinetics.

We note the similarities and differences to a de-pinning
transition.62 In a typical de-pinning transition, there is a steady
driving force that drives the system from pinned to moving,
often in coherence. In this system, the driving force is not
coherent, but is itself pseudo-random and thus mimics thermal
motion; thus increasing the driving force resembles increasing
the temperature. This is in contrast with a field-induced dipolar

Fig. 11 Characteristic frequencies obtained for a transition from circular
to non-circular shape (blue filled circles) and for a transition into the drop
breakup regime (blue open squares) correspond rather closely (at field
amplitudes larger than E = 4.6 V mm�1 and Ca0

E Z 0.5) to those from
translational dynamics when Leff = 0.01 (pink filled circles) and 0.02 (pink
open squares) respectively. Higher Leff, corresponding to the green region
in (fc,E) space, is the regime of disorder. ESI,† Movie S2 shows dynamics
along the threshold (light gray region in the plot). The unshaded region
above is the ordered regime. Leff B 0.08–0.12 (dark gray region near
bottom) corresponds to a classic criterion for melting.55
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system, where increasing the driving force resembles a decrease
in temperature.

How is fractional tracer dynamics consistent with the apparent
Brownian motion of granular drops? Super-diffusive dynamics is
observed at short times (0.05 o t o 10 s), and at longer times
these pseudo-random flows result in giving the drops random
kicks that can feasibly resemble Brownian motion at much longer
times (seconds to minutes). All the drop dynamics and the
emergent effective thermodynamics analyzed in this work thus
likely arise from these underlying pseudo-random fluid flows in
the outer fluid of the oil-in-oil emulsion.

In this system, we are able, at intermediate field amplitudes
Ca0

E B 0.5, to approach a pure disordered state by lowering
frequency f with no interference from drop breakup processes.
At higher field amplitudes, Ca0

E Z 0.75, drop breakup and
disordering are concurrent processes as f decreases. Indeed,
rather than disordering the lattice with increased driving force,
tiny droplets break off from the large drop (decreasing its CaE),
and the large-drop lattice restabilizes. Thus, the system self-
organizes to remain at the disorder threshold. This process
goes on until the effective Lindemann parameter Leff B 0.08
(dark gray regime at the bottom of the phase diagram), at which
point the lattice melts.
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Viñas and A. Yethiraj, Soft Matter, 2013, 9, 3220.

12 J. Dobnikar, A. Snezhko and A. Yethiraj, Soft Matter, 2013, 9,
3693–3704.

13 L. Addadi, S. Raz and S. Weiner, Adv. Mater., 2003, 15,
959–970.

14 P. Vukusic, B. Hallam and J. Noyes, Science, 2007,
315, 348.

15 M. Adams, Z. Dogic, S. L. Keller and S. Fraden, Nature, 1998,
393, 349–352.

16 F. M. van der Kooij, K. Kassapidou and H. N. W. Lekkerkerker,
Nature, 2000, 406, 868–871.

17 A. van Blaaderen, Nature, 2006, 439, 545–546.
18 H. Senff and W. Richtering, J. Chem. Phys., 1999, 111,

1705–1711.
19 D. Paloli, P. S. Mohanty, J. J. Crassous, E. Zaccarelli and

P. Schurtenberger, Soft Matter, 2013, 9, 3000.
20 U. Dassanayake, S. Fraden and A. van Blaaderen, J. Chem.

Phys., 2000, 112, 3851.
21 S. Jiang, Q. Chen, M. Tripathy, E. Luijten, K. S. Schweizer

and S. Granick, Adv. Mater., 2010, 22, 1060–1071.
22 E. Bianchi, R. Blaak and C. N. Likos, Phys. Chem.

Chem. Phys., 2011, 13, 6397.
23 C. P. Brangwynne, P. Tompa and R. V. Pappu, Nat. Phys.,

2015, 11, 899–904.
24 A. A. Hyman and K. Simons, Science, 2012, 337, 1047–1049.
25 A. Morin, N. Desreumaux, J. Caussin and D. Bartolo, Nat.

Phys., 2017, 13, 63–67.
26 C. J. O. Reichhardt and C. Reichhardt, Nat. Phys., 2017, 13,

10–11.
27 R. P. Behringer, K. E. Daniels, T. S. Majmudar and M. Sperl,

Philos. Trans. R. Soc., A, 2008, 366, 493–504.
28 M. P. Ciamarra, P. Richard, M. Schröter and B. P. Tighe, Soft
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