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We characterize the superdiffusive dynamics of tracer particles in an electrohydrodynamically driven emulsion
of oil droplets in an immiscible oil medium, where the amplitude and frequency of an external electric
field are the control parameters. In the weakly driven electrohydrodynamic regime, the droplets are trapped
dielectrophoretically on a patterned electrode, and the driving is therefore spatially varying. We find excellent
agreement with a 〈x2〉 ∼ t1.5 power law and find that this superdiffusive dynamics arises from an underlying
displacement distribution that is distinctly non-Gaussian and exponential for small displacements and short
times. While these results are comparable with a random-velocity field model, the tracer particle speeds are in
fact spatially varying in two dimensions, arising from a spatially varying electrohydrodynamic driving force.
This suggests that the important ingredient for the superdiffusive t1.5 behavior observed is a velocity field that
is isotropic in the plane and spatially correlated. Finally, we can extract, from the superdiffusive dynamics, a
experimental length scale that corresponds to the lateral range of the hydrodynamic flows. This experimental
length scale is non zero only above a threshold ion mobility length.
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I. INTRODUCTION

Diffusion is characterized by a mean-squared displacement
that increases linearly with time: in one dimension, 〈x2〉 =
2Dt , and the underlying distribution of displacements is
Gaussian. However, in many systems in colloid science and
biology, it has been recognized that a relation of the form
〈x2〉 ∼ tγ holds, with γ �= 1. This is often termed anomalous
transport. Apart from simple ballistic motion (corresponding
to γ = 2), there are two categories of observed anomalous
motion: subdiffusive (0 < γ < 1) and superdiffusive (γ > 1).

Anomalous transport that is subdiffusive or superdiffusive
can be observed in biological cells [1–4]. The essential ingre-
dients that generate anomalous motions are macromolecular
crowding (which can restrict motions) and active driving
(which can enhance motions). Subdiffusive motions have been
extensively studied in the context of macromolecular crowding
[3,5,6].

Enhanced, superdiffusive dynamics, while less common,
is particularly relevant to (active or driven) systems out of
equilibrium. A number of theoretical studies have found
reasons for superdiffusive behavior. Ajdari [7] considered a
model where particles diffuse until they are reversibly adsorbed
onto active filaments which propel them. Bouchaud et al. [8],
Zumofen et al. [9], and Redner [10] found superdiffusive
motions arises when there are random, but spatially corre-
lated velocity fields. These motions, in the context of the
random velocity model, arise from a probability distribution
of the form P (x, t ) ∼ t−3/4e−(x/t3/4 )δ , where γ = 1.5, but δ

is not known. In a numerical study of Lévy random walks
[11], which describe nondiffusive transport that is character-
ized by a coupling between free-path length and free-path
duration, Trotta et al. found superdiffusive transport with
γ � 1.47; the probability distribution function is a modified

Gaussian for short displacements but a power law for large
displacements.

Following tracer-particle motions inside an eukaryotic cell,
Caspi and coworkers [12,13] found enhanced diffusion, likely
arising from microtubule-associated motor-driven motions
rather than thermal motions, with an exponent γ ∼ 1.5. Ott
et al. [14] also found enhanced diffusion in a system of
polymerlike micelles, where the enhancement could be killed
by decreasing the breaking time of the micelle by increasing
temperature. Gal et al. observe enhanced motions in polymer
particles that are imbibed into living cancer cells [15], while
Reverey et al. [16] see superdiffusion in intracellular motion
in highly crowded cytoplasm.

Transitions from sub- to superdiffusive are seen in systems
where the forcing exceeds a threshold that overcomes pinning
on a surface [17]. Various groups have also reported on Brown-
ian diffusion that can coexist with a non-Gaussian probability
distribution of displacements [18–23], which possibly arise
from competing effects at short and long times. Quite generally,
this area of research is very active, and there is a call [1] for
well-defined model systems that exhibit anomalous motions
and, at the same time, allow single-particle tracking of tracer-
particle dynamics.

