Circle instructor: Yethiraj or Morrow Lab period:	1	Name:Student Number:	
		OF NEWFOUNDLAND PHYSICAL OCEANOGRAPHY	

Term Test 2 March 12, 2010

Physics 1051 Winter 2010

INSTRUCTIONS:

- 1. Do all questions. Marks are indicated in the left margin. Budget time accordingly.
- 2. Write your name and student number on each page.
- 3. You may use a calculator. All other aids are prohibited.
- 4. Write answers neatly in space provided. If necessary, continue onto the back of the page.
- 5. Do not erase or use "whiteout" to correct answers. Draw a line neatly through material to be replaced and continue with correction.
- 6. Assume all information given is accurate to 3 significant figures.
- 7. Don't panic. If something isn't clear, ASK!

SEE LAST PAGE FOR SOME POTENTIALLY USEFUL FORMULAE AND CONSTANTS

For office use only:

1	2	3	4	total
				470

Circle instructor:	Yethiraj or Morrow
Lab period:	

Name:_____Student Number:

[10] 1. Four charges are positioned on the x-y plane as shown:

2

$$q_1 = +4.5 \times 10^{-9}$$
 C is at $x = 0$ cm, $y = +2$ cm.

$$q_2 = -4.5 \times 10^{-9} \text{ C}$$
 is at $x = -2 \text{ cm}$, $y = 0 \text{ cm}$.

$$q_3 = -4.5 \times 10^{-9} \text{ C}$$
 is at $x = 0 \text{ cm}$, $y = -2 \text{ cm}$.

$$q_4 = +4.5 \times 10^{-9} \text{ C}$$
 is at $x = +2 \text{ cm}$, $y = 0 \text{ cm}$.

- (b) What is the electric field at the origin? Give your answer in unit vector notation.
- (c) There is an equipotential line that passes through the origin. Draw it on the figure and briefly justify the line you have drawn.
- (d) What is the electric force \vec{F}_{31} on charge q_1 due to charge q_3 ? Give your answer in unit vector notation.

(2) (a) V = 0 at (0,0)

(b) The fields due to charge 1 and 3 point downwards 2 4 point leftward.

$$\overrightarrow{E}_{1} = (-\hat{j}) + \frac{q_{1}}{r^{2}} = (-\hat{j}) \frac{(8.99 \times 10^{9})(4.5 \times 10^{-9})}{(2)^{2} \times 10^{-4}} = -1.01 \times 10^{5} \frac{\%}{C}(\hat{j})$$

 $\vec{E}_3 = \vec{E}$

$$\vec{E} = \vec{\xi} \vec{E}_{i} = -(2.02 \times 10^{5} \hat{1} + 2.02 \times 10^{5} \hat{j}) \frac{V}{C}$$

(c) As shown.

Every point on line is equidistant to a negative / positive pair

E.g (9,922) have equal and opposite conhibution to the potential.

(d)
$$F_{31} = k_{*} \frac{9.93}{r^{2}} \hat{r} = \frac{18.99 \times 10^{9})(4.5 \times 10^{-9})^{2}_{\Lambda}}{[.04 \text{ m}]^{2}}$$

$$= -1.14 \times 10^{-4} M_{\pi}^{\Lambda}$$

Circle instructor: Yethiraj or Morrow	3	Name:
Lab period:		Student Numb

⇒ E = 1 = 2 411€0 v²

- [10] 2. (a) A conducting spherical shell with an inner radius of a = 1.5 cm and an outer radius of b = 2.0 cm carries a net charge of $q = -5.0 \times 10^{-15}$ C. The cavity at the centre of the shell is empty.
 - (i) What is the magnitude of the electric field at a distance r = 2.5 cm from the centre of the sphere?
 - (ii) What is the surface charge density on the inner surface of the shell (i.e. at radius a)? Briefly justify your answer.
 - (iii) What is the potential difference $\Delta V = V_b V_a$ between the outer and the inner surface of the sphere? Briefly justify your answer.

