CHAPTER 3

LINEAR VISCOELASTICITY

3.1 Introduction

The word * viscoelastic’ means the simultaneous existence of viscous and elastic
properties in a material (cf. §1.2). It is not unreasonable to assume that all real
materials are viscoelastic, i.. in all materials, both viscous and elastic properties
coexist. As was pointed out in the Introduction, the particular response of a sample
in a given experiment depends on the time-scale of the experiment in relation to a
natural time of the material. Thus, if the experiment is relatively slow, the sample
will appear to be viscous rather than elastic, whereas, if the experiment is relatively
) fast, it will appear to be elastic rather than viscous. At intermediate time-scales
mixed (viscoelastic) response is observed. The concept of a natural time of a
material will be referred to again later in this chapter. However, a little more needs
to be said about the assumption of viscoelasticity as a universal phenomenon. Itis
not a generally-held assumption and would be difficult to prove unequivocally.
Nevertheless, experience has shown that it is preferable to assume that all real
materials are viscoelastic rather than that some are not. Given this assumption, it is
then incorrect to say that a liquid is Newtonian or that a solid is Hookean. On the
other hand, it would be quite correct to say that such-and-such a material shows
Newtonian, or Hookean, behaviour in a given situation. This leaves room for
ascribing other types of behaviour to the material in other circumstances. However,
most rheologists still refer to certain classes of liquid (rather than their behaviour) as
being Newtonian and to certain classes of solid as being Hookean, even when they
know that these materials can be made to deviate from the model behaviours.
Indeed, it is done in this book! Old habits die hard. However, it is considered more
important that an introductory text should point out that such inconsistencies exist
_ in the literature rather than try to maintain a purist approach.

For many years, much labour has been expended in the determination of the
linear viscoelastic response of materials. There are many reasons for this (see, for
example, Walters 1975, p. 121, Bird et al. 1987(a), p. 225). First there is the
possibility of elucidating the molecular structure of materials from their linear-
viscoelastic response. Secondly, the material parameters and functions measured in
the relevant experiments sometimes prove to be useful in the quality-control of
industrial products. Thirdly, a background in linear viscoelasticity is helpful before
proceeding to the much more difficult subject of non-linear viscoelasticity (cf. the
relative simplicity of the mathematics in the present chapter with that in Chapter 8
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38 Linear viscoelasticity [Chap. 3
which essentially deals with non-linear viscoelasticity). Finally, a further motivation
for some past studies of viscoelasticity came from tribology, where E:.uﬁ_&ma of the
steady shear viscosity function 7(y) discussed in §2.3 was needed at high shear _,.Enm
(10° s~ or higher). Measurements of this function on low-viscosity “Newtonian
lubricants at high shear rates were made difficult by such factors as viscous heating,
and this led to a search for an analogy between shear viscosity and the correspond-
ing dynamic viscosity determined under linear viscoelastic conditions, the argument
being that the latter viscosity was easier to measure (see, for example, Emos 5....9.

Many books on rheology and rheometry have sections on linear anon_wmcnsw.
We recommend the text by Ferry (1980) which contains a wealth of information and
an extensive list of references. Mathematical aspects of the subject are also well
covered by Gross (1953) and Staverman and Schwarzl (1956).

3.2 The meaning and consequences of linearity

The development of the mathematical theory of linear viscoelasticity is based on
a “superposition principle”. This implies that the response (e.g. strain) at any time 1s
directly proportional to the value of the initiating signal (e.g. stress). .wo, for
example, doubling the stress will double the strain. In the linear theory of Smoon«pm-
ticity, the differential equations are linear. Also, the coefficients of the time
differentials are constant. These constants are material parameters, such as viscosity
coefficient and rigidity modulus, and they are not allowed to change with n_uwnw.ﬂ in
variables such as strain or strain rate. Further, the time derivatives are anE..«
partial derivatives. This restriction has the consequence that the linear theory 1s
applicable only to small changes in the variables. .