The focus of this study is tracer-particle motions in an oil-
in-oil system driven by electrohydrodynamic driving forces. It
has been shown previously [24,25] that one sees both steady
circulations as well as unsteady motions as a function of the
driving electric field, with the unsteady motions dominating
at high amplitudes leading to chaotic motions and multiscale
(seemingly turbulent) flows. In this work, we trap the oil
droplets on a dielectrophoretic lattice, generating a spatially
varying but periodic driving force. Given the high degree of
control, the length scales on the tens of micrometers, and the
presence of soft liquid-liquid interfaces, this system might be
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FIG. 1. (a) A Side view of the cell geometry. Three dashed lines
indicate three planes at which the experiment is conducted. The
top plate is an unpatterned ITO electrode. The bottom electrode
is patterned with circular ITO-free regions. Silicone oil is dielec-
trophoretically trapped in the ITO-free regions and assumes the form
of near-hemispherical drops (shown in yellow). The continuous phase
is castor oil, seeded with fluorescent PMMA particles (represented by
white dots). (b) Snapshots of three planes of interest at (i) hp = 70,
(ii) 30, and (iii) 10 μm above the patterned (bottom) electrode
at E = 4.6 V/μm, perpendicular to the page, and f = 1 Hz. The
PMMA particles are the bright spots in each frame. Accumulation of
PMMA particles at the interface of silicone oil drop and castor oil
leads to a bright edge.

a clean and well-characterizable analog for out-of-equilibrium
biological systems.

II. METHODS AND TECHNIQUES

A. Sample preparation and hardware

Figure 1(a) shows the side view of a sample cell with the
electric field parallel to the page and to gravity. Two cover glass
slides coated with indium tin oxide (ITO) are separated by glass
spacers. The distance between the ITO slides is h = 140 μm.
The bottom electrode is selectively etched out, using maskless
patterning and photolithography, in the form of a hexagonal
array of circular ITO-free regions, such that the diameter of
each circle is approximately 50 μm and the nearest-neighbor
center-to-center spacing, dnn, is approximately 100 μm [25].
Ultraviolet-curable epoxies (Norland Optical Adhesive 61 and
68) are used to hold all parts together.

The cell is filled by pipetting an emulsion of silicone oil,
dielectric constant εin/ε0 = 2.4, conductivity σin = 3.95 ×
10−11 S/m, and viscosity μin = 0.137 Pa s, and castor oil,
dielectric constant εex/ε0 = 3.6, conductivity σex = 4.0 ×
10−10 S/m, and viscosity μex = 0.819 Pa s, in a volume ratio
of 1:16. The subscripts in and ex are used to represent the
(silicone oil) droplet and the (castor oil) suspending carrier
fluid, respectively. Fluorescent PMMA particles with diameter
of 1 μm are added to the carrier fluid, castor oil, in order to
track the fluid flow.

The silicone oil drops are prepared, prior to recording
the experiment, so that they are trapped at the ITO-free
regions due to the negative dielectrophoretic force [25]. The

experiment is carried out at four field amplitudes, 3.5, 4.6, 5.8,
and 7.0 V/μm, and for different sets of frequencies. These
fields and frequencies are chosen with reference to the field-
frequency phase diagram discovered in previous work [25], and
all correspond to a region of parameter space that was identified
as the “ordered regime” where the electrohydrodynamic flows
are not strong enough to disrupt the hexagonal order of the
trapped drops. Given that fluid flows in a leaky dielectric are
governed by the boundary conditions at the interfaces, control-
ling the location of the interfaces enables us to follow tracer
particle flows in the carrier fluid in a well-defined geometry.
The experiment at each frequency and field amplitude is done
at three different heights of sample cell, 10, 30, and 70 μm
above the patterned electrode, as shown by planes of interest
in Fig. 1(a). Figure 1(b) shows a silicone oil drop surrounded
by PMMA particles in castor oil and at three heights of
interest.

A sinusoidal AC voltage, Tektronix model AFG3022 is
amplified by a high-voltage amplifier, Trek model PZD2000A,
whose output is applied the sample cell. Fluorescence mi-
croscopy is used to observe and record the image sequences.

B. Image processing

For each experiment, a stack of 400 images, each with an
exposure time of 4 ms, was recorded with a water-cooled digi-
tal sCMOS camera (pco.edge 5.5) and an inverted microscope,
Nikon Eclipse TE2000-U. The centroid, �r ′ = (x ′, y ′), of each
PMMA particle is first identified in each image.