(i) Gauss' Lau for r>b

(i)
$$\Phi_{E} = E \cdot 4\pi r^{2} = \frac{9}{60}$$

$$= \frac{(8.91 \times 10^{7})(-5 \times 10^{-15})}{(2.5)^{2} \times 10^{-4}}$$

$$= 7.2 \times 10^{-2} \text{ N/C}$$

$$\frac{1}{\sqrt{4\pi r^2}} = \frac{Q_{enc}}{\sqrt{e_0}} = \frac{Q_{enc}}{\sqrt{e_0}} = 0$$

$$\frac{1}{\sqrt{4\pi a^2}} = \frac{Q_{inner}}{\sqrt{4\pi a^2}} = 0$$

(fii) Conductor is equipotential
$$\Rightarrow \Delta V = V_b - V_a = 0$$

(or) Econductor = 0 ... $\Delta V = \int_{-\infty}^{\infty} \vec{E} \cdot \vec{ds} = 0$

(b) What is the magnitude of the electric field 10.0 cm away from a very long line of charge with a linear charge density of 6.3×10⁻⁹ C/m? You may find the drawing helpful.

So only consider the radial wall. E. da = Er da

Also
$$\Phi_{E} = \frac{\Phi_{enc}}{E_{0}} = \frac{\lambda I}{E_{0}}$$

Circle instructor:	Yethiraj or Morrow
Lab period:	-

Name:	
Student Number:	

[10] 3. A charged particle starts from rest and is accelerated through a potential difference $\Delta V = V_b - V_a$ as shown. It then enters a region of space containing a uniform magnetic field of 6.0 T directed into the page as shown. The charge travels along a semi-circular path with a diameter of 15.0 mm as shown.

4

- (a) Is the charged particle positive or negative?
- (b) If the mass of the particle is $m = 6.64 \times 10^{-27}$ kg and the **magnitude** of its charge is $|q|=1.6\times10^{-19}$ C, what is the speed of the charged particle?
- (c) What is the potential difference, $\Delta V = V_b V_a$, through which the charged particle was initially accelerated?

(b)
$$qvB = \frac{mv^2}{r}$$

$$V = 9Br = \frac{(1.6 \times 10^{-19})(6.0)(0.015)/2}{6.64 \times 10^{-27}}$$

$$= 0.011 \times 10^{8}$$

$$= 1.1 \times 10^{6} \text{ m/s}$$

(conservation of total energy)

 $(\Delta V) q + \frac{1}{2} m v^2 = 0$ (particle starts from rest)

$$\frac{3}{9} = \frac{-\frac{1}{2} \times 6.64 \times 10^{-27} \times (1.1)^{3} \times 10^{12}}{1.6 \times 10^{-19}}$$

$$= -2.51 \times 10^{4} \text{ V}$$

$$\triangle V = V_{b} - V_{a} = -2.51 \times 10^{4} \text{ V}$$

$$(V_{b} < V_{a})$$

Circle instructor: Yethiraj or Morrow	5	Name:
Lab period:		Student Number:

- [10] 4. A rod of length L = 15.0 cm is oriented along the x-axis as shown. A charge $Q = +2 \times 10^{-6}$ C is uniformly spread along the rod. Point P is located a distance h = 10.0 cm above the left end of the rod as shown.
 - (a) What is the linear charge density, λ , on the rod?
 - (b) On the diagram, show the direction of the contribution, $d\vec{E}$, to the electric field at P from the charge on segment dx located a distance x from the left end of the rod as shown.
 - (c) Write an expression for the y-component dE_y of the contribution to the electric field at P from the charge on segment dx.
 - (d) Calculate the y-component of the electric field, E_y , at a point P due to the entire rod?