We can now write down a general differential equation for linear viscoelasticity
as follows:

2 am
HAP+F.W+m~Wm+...+usﬂﬂv<. (3.1)
where n=m or n=m— 1 (see for example, Oldroyd 1964). Note that for simplicity
we have written (3.1) in terms of the shear stress o and the strain vy, relevant to a
simple shear of the sort discussed in Chapter 1, except that we now allow o and y to
be functions of the time . However, we emphasise that other types of deformation
could be included without difficulty, with the stress and strain referring to that
particular deformation process. Mathematically, this means that we could replace
the scalar variables ¢ and y by their tensor generalizations. For example, o could be

replaced by the stress tensor o;;.
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3.3 The Kelvin and Maxwell models

We now consider some important special cases of eqn. (3.1). If B, is the only
non-zero parameter, we have

o= .Wo.x. AW.NV
which is the equation of Hookean elasticity (i.e. linear solid behaviour) with B, as
the rigidity modulus. If B, is the only non-zero parameter, we have

dy
ag= m 1 .ﬂ 3 AU .Uv

or

o= uu.._.‘ AW.&V
in our notation. This represents Newtonian viscous flow, the constant 8, being the
coefficient of viscosity.

If B, (= G) and B, (=n) are both non-zero, whilst the other constants are zero,
we have

o=Gy+ny, (3.5)

which is one of the simplest models of viscoelasticity. It is called the ‘Kelvin model’,
although the name * Voigt’ is also used. If a stress & is suddenly applied at 1 =0 and
held constant thereafter, it is easy to show that, for the Kelvin model,

y=(5/G)[1 —exp(—1/7%)], : (3:6)

where 7 has been written for the ratio n/G. It has the dimension of time and
controls the rate of growth of strain y following the imposition of the stress o.
Figure 3.1 shows the development of the dimensionless group yG/d diagrammati-
cally. The equilibrium value of vy is 3/G; hence yG /@ = 1, which is also the value
for the Hooke model. The difference between the two models is that, whereas the
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Fig. 3.1 Growth of strain y following the application of stress & at time ¢ =0 for a Kelvin model and
Hooke model.
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40 Linear viscoelasticity [Chap. 3

Hooke model reaches its final value of strain “instantaneously”, in the Kelvin
model the strain is retarded. The time constant 7y is accordingly called the
‘retardation time’. The word instantaneously is put in quotation marks because in
practice the strain could not possibly grow in zero time even in a perfectly elastic
solid, because the stress wave travels at the speed of sound, thus giving rise to a
delay.

It is useful at this stage to introduce “mechanical models”, which provide a
popular method of describing linear viscoelastic behaviour. These one-dimensional
mechanical models consist of springs and dashpots so arranged, in parallel or in
series, that the overall system behaves analogously to a real material, although the
elements themselves may have no direct analogues in the actual material. The
correspondence between the behaviour of a model and a real material can be
achieved if the differential equation relating force, extension and time for the model
is the same as that relating stress, strain and time for the material, i.e. this method is
equivalent to writing down a differential equation relating stress and strain, but it
has a practical advantage in that the main features of the behaviour of a material
can often be inferred by inspection of the appropriate model, without going into the
mathematics in detail.

In mechanical models, Hookean deformation is represented by a spring (i.e. an
element in which the force is porportional to the extension) and Newtonian flow by
a dashpot (i.e. an element in which the force is porportional to the rate of extension)
as shown in Fig. 3.2. The analogous rheological equations for the spring and the
dashpot are (3.2) (with 8, = G) and (3.4) (with B8, = n), respectively. The behaviour
of more complicated materials is described by connecting the basic elements in
series or in parallel.

The Kelvin model results from a parallel combination of a spring and a dashpot
(Fig. 3.3(a)). A requirement on the interpretation of this and all similar diagrams is
that the horizontal connectors remain paralle]l at all times. Hence the extension

(strain) in the spring is at all times equal to the extension (strain) in the dashpot. -

Then it is possible to set up a balance equation for the forces (stresses) acting on a
connector. The last step is to write the resulting equation in terms of stresses and
strains. Hence, for the Kelvin model the total stress o is equal to the sum of the
stresses in each element. Therefore

o=0g+o0y 3.7

i

(a) (b)

Fig. 3.2 Diagrammatic representations of ideal rheological behaviour: (a) The Hookean spring; (b) The
Newtonian dashpot.
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i

{a) (b)
Fig. 3.3 The simplest linear viscoelastic models: (a) The Kelvin model; (b) The Maxwell model.

in the obvious notation, and using eqns. (3.2) and (3.4) (with B, = G and B, =7) we
have

8
o=Gy+nY. (38)