The particle trajectory in time is then obtained by stan-
dard particle-tracking methods described by Crocker and
Grier [26,27] using code programmed in IDL. Using the
particle-tracking information one can obtain the mean-squared
displacement in two dimensions, MSD = 〈r2(t )〉 ≡ 〈[r ′(t ) −
r ′(t0)]2〉. �r (t ) = (x(t ), y(t )) [where x(t ) ≡ x ′(t ′) − x ′(t ′0) and
y(t ) ≡ y ′(t ′) − y ′(t ′0), respectively] is the in-plane displace-
ment of each particle as a function of time t = t ′ − t ′0, from a
variable reference start time t ′0. In the above, 〈·〉 is an average
over all the particles in the system and over the reference time.
We are unable to access out-of-plane motions in real time,
but we obtain the same 2D information at three depths in the
sample.

The histogram of displacements, P (x, t ) of all particles is
calculated for a stack of 400 frames and for all field amplitudes,
frequencies, and heights. The same was done for P (y, t ).

C. Pattern formation and flow visualization

Prior to recording the experiments, the system (i.e., the
droplet array) was prepared as follows. The electric field
was set to E = 7.0 V/μm and f = 0.05 Hz. At very low
frequency, in the regime of strong hydrodynamics where
the hydrodynamic length, lh, is on the order of hundreds of
micrometers [25], large silicone oil drops are broken into
many tiny droplets vigorously. The spontaneous breakup of
droplets is a result of overcoming the viscous stresses by
electric stresses at the interface of the droplets [24,28–30]. The
strong inhomogeneous flows, with breakup accompanied by
coalescence, can be achieved by either lowering the frequency
or increasing the field amplitude. At a fixed field amplitude, the
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FIG. 2. A time lapse series of 5 s for three heights of interest, from left to right hp = 70, 30, and 10 μm. Flows tracked by fluorescent
PMMA particles are indicated by trails in direction of arrows from sources to sinks. For hp = 70 μm sources are at dnn/2 � 50 μm, and sinks
are at the center of the drops. For hp = 30 and 10 μm sources and sinks are located at edge of the drops and dnn/2 � 50 μm, respectively,
indicating an oblate drop deformation. Red circles show position of center of drops in the lower heights. E = 5.8 V/μm, perpendicular to the
page, f = 3 Hz, and scale bar is 50 μm.

frequency is increased to f = 3 Hz. Increasing the frequency
decreases the strength of the electrohydrodynamic flows but
does not change significantly the dipolar contribution. The
silicone oil drops coalesce and are attracted to the nearest
ITO-free regions by negative dielectrophoresis, and an array
of hexagonal silicone oil droplets, in castor oil, is created on
the top of the patterned ITO slide [31].

All experiments are carried out at frequencies where the
drops are always trapped on ITO-free regions. In steady state,
toroidal flows known as Taylor vortices [32,33] are generated
inside and outside of each droplet. In the context of the leaky
dielectric model [32,33], these flows are generated by the
tangential component of the electric stress at the interface
of silicone oil drops and the surrounding castor oil medium;
these are flows that arise from the accumulation of free
charge carriers at these liquid-liquid interfaces. The PMMA
fluorescent particles were used as tracer particles in order to
visualize the outside flows: studying the nature of these flows
is the main focus of this work.

Figure 2 shows a time lapse of 100 frames, equivalent to
5 s, of PMMA particles motion at three heights of interest.
At 70 μm above the patterned electrode (left panel), which
is roughly 20 μm above the top of the silicone oil drops,
particle trajectories in the plane are less clear than for the
lower heights, which are chosen to contain the silicone oil
drops. Due to differences in the size of droplets, the flow
pattern looks disordered and asymmetric. At lower distances
from the patterned electrode, 30 and 10 μm, middle and
right panels, respectively, the flows are clearly initiated at
the interface of silicone oil and castor oil. At steady state
and for most of frequencies studied in this work, drops are
oblate semi-ellipdoids with major axis perpendicular to the
direction of the external electric field, and the circulation
patterns are generated from equator to the poles [32,33], as
shown in Fig. 2. Supplemental Movie 1 [34] shows an example
of PMMA tracer-particle motions around a silicone oil drop at
three planes, corresponding to three heights hp, with particles
at each height distinguished via false color as red, green, and
blue.