Now
$$dE = |dE|$$

$$= \frac{k_e dq}{h^2 + x^2} = \frac{k_e \lambda \cdot dx}{h^2 + x^2}$$

 $dE_{y} = dE \sin \theta$ $= k_{e} \lambda h \frac{dx}{(h^{2} + x^{2})^{3/2}}$ $= (k_{e} \lambda h) \int_{x=0}^{x=L} \frac{dy}{(h^{2} + x^{2})^{3/L}}$ $= (k_{e} \lambda h) \left\{ \left[\frac{x}{h^{2} \sqrt{x^{2} + h^{2}}} \right]_{x=L} - 0 \right\}$ $= \frac{k_{e} \lambda h L}{h^{2} \sqrt{x^{2} + h^{2}}}$ $= \frac{k_{e} \lambda L}{h \sqrt{L^{2} + h^{2}}} = \frac{(8.99 \times 10^{9}) (1.33 \times 10^{-5}) (0.15)^{2}}{(0.15)^{2} + (0.15)^{2}}$

Some Potentially Useful Formulae and Constants:

$$\vec{F}_{12} = k_e \, \frac{q_1 q_2}{r^2} \, \hat{r}_{12}$$

$$\vec{E} = k_e \frac{q}{r^2} \hat{r}$$

$$\vec{E} = k_e \sum_i \frac{q_i}{r_i^2} \hat{r}_i$$

$$\vec{E} = k_e \int \frac{dq}{r^2} \hat{r}$$

$$\Phi_E = \int \vec{E} \cdot d\vec{A}$$

$$\Phi_E = \frac{q_{\text{inside}}}{\mathcal{E}_0}$$

$$V = k_{\epsilon} \frac{q}{r}$$

$$V = k_e \sum_{i} \frac{q_i}{r_i}$$

$$V = k_{\epsilon} \int \frac{dq}{r}$$

$$C_{\text{circle}} = 2\pi r$$
 (circumference)

$$A_{\rm circle} = \pi r^2$$

$$U_{12} = k_e \frac{q_1 q_2}{r_{12}}$$

$$\Delta U = -q \int_{A}^{B} \vec{E} \cdot d\vec{s}$$

$$\Delta V = V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{s}$$

$$\Delta U = q \Delta V$$

$$\vec{E} = -\left(\frac{dV}{dx}\hat{i} + \frac{dV}{dy}\hat{j} + \frac{dV}{dz}\hat{k}\right)$$

$$R = \frac{\Delta V}{I}$$

$$\vec{F}_{\scriptscriptstyle R} = q\,\vec{v}\times\vec{B}$$

$$a_r = \frac{v^2}{r}$$

$$V_{\rm sphere} = \frac{4}{3}\pi r^3$$

$$A_{\text{sphere}} = 4\pi r^2$$

Physical constants:

$$k_e = \frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2 / \text{C}^2$$

$$\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 / \text{N} \cdot \text{m}^2$$

$$e = 1.602 \times 10^{-19} \text{ C}$$

$$m_e = 9.11 \times 10^{-31} \text{ kg}$$

Mathematical formulae:

$$\int \frac{dr}{r^2} = -\frac{1}{r}$$

$$\int \frac{dx}{x} = \ln x$$

$$\int \frac{dx}{\sqrt{x^2 + y^2}} = \ln \left[x + \sqrt{x^2 + y^2} \right]$$

$$\int \frac{dx}{(x^2 + y^2)^{3/2}} = \frac{x}{y^2 \sqrt{x^2 + y^2}}$$

$$\int \frac{x \, dx}{\left(x^2 + y^2\right)^{3/2}} = -\frac{1}{\sqrt{x^2 + y^2}}$$

$$\int \sin\theta \, d\theta = -\cos\theta$$

$$\int \cos\theta \, d\theta = \sin\theta$$

$$\vec{A} \times \vec{B} = (A_y B_z - A_z B_y)\hat{i} + (A_z B_x - A_x B_z)\hat{j} + (A_x B_y - A_y B_x)\hat{k}$$