This is identical to egn. (3.5), which was a very simple case of the mnun_..w_ linear
differential equation (3.1). It is readily seen from the &w@.m—.ﬂ of the Kelvin model
that after sudden imposition of a shear stress o, the spring will eventually nnmnw the
strain given by 3/G, but that the ammwu%aﬂ _..shc retard the growth of the strain and,
igher the viscosity, the slower wi € Tesponse. . :
Emm”w_”wﬂ very &EEW model is the so-called ‘Maxwell model’ *. The Emn_.nscw__
equation for the model is obtained by making a, and B, the only non-zero material
parameters, so that

o+ TG =77, (3.9
where we have written a; = Ty and B; =1.

If a particular strain rate ¥ is suddenly applied at 1 =0 and held at that value for
subsequent times, we can show that, for 1 > 0,
o =n¥[1—exp(—t/m)]. (3.10)
which implies that on start-up of shear, the stress growth is a&»«.&w the time
constant in this case is Ty. On the other hand, if a strain rate which has had a
constant value ¥ for ¢ < 0 is suddenly removed at ¢ = 0, we can show that, for ¢ > 0,

o =77y exp(—1/Tw)- (3.11)

Hence the stress relaxes exponentially from its on_._Eanﬂ value to zero (see Fig.
3.4). The rate constant Ty is called the ‘relaxation time’.

* Recall the discussion in §1.2 concerning the influence of J.C. Maxwell on the introduction of the
concept of viscoelasticity in a fluid.
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Fig. 3.4 Decay of stress o following the cessation of steady shear at time ¢ =0 for a Maxwell model,
where op = 77.

. The pictorial Maxwell model is a spring connected in series with a dashpot (see
Fig. 3.3(b)). In this case, the strains, or equally strain-rates, are additive; hence the
total rate of shear y is the sum of the rates of shear of the two elements. Thus

Y=Ye+¥v, (3.12)
which leads to

_8.,9
Y=3 M (3.13)

or, after rearrangement,
o+ Ty 0 =7y, (3.14)

in which 1y, has been written for 1,/G. This equation is the same as eqn. (3.9) which
arose as a special case of the general differential equation.

The next level of complexity in the linear viscoelastic scheme is to make three of
the material parameters of eqn. (3.1) non zero. If a;, B, and B, are taken to be
non-zero we have the “Jeffreys model”. In the present notation, the equation is

o+ mvd=n(¥+7,¥), (3.15)

which has two time constants 7, and 7,. With a suitable choice of the three model _

parameters it is possible to construct two alternative spring—dashpot models which
correspond to the same mechanical behaviour as eqn. (3.15). One is a simple
extension of the Kelvin model and the other a simple extension of the Maxwell
model as shown in Fig. 3.5.

We note with interest that an equation of the form (3.15) was derived mathemati-
cally by Frohlich and Sack (1946) for a dilute suspension of solid elastic spheres in a
viscous liquid, and by Oldroyd (1953) for a dilute emulsion of one incompressible
viscous liquid in another. When the effect of interfacial slipping is taken into
account in the dilute suspension case, Oldroyd (1953) showed that two further
non-zero parameters (a, and f,) are involved.
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Fig. 3.5 Spring—dashpot equivalents of the Jeffreys model. The values of the constants of the elements are
given in terms of the three material parameters of the model (eqn. 3.15).
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Fig. 3.6 The Burgers model: (a) and (b) are equivalent representations of this 4-parameter linear model.

Finally, in this preliminary discussion of the successive build-up of model
complexity, we draw attention to the so-called “Burgers model”. This involves four
simple elements and takes the mechanically-equivalent forms shown in Fig. 3.6.

In terms of the parameters of the Maxwell-type representation (Fig. 3.6(b)), the
associated constitutive equation for the Burgers model has the form

o+ (A3 +Ag)d+ A6 =(n3+7m,)7+ (A3 +Agmy) ¥ (3.16)
In this equation the As are time constants, the symbol A being almost as common as

7 in the rheological litrature.

3.4 The relaxation spectrum

It is certainly possible to envisage more complicated models than those already
introduced, but Roscoe (1950) showed that all models, irrespective of their complex-
ity, can be reduced to two canonical forms. These are usually taken to be the
generalized Kelvin model and the generalized Maxwell model (Fig. 3.7). The
generalized Maxwell model may have a finite number or an enumerable infinity of
Maxwell elements, each with a different relaxation time.
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_uw.m. .u..u. ,h&noumo»_ spring-dashpot models: (a) Distribution of Maxwell relaxation processes; (b)
Distribution of Kelvin retardation processes.