III. BACKGROUND AND THEORY

The mean-squared displacement or the second moment of
a Gaussian distribution, in one dimension, is defined by

〈[x(t )]2〉 =
∫ ∞

−∞
x2PG(x, t ) dx = 2Dt, (1)

where

PG(x, t ) = 1√
4πDt

exp

(−x2

4Dt

)
. (2)

PG(x, t ), D, and t represent the Gaussian probability distribu-
tion of displacements x, diffusion coefficient with dimension
[D] = m2 s−1, and time, respectively [18,35]. The Gaussian-
diffusive trajectories are characterized by irregular, but small
and homogeneous, steps.

Diffusion processes in many complex systems do not
follow Gaussian statistics, and the mean-squared displacement
(MSD) does not vary linearly in time: this is expressed (in d

dimensions) by

MSD = 2dKγ tγ , (3)

where Kγ is a generalized diffusion constant with dimension
[Kγ ] = m2s−γ and γ is the anomalous diffusion exponent,
with subdiffusive motions corresponding to 0 < γ < 1 and
superdiffusive motions corresponding to 1 < γ < 2.

The MSD is simply the second moment of the underlying
probability distribution of displacements. Various anomalous
diffusion processes yield fractional (γ �= 1) dynamics [36,37].
The simplest generalization to the Gaussian probability distri-
bution function of Brownian motion is given by the models
of fractional Brownian motion as well as the generalized
Langevin equation, which both yield

P (x, t ) = 1√
4πKγ tγ

exp

( −x2

4Kγ tγ

)
, (4)

where 0 < γ � 2.
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Enhanced diffusion with a 3/2 power law has been related to
the random velocity field model, first described by Matheron
et al. [38] to understand water transport in microscopically
heterogeneous rocks. This model describes coupling between
diffusion and random but spatially correlated velocities: a
particle diffuses in a stratified fluid where each layer of fluid
has a random velocity. Redner [10], Zumofen et al. [9], and
Bouchaud et al. [8] obtained the probability distribution of
displacements for diffusion in random velocity fields:

P (x, t ) = A√
t3/2

exp

[
−

(
x2

4Kγ t3/2

)δ/2]
. (5)

In the above, A is the normalization factor with dimension
[A] = m−1s3/4, and Kγ is the generalized diffusion constant. δ
is a parameter that is not fully determined within the model but
is expected to be less than 1.7, while the asymptotic behavior
considering large displacements suggests δ � 4/3 [10].

The deviation of the distribution function from a Gaussian
also can be quantified using both the second moment, 〈x2〉, and
the fourth moment, 〈x4〉, of the distribution of displacements
(in one dimension) using the non-Gaussian parameter [39]:

α2 = 〈x4〉
3〈x2〉2

− 1. (6)

The value of α2 is a sensitive measure for the type of anoma-
lous diffusion. For Gaussian-distributed displacements α2 = 0,
while this parameter deviates from zero for non-Gaussian
distributions.

In the tracer-particle tracking experiments in this work, we
can readily obtain mean-squared displacements as well the
fourth moments as a function of time; we can therefore obtain
the value of γ as well as α2. For short times, we can also
construct the entire probability distribution of displacements
P (x, t ) with reasonable precision, but out-of-plane escape of
particles at long times limits doing so for all times.

IV. RESULTS AND DISCUSSION

A. Non-Gaussian distributions

The probability distribution of particle displacements in the
x and y directions, as a function of t , is calculated based on the
trajectories by averaging over all start times t0 and particles.
An example of P (x, t ) is shown in Fig. 3 for E = 3.5 V/μm,
at hp = 10 μm, for 0.5, 1, 2, and 6 Hz and for different times.
P (x, t ) is obtained only for short times, as the statistics gets
progressively poorer for longer times. The distribution at short
times is distinctly non-Gaussian. Equation (5) is used to fit the
probability distributions. For the short times examined, there is
good agreement. Decreasing the field amplitude corresponds
to lowering the driving, and so does increasing field frequency,
because it takes us from the strong to the weak hydrodynamic
regime (as described in earlier work [25,30]). With increasing
frequency, we find that the fits are not as good at large
displacements. In a few data sets, the P (x, t ) are asymmetric:
these data were not fit. These asymmetries likely arise from
drop size nonuniformities, which result in local drifts inside
the cell.