By a suitable choice of the model parameters, the canonical forms themselves can
be mrcci to be mechanically equivalent and Alfrey (1945) has given methods for
computing the parameters of one canonical form from those of the other. In the
same paper, Alfrey also showed how a linear differential equation can be obtained
for either of the canonical forms and vice versa. In other words, the three methods
of _,nﬁ«n@n:mnm viscoelastic behaviour (the differential equation (3.1) and the two
canonical forms of mechanical model of Fig. 3.7 are equivalent and one is free to
n_.oo.mm any one of them as a basis for generalization to materials requiring a
continuous infinity of parameters to specify them.

In o...nnn to generalize from an enumerable infinity to a continuous distribution of
_.n_u..xm:o.n times, we choose to start with the simple Maxwell model, whose be-
haviour is characterized by the differential equation (3.9) or what is equivalent

o)=L expl-(e- i)l ar, 6am)

ﬂ&o_.a we have &..ovvan the subscript M in 7 to enable us to generalize eqn. (3.17)
without introducing a clumsy notation. *

Oonmann..:m :.oxr a number, n, of discrete Maxwell elements connected in
parallel as in Fig. 3.7(a), we can generalize eqn. (3.17), with the aid of the

* The m.Enu.E_ equation (3.17) is obtained by solving the differential equation (3.9) by standard
technigues.

34] The relaxation spectrum 45

superposition principle, to give

o)=L L[ expl—(t-r')/m)0) ot (3.18)

i=1

where 7, and 7, now correspond to the ith Maxwell element.

The theoretical extiension to a continuous distribution of relaxation times can be
carried out in a number of ways. For example, we may proceed as follows.

The “distribution function of relaxation times” (or “relaxation spectrum’) N(1)
may be defined such that N(r) d represents the contributions to the total viscosity
of all the Maxwell elements with relaxation times lying between 7 and + dr. The
relevant equation then becomes (on generalizing (3.18))

o(t) = .‘.3 ¥ir) \h exp[—(¢t—1")/7]¥(¢") dt” dr, (3.19)
0 T — oo
and it we introduce the “relaxation function” ¢, defined by
..._VTIMJH.\BZA._.V exp[—(t—1")/7] dr, (3.20)
0 T
eqn. (3.19) becomes
a(r) u.‘; o(r—1")y(z") dr". (3.21)

We remark that we could have immediately written down an equation like (3.21)
on the basis of Boltzmann’s superposition principle.

It is also possible to proceed from eqn. (3.18) by introducing a distribution
function H(7) such that H(7)dr represents the contribution to the elasticity
modulus of the processes with relaxation times lying in the interval = and 7+ dr.
Further, other workers have used a spectrum of relaxation frequencies H(log F)
where F=1/(2n7). The relationships between these functions are

(N(r)/r) dr=H(r) dr=H(log F) d(log F). (3.22)

In a slow steady motion which has been in existence indefinitely (i.e. y is small,
and independent of time) eqn. (3.21) reduces to

o= d¢.w. Au.Nmu

where

.__qcﬂ.\.5

s(i-r)ar=[ “(£) d¢,
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in which § has been written for the time interval (z — ¢"). The variable ¢ is the one
which represents the time-scale of the rheological history. It is also easy to show
from eqns. (3.19), (3.21) and (3.22) that

do"‘\H.HBZAﬂv Qﬁﬂ.\oB.ﬂN&A.ﬂv Qq.“.‘.loooo% ncom m.v. G.N&v

We see from eqn. (3.23) that n, can be identified with the limiting viscosity at small
rates of shear, as observed in steady state experiments. Thus, the equations in (3.24)

provide useful normalization conditions on the various relaxation spectra. It is also

of interest to note that 7, is equal to the area under the N(t) spectrum, whilst it is
equal to the first moment of the H(r) spectrum.

3.5 Oscillatory shear
It is :..ﬁ-.:o%n to discuss the response of viscoelastic materials to a small-ampli-
tude oscillatory shear, since this is a popular deformation mode for investigating

linear viscoelastic behaviour.
Let

v(1") = vy, exp(iwt’), (3.25)
where i=y—1, w is the frequency and y, is a strain amplitude which is small
enough for the linearity constraint to be satisfied. The corresponding strain rate is
given by

7(¢") =iwyy exp(iwt’),

and, if this is substituted into the general integral equation (3.21), we obtain

(1) =iwy, expior) [ “$(&) exp(—iwt) dé. (3.26)

In oscillatory shear we define a ‘complex shear modulus’ G*, through the equation
a(1)=G*(w)v(r) (3:27)
and, from eqns. (3.25), (3.26) and (3.27), we see that

m.?vuma\csicnirmeaam. (3.28)

It is customary to write

G* =G’ +iG" (3.29)
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and G' and G” are referred to as the ‘storage modulus’ and ‘loss modulus’,
respectively. G’ is also called the dynamic rigidity. If we now consider, for the
purpose of illustration, the special case of the Maxwell model given by eqn. (3.9) or
eqn. (3.14) (with 7, = 7) we can show that

G*= ~|“.e¢”_.v.ﬂ > or alternatively G* = H_M|.__.M._. » (3-30)
and
, Tw? . ’ Guw'r?
G = .ﬂ.-..-.l&ﬂ » or alternatively G’ = am ’ (3.31)
(. alternativlly G = 2T 332
G Iﬂ+|eﬂm, or alternatively G |~+|s~.._..m. (3.32)

To some readers, the use of the complex quantity exp(iwt) to represent oscilla-
tory motion may be unfamiliar. The alternative procedure is to use the more obvious
wave-forms represented by the sine and cosine functions, and we now illustrate the
procedure for the simple Maxwell model.

Let

gL, (333)
Thus, the strain rate is
¥ = —Y,w sinwt, (3.34)

and if this is substituted into the equation for the Maxwell model, a first order
linear differential equation is obtained, with solution
N@Yo

0=——(wr coswt — sinwt ). 3.35
(1 + w*r?) ( ) (3

The part of the stress in phase with the applied strain is obtained by putting sinw?
equal to zero and is written G'y. The part of the stress which is out of phase with the
applied strain is obtained by setting coswt equal to zero and is written (G”/w)Y.
Hence

2

\1 -._-|
G = " n u._.u. (3.36)
a nw 7
G = ||H 2 32’ Auw v

in agreement with (3.31) and (3.32) as expected.
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Returning now to the more convenient complex representation of the oscillatory
motion, we remark that as an alternative to the complex shear modulus, we can

define ‘complex viscosity’ n*, as the ratio of the shear stress o to the rate of shear 7.
Thus

a(t) =" ¥(1), (3.38)

and it follows that, for the general integral representation,
* ® M
n* (@) = [ 9(€) exp(~iwt) dt. (3.39)
We now write
n* =9"—in", (3.40)

noting that n’ is usually given the name ‘dynamic viscosity’. The parameter 1" has
no special name but it is related to the dynamic rigidity through G’ = 5"w. It is also
easy to deduce that G” = 7'w.

It is conventional to plot results of oscillatory tests in terms of the dynamic
viscosity %" and the dynamic rigidity G'. Figure 3.8 shows plots of the normalized
dynamic functions of the Maxwell model as functions of wr, the normalized, or
reduced, frequency. The notable features are the considerable fall in normalized n’
and the comparable rise in normalized G° which occur together over a relatively
narrow range of frequency centred on wr= 1. The changes in these functions are
ﬁﬂ:w__w complete in two decades of frequency. These two decades mark the
viscoelastic zone. Also, in the many decades of frequency that are, in principle,
wmnnmmmw_a on the low frequency side of the relaxation region, the model displays a
viscous response (G’ ~ 0). In contrast, at high frequencies, the response is elastic

(7" ~ 0). From Fig. 3.8, the significance of r as a characteristic natural time for the
Maxwell model is clear.

-1-0 i 10
log wt

Fig. 3.8 The Maxwell model in oscillatory shear. Variation of the normalized moduli and viscosity with
normalized frequency (7 = 3/G).
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In the literature, other methods of characterizing linear viscoelastic behaviour are
to be found. For example, it is possible to define a ‘complex shear compliance’ J*.
By definition

¥(1)=J*(w)a(1) (3.41)
in an oscillatory shear, with
J*=J —iJ". (3.42)

It is important to note that, although J* =1/G*, the components are not similarly
related. Thus J' #1/G’ and J” #1/G".