From the above fits, one can get the unknown parameter
δ, shown in Fig. 3(e). The value δ = 1.04 ± 0.12 is experi-
mentally consistent with δ = 1, which is a simple exponential

dependence on the absolute value of the displacement. We
note, first, that these distributions have been obtained only for
short times, which correspond to small overall displacements,
and the behavior at long times could be very different. While
γ = 3/2 and δ � 1 is consistent with the prediction of γ = 3/2
and δ � 1.7 in the random velocity field model, we emphasize
that the flows here are different. In the random velocity field
model, a tracer particle samples random velocities in different
strata by diffusing between strata, while in the current system,
all the unsteady motions are driven motions. Supplemental
Movie 2 [34] shows that the velocities in the plane are isotropic
and spatially varying because they enter into the plane and
emanate outward from each of the trapped drops (see Fig. 2)
and exit out of the plane between the drops.

B. Dynamics: Anomalous superdiffusive transport

Next, we examine the dynamics of particles, as a function of
frequency, field amplitude, and height, via the mean-squared
displacement (MSD) of tracer-particles centroids. Since the
motions are isotropic in the plane (i.e., 〈x2〉 = 〈y2〉), the 2D
mean-squared displacement, MSD = 〈x2〉 + 〈y2〉, is plotted
instead. Figure 4(a) shows an example of log(MSD) versus
log(t ) for E = 3.5 V/μm for different frequencies and three
heights of interest over a 10 s time interval. A longer time
analysis of roughly about 40 s, equivalent to a stack of 400
frame recorded at 10 fps, is also carried out. Two examples
presented in Fig. 4(b) show the mean-squared displacement,
MSD, of PMMA particles over a 100-frame and a 400-frame
image stack. Increasing the number of frames, consequently
the time of analysis, does not change the slope of the MSD-time
plot. It also does not affect the limiting maximum time at which
the MSD sharply decreases. This is likely because the limiting
time is not the duration of observation but the time the particles
remain in the plane. For all fields, heights, and frequencies, the
dependence, viewed on a log-log scale, is linear and the slope
is close to 3/2. The value of γ for each field amplitude as a
function of height is reported in Fig. 4(b), while the average
value of γ = 1.52 ± 0.01.

There could be multiple origins for the 3/2 power law.
Fractional tracer dynamics with a power law exponent γ ≈ 3/2
has been reported theoretically and experimentally. A numer-
ical study of Lévy random walks [11] finds superdiffusive
transport with γ � 1.47; the probability distribution function
is a modified Gaussian for short displacements but a power law
for large displacements. In experiments, Caspi et al. [12,13]
reported superdiffusive motions with a t3/2 scaling at short
times for the MSD of a microsphere inside a living cell.
They argued that a time-dependent friction imposed by the
non-Newtonian medium of the living cell is responsible for
the power law scaling behavior. Regner et al. [40] showed
theoretically and experimentally that interacellular transport,
cytoskeletal transport along microtubules, follows fractional
Brownian motion with power law scaling of 3/2 for short and
long lag times.

One also can measure the non-Gaussian parameter, α2,
from the second and the fourth moment of the probabil-
ity distribution of displacements. As a practical matter, the
second and fourth moments probe large displacements more
efficiently, and so this can be compared with the probability

022602-4



ANOMALOUS DYNAMICS IN TRACER-PARTICLE MOTIONS … PHYSICAL REVIEW E 98, 022602 (2018)

0.0001

2

4

6

0.001

2

4

6

0.01

2

4

 P(x)
 

-2 -1 0 1 2
 (x) (μm)

 3.5 V/μm, 6.0 Hz
 hp = 10 μm 

  t = 0.1 s
        0.2 s
        0.3 s
 Global fit

0.0001

2

4

6

0.001

2

4

6

0.01

2

 P(x)

-3 -2 -1 0 1 2 3
 (x) (μm)

 3.5 V/μm, 2.0 Hz
 hp = 10 μm 

  t = 0.05 s
        0.1  s
        0.15 s
 Global fit

0.0001

2

4

6
8

0.001

2

4

6
8

0.01

2

P(x)

-4 -3 -2 -1 0 1 2 3 4
 (x) (μm)

 3.5 V/μm, 0.5 Hz
 hp = 10 μm 

    t = 0.05 s
          0.1 s
          0.15 s
 Global fit

0.0001

2

4

6

0.001

2

4

6

0.01

2

 P(x)

-4 -3 -2 -1 0 1 2 3 4
 (x) (μm)

 3.5 V/μm, 1.0 Hz
 hp = 10 μm 

   t = 0.05 s
         0.1 s
         0.15 s
 Global fit 

2.0

1.5

1.0

0.5

0.0

 δ

876543210
 f(Hz)

 

δ = 1.04 ± 0.12

 5.8 V/μm
 4.6
 3.5
 Average

(a) (b)

(c)
(d)

(e)

FIG. 3. Normalized histogram: panels (a)–(d) show four examples of the normalized distribution histograms along x and y in three
successive times and at four different frequencies, 0.5, 1, 2, and 6 Hz, respectively. E = 3.5 V/μm, perpendicular to the page and hp = 10 μm.
(e) Variation of δ versus f gives rise to mean value of 1.04 ± 0.12.

distributions obtained at short times and, hence, small displace-
ments. Plotted in Figs. 5(a) and 5(b) for one field amplitude,
E = 3.5 V/μm and frequency f = 0.5 Hz, one sees that 〈x2〉
and 〈y2〉 have a linear relationship to t1.5 [Fig. 5(a)], while 〈x4〉
and 〈y4〉 have a linear relation to t3 [Fig. 5(b)]. Fitting to the
linear forms, 〈x2〉 = Kγ t1.5, 〈y2〉 = Kγ t1.5 and 〈x4〉 = K2γ t3

and 〈y4〉 = K2γ t3, one can explicitly obtain for the probability
distribution in Eq. (5):

α2 = K2γ

3K2
γ

− 1. (7)

For all field amplitudes, α2 is plotted in Fig. 5(c) as a
function of the field frequency. While the results show more
dispersion than those for γ , averaging over all data sets yields
a value of α2 = 0.31 ± 0.06. Within errors there is possibly
an inverse relationship of α2 with frequency (light gray line in
Fig. 5(c)). For the probability distribution in Eq. (5), α2 can be
calculated given a value of δ: α2 = 0.31 ± 0.06 corresponds
to δ = 1.43 ± 0.06. This is larger than δ = 1, obtained for
short times, and interestingly, close to the asymptotic value
δ � 4/3 for large displacements in the random-velocity-field
model [10].
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FIG. 4. (a) log(MSD) versus log(t ) shows a linear dependency
with the slope of γ � 1.5 consistent with enhanced superdiffusive
dynamics in the outer fluid. γ � 1.5 is independent of frequency,
field amplitude, and the height above the bottom electrode (i.e., the
x-y plane) at which the experiment is carried out. (b) MSD versus time
for short time, 100 frames recorded at 20 fps for 0.5 Hz and 10 fps
for 4 Hz equivalent to 5 and 10 s, respectively. MSD versus time for
long time, 400 frames recorded at 20 fps for 0.5 Hz and 10 fps for
4 Hz equivalent to 20 and 40 s, respectively. (c) γ versus hp , which is
averaged over frequency and amplitude, respectively, shows a mean
value of γ = 1.52 ± 0.01.

C. Hydrodynamic length scales

Next, the generalized diffusion constant, Kγ , is shown in
Fig. 6(a). This was obtained directly from the MSD–time plot
in Fig. 4(a). By rewriting Eq. (3) as log(MSD) = log(4Kγ ) +
γ log(t ), Kγ was simply obtained from the y-intercept of a
linear fit to each data set in Fig. 4(a). Kγ decreases with in-
creasing frequency. This is consistent with decreasing particle
diffusivity in the outer fluid. From Kγ , we can construct a
length scale λh =

√
K1.5/f 1.5. λh is an average length one
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FIG. 5. (a) The second moment of the distribution of displace-
ments along x and y depends linearly on t1.5: the slope Kγ =
12.3 ± 0.1 μm2/s1.5 (b) The fourth moment of x and y distribution
of displacements depends linearly on t3: the slope K2γ = 648.6 ±
7.1. (c) The non-Gaussian parameter has an approximate inverse
frequency dependence (shown by the light gray line), with an average
value α2 = 0.31 ± 0.06. The inset shows α2 calculated from Eq. (5)
for different values of the, in principle, unknown δ parameter. A value
α2 = 0.31 ± 0.06 corresponds to δ = 1.43 ± 0.06.

particle moves in one period of the ac oscillation, i.e., f −1 s. λh

versus frequency is plotted in Fig. 6(b) and shows a decreasing
trend by increasing frequency.