The second alternative method of characterizing linear viscoelastic response is to
plot G’ and the ‘loss angle’ 8. In this method, it is assumed that for an applied
oscillatory strain given by eqn. (3.25), the stress will have a similar form, but its
phase will be in advance of the strain by an angle 8. Then,

o(1) = o, exp[i(wt + 8)]. (3.43)
It is not difficult to show that
tand=G"/G’. (3.44)

Figure 3.9 shows how 8 and G'/G (where G =r7) vary with the normalized
frequency for the Maxwell model. At high values of the frequency, the response, as
already noted, is that of an elastic solid. In these conditions the stress is in phase
with the applied strain. On the other hand, at very low frequencies, where the
response is that of a viscous liquid, the stress is 90° ahead of the strain. The change
from elastic to viscous behaviour takes place over about two decades of frequency.
This latter observation has already been noted in connection with Fig. 3.8. In Fig.
3.10, we show the wave-forms for the oscillatory inputs and outputs. Figure 3.10(a)
represents an experiment in the viscoelastic region. Figure 3.10(b) represents very
high and very low frequency behaviour where the angle 8 is 0° or 90°, respectively.

28/

1-0
G/G
1 i i 1

=10 0 10
log wt

Fig, 3.9 The Maxwell model in oscillatory shear. Variation of the normalized storage modulus and phase
angle with normalized frequency.
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(b)

Fig. 3.10 Wave-forms for oscillatory strain input and stress output: (a) Solid line ( ) strain
according to eqns. (3.25) and (3.33); dashed ling (- - ---- ) stress in advance by angle 8, according to eqn.
(3.43); (b) Solid line ( ) strain input and also stress output for elastic behaviour; dotted line
(oeeee- ) stress output for viscous behaviour.

Zopw that although the stress is 90° in advance of the shear strain for the viscous
liquid, it is in phase with the rate of shear.

3.6 Relationships between functions of linear viscoelasticity

In previous sections we have introduced a number of different functions which
can all be used to characterize linear viscoelastic behaviour. These range from
complex moduli to relaxation function and spectra. They are not independent, of
course, and we have already given mathematical relationships between some of the
.?bn:o:w. For example, eqn. (3.28), which is fairly typical of the complexities
involved, relates the complex shear modulus G* to the relaxation function P.
Equation (3.28) is an integral transform and the determination of ¢ from G* can be
.moocEv_mmroa by inverting the transform. There is nothing sophisticated, therefore,
in determining one viscoelastic function from another: although this is a statement
... in E...Eowv_o:. and much work has been carried out on the non-trivial problem of
inverting transforms when experimental data are available only over a limited n.mumﬂ
of the variables (like frequency of oscillation). The general problem of determining
one viscoelastic function from another was discussed in detail by Gross (1953) and
practical methods are dealt with by, for example, Schwarzl and Struik (1967).

Nowadays most experimental data from linear viscoelasticity experiments are
presented in the form of graphs of components of the dynamic parameters (such as
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complex modulus) and are rarely transformed into the relaxation function or the
relaxation spectrum.

3.7 Methods of measurement

Two different types of method are available to determine linear viscoelastic
behaviour: static and dynamic. Static tests involve the imposition of a step change
in stress (or strain) and the observation of the subsequent development in time of
the strain (or stress). Dynamic tests involve the application of a harmonically
varying strain.

In this section we shall be concerned with the main methods in the above
classification. Attention will be focussed on the principles of the selected methods
and none will be described in detail. The interested reader is referred to the detailed
texts of Walters (1975) and Whorlow (1980) for further information.

An important point to remember is that, whatever the method adopted, the
experimenter must check that measurements are made in the linear range; otherwise
the results will be dependent on experimental details and will not be unique to the
material. The test for linearity is to check that the computed viscoelastic functions
are independent of the magnitude of the stresses and strains applied.

3.7.1 Static methods

The static methods are either ‘creep’ tests at constant stress or relaxation tests at
constant strain (see Figs. 3.11 and 3.12). In theory, the input stress or strain,
whether it is an increase or a decrease, is considered to be applied instantaneously.
This cannot be true in practice, because of inertia in the loading and measuring
systems and the delay in transmitting the signal across the test sample, determined
by the speed of sound. As a general rule, the time required for the input signal to
reach its steady value must be short compared to the time over which the ultimate
varying output is to be recorded. This usually limits the methods to materials which
have relaxation times of at least a few seconds. A technique for estimating whether
apparatus inertia is influencing results is to deliberately change the inertia, by

0 1
to t Time, t

Fig. 3.11 Typical creep curve of strain y plotted against time f. A constant stress was applied at 7 =1,
and removed at ¢ = f;. The strain comprises three regions: instantaneous (0 to v,); retardation (y, 10 v;);
constant rate (y, to v;). In linear behaviour the instantaneous strains on loading and unloading are equal
and the ratio of stress to instantaneous strain is independent of stress; the constant-rate strain (y, to y;)
is not recovered.
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Fig. 3.12 Typical relaxation curve of stress o plotted against time f. A constant strain was applied at
t =1, and reversed at 1 = t,. In linear behaviour the instantaneous changes of stress from 0 3. o, and o,
to o, are equal and the ratio of instantaneous stress Lo strain is independent of strain. The incomplete
relaxation at =, may indicate either that further relaxation would occur in a longer time, or, that p._.n
material at very low deformation behaves like a Hookean solid and a residual stress would persist
indefinitely.

adding weights for example, and checking the effect on the derived viscoelastic
functions.

The basic apparatus for static tests is simple. Once the shape and means of
holding the specimen have been decided upon, it is necessary to apply _.rn.wnﬁﬁ
signal and measure, and record, the output. It is easier to measure strain, or
deformation, than stress. Hence, creep tests have been much more common than
relaxation tests.

The geometry chosen for static tests depends largely on the material to be tested.
For solid-like materials, it is usually not difficult to fashion a long slender specimen
for a tensile or torsional experiment. Liquid-like material can be tested in simple
shear with the concentric-cylinder and cone- and-plate geometries and constant-stress
rheometers are commercially available for carrying out creep tests in simple shear.
Plazek (1968) has carried out extensive experiments on the creep testing of polymers
over wide ranges of time and temperature.

3.7.2 Dynamic methods: oscillatory strain

The use of oscillatory methods increased considerably with the development of
commercial rheogoniometers, and a further boost was given when equipment
became available for processing the input and output signals to give in-phase and
out-of-phase components directly. With modern instruments it is now possible to
display automatically the components of the modulus as functions of frequency.

A general advantage of oscillatory tests is that a single instrument can cover a
very wide frequency range. This is important if the material has a broad spectrum of
relaxation times. Typically, the frequency range is from 102 to 10° s~'. Hence a
time spectrum from about 10* to 1072 s can be covered. If it is desired to extend the
limit to longer times, static tests of longer duration than 3 hr (10* s) would be
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Torsion rod

I
o ﬁEV Input motion

Fig. 3.13 Representation of the cone-and-plate apparatus for oscillatory tests. The specimen is positioned
between the input motion and the output stress.

needed. The lower relaxation time limit of oscillatory methods can be extended by
wave-propagation methods (see § 3.7.3).

The conventional oscillatory methods involve the application of either free or
forced oscillatory strains in conventional tensile and shear geometries. An advantage
possessed by the free vibration technique is that an oscillator is not required and the
equipment can be fairly simple. On the other hand, the frequency range available is
no more than two decades. The reason for this is that a change of frequency relies
on a change in moment of inertia of the vibrating system and the scope for this is
limited. The method is readily adaptable to torsional deformation with solid-like
materials.

The wide frequency range quoted above is achieved with forced oscillations. We
show in Fig. 3.13 the most common example of the forced-oscillation experiment,
although the geometry could equally well be a parallel-plate or concentric-cylinder
configuration. The test material is contained between a cone and plate, with the
angle between the cone and plate being small (< 4°). The bottom member under-
goes forced harmonic oscillations about its axis and this motion is transmitted
through the test material to the top member, the motion of which is constrained by
a torsion bar. The relevant measurements are the amplitude ratio of the motions of
the two members and the associated phase lag. From this information it is relatively
simple to determine the dynamic viscosity 7’ and the dynamic rigidity G’, measured
as functions of the imposed frequency (see Walters 1975 for the details of this and
related techniques).