The ion mobility length, lh, is a characteristic length rep-
resenting the range of the electrohydrodynamic interactions.
lh can be increased by decreasing the frequency, f , because
lh = vd/f , where vd = μEE is the ionic drift velocity. vd ,
in turn, is defined by electric mobility, μE , and the electric
field amplitude, E. The electric mobility is described by
μE = zie0/6πrμex where zie0 is the ions charge, and r is
the radius of the ions [41]. As a result, lh is a quantity set
by lh ∝ E/f . For castor oil, as the carrier fluid, with μex =
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FIG. 6. (a) Effective diffusion coefficient, Kγ , versus f . (b) An experimental length scale, λh =
√

K1.5/f 1.5, versus frequency, f , for
different field amplitudes, frequencies, and heights, shows a monotonic decrease with increasing f . (c) An expected ionic hydrodynamic length,
lh = μEE/f , plotted for all field amplitudes for comparison with λh. (d) Experimental length scale, λh, versus ionic hydrodynamic length scale,
lh, shows a linear dependency with an x intercept of l0 � 40 μm.

0.819 Pa s, zie0 = 1.6×10−19 C, and r � 140×10−12 m, the
electric mobility is μE � 75 μm2 V−1 s−1. Figure 6(c) shows
lh versus frequency for all field amplitudes and frequencies
used in this work. lh at low frequencies is about one order of
magnitude larger than λh; however, they show a remarkably
similar frequency dependence.

In Fig. 6(d) we plot λh versus lh for all field amplitudes
and frequencies. λh versus lh shows a remarkably linear
dependence, but with an x-intercept of roughly l0 � 40 μm.
This indicates that λh can be considered to be a kind of
lateral hydrodynamic length. In contrast to lh, it is determined
experimentally. λh is nonzero only above a combination of
field and frequency set by lh ∝ E/f . The x intercept, l0, is
an interesting quantity that possibly indicates that there is a
minimum threshold of (solvent) ionic displacement required in
order to initiate fluid flow. At zero field, the system is heavily
overdamped, and there are no observable motions at all.

V. CONCLUSION

We have carefully characterized tracer motions, via particle
tracking, in an electrohydrodynamically driven system where
a spatially varying and time-dependent driving can be realized.
Experiments have been carried out as a function of the
amplitude and frequency of the external electric field.

We find a robust t3/2 power-law for superdiffusive motions
in this system, and we are able to extract the mathematical form
of the underlying probability distribution of displacements, at
least for short times. In particular, the parameter δ can be
obtained both for short times, and small displacements, and
for long times, and larger displacements. Its value is consistent
with δ � 1 at short times, which corresponds to a probability
distribution function with a simple exponential dependence on
displacement, For longer times, we find δ � 1.4, close to the
asymptotic value δ � 4/3 obtained for large displacements in
the random-velocity-field model [10]. In this model, random
velocities in different strata are coupled in by particle diffusion
between strata, while in the current system, all the unsteady
motions are driven motions. It is interesting that a variety
of experimental systems, with different underlying driving
forces, display the 3/2-power superdiffusive behavior. This
suggests a generic origin that is insensitive to the model
details.

Finally, from the tracer motions, we find that we can extract
a (frequency- and amplitude-dependent) hydrodynamic length
scale. This length scale reports on the length over which tracer-
particle motions are correlated and in that sense is like the
lateral (in-plane) range of hydrodynamic interactions in the
system. We also measured the minimum ion mobility length,
l0, required to initiate persistent flows.
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We hope that this particle tracking study in a simplified
geometry, where the droplet positions are fixed, will encourage
theoretical attention via simulations of this electrohydrody-
namics problem.
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