3.7.3 Dynamic methods: wave propagation

A number of books are available which describe in detail the theory and practice
of wave-propagation techniques. Kolsky (1963) has dealt with the testing of solids,
Ferry (1980) has reviewed the situation as regards polymers and Harrison (1976) has
covered liquids. The overall topic is usefully summarized by Whorlow (1980).
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Basically, the waves are generated at a surface of the specimen which is in contact
with the wave generator and the evaluation of the viscoelastic functions requires the
measurement of the velocity and the attenuation through the specimen. One
significant advantage of wave-propagation methods is that they can be adapted to
high frequency studies: they have been commonly used in the kHz region and
higher, even up to a few hundred GHz. This is invaluable when studying liquids
which behave in a Newtonian manner in other types of rheometer. Such liquids
include, as a general rule, those with a molecular weight below 10°. They include
most of the non-polymeric liquids. Barlow and Lamb have made significant contri-
butions in this area (see, for example, Barlow et al. 1967).

3.7.4 Dynamic methods: steady flow

In the oscillatory experiments discussed above, instrument members are made to
oscillate and the flow is in every sense unsteady. A relatively new group of
instruments for measuring viscoelastic behaviour is based on a different principle.
The flow in these rheometers is steady in the sense that the velocity at a fixed point
in the apparatus is unchanging. (Such a flow is described in fluid dynamics as being
“steady in an Eulerian sense”.) However, the rheometer geometry is constructed in
such a way that individual fluid elements undergo an oscillatory shear (so that the
flow is “unsteady in a Lagrangian sense”). A typical example of such an instrument
is the Maxwell orthogonal rheometer which is shown in Fig. 3.14 (Maxwell and
Chartoff 1965). It comprises two parallel circular plates separated by a distance h,
mounted on parallel axes, separated by a small distance 4. One spindle is rotated at
constant angular velocity 2. The other is free to rotate and takes up a velocity close
to that of the first spindle.

The components of the force on one of the plates are measured using suitable
transducers. In the interpretation of the data it is assumed that the angular velocity
of the second spindle is also £. It can then be readily deduced that individual fluid
elements are exposed to a sinusoidal shear and that the components of the force on
each plate (in the plane of the plates) can be directly related to the dynamic
viscosity and dynamic rigidity.

The Maxwell orthogonal rheometer and other examples of the steady-flow
viscoelastic rheometers are discussed in detail by Walters (1975).

_,...,mm, 3.14 Arrangement of rotating plates in a Maxwell orthogonal rheometer. Plate separation h; axis
displacement d. One shaft rotates at constant velocity £ and the second shaft takes up (nearly) the same
velocity.

CHAPTER 4

NORMAL STRESSES

4.1 The nature and origin of normal stresses
We have already stated in §1.5 that, for a steady simple shear flow given by
ck“*-wv c‘—‘“cN"og A#-HV

the relevant stress distribution for non-Newtonian liquids can be expressed in the
form

(42
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The variables o, N; and N, are sometimes called the viscometric functions. A useful
discussion of the importance of these functions is given by Lodge (1974, p. 212). In
this chapter, we shall be concerned with the normal stress differences N, and N, or,
equivalently, the so-called normal stress coefficients ¥, and ¥,, where

M=%, N=7'%, (4.3)

In principle, it is possible for a non-Newtonian inelastic model liquid to exhibit
normal-stress effects in a steady simple shear flow. The so called Reiner—Rivlin
fluid, which is a general mathematical model for an inelastic fluid (see §8.4), can be
used to demonstrate this. However, all the available experimental evidence is that
the theoretical normal stress distribution predicted by this model, viz. N, =0,
N, # 0 is not observed in any known non-Newtonian liquid. In practice, normal-stress
behaviour is always that to be expected from models of viscoelasticity, whether they
be mathematical or physical models.

The normal stress differences are associated with non-linear effects (cf. §1.3).
Thus, they did not appear explicitly in the account of linear viscoelasticity in
Chapter 3. In the experimental conditions of small-amplitude oscillatory shear, in
which linear viscoelasticity is demonstrated and the parameters measured, the three
normal stress components have the same value. They are equal to the ambient
pressure, which is isotropic. Similarly, in steady flow conditions, provided the flow
is slow enough for second-order terms in ¥ to be negligible, the normal stresses are

55

T ————————




