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Abstract

Patterns of intraspecific genetic variation result from interactions among both historical
and contemporary evolutionary processes. Traditionally, population geneticists have used
methods such as F-statistics, pairwise isolation by distance models, spatial autocorrelation
and coalescent models to analyse this variation and to gain insight about causal evolutionary
processes. Here we introduce a novel approach (Population Graphs) that focuses on the
analysis of marker-based population genetic data within a graph theoretic framework. This
method can be used to estimate traditional population genetic summary statistics, but its
primary focus is on characterizing the complex topology resulting from historical and con-
temporary genetic interactions among populations. We introduce the application of Popu-
lation Graphs by examining the range-wide population genetic structure of a Sonoran Desert
cactus (Lophocereus schottii). With this data set, we evaluate hypotheses regarding historical
vicariance, isolation by distance, population-level assignment and the importance of specific
populations to species-wide genetic connectivity. We close by discussing the applicability
of Population Graphs for addressing a wide range of population genetic and phylogeo-

graphical problems.
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Introduction

The amount and geographical patterning of genetic vari-
ation within species is an evolutionary consequence of
several historical and contemporary processes including
vicariance, range expansion, gene flow and fragmentation
(Slatkin 1985; Riddle 1996; Taberlet et al. 1998; Hewitt 2001;
Sork et al. 2001). Quantifying this variation and in turn the
extent to which these processes have acted in shaping
genetic structure is a chief concern of the field of evolution-
ary biology. Numerous theoretical models and methodo-
logical procedures have been developed to address this
goal, many of which are integral to the foundation of
population genetic theory. A common conceptual feature
of these approaches is an a priori definition of a hierarch-
ically nested population model (for example in which
populations are nested within geographical regions) that
in turn guides the distillation of genetic differences among
populations into single or few measures of average genetic
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differentiation. Although commonly employed for the
analysis of genetic marker data, this general approach
suffers from potential several shortcomings that are perhaps
not well recognized.

With the goal of stimulating the development of new,
hopefully effective, solutions we begin by considering the
potential problems associated with an a priori statistical
model-based approach characteristic of many traditional
population genetic procedures. We then describe the
development of a potential solution, a new graph-theoretic
approach to the analysis of genetic marker data, which we
call Population Graphs.

Population models and summary statistics

Wright's F-statistics (Wright 1951), aAmova (Excoffier ef al.
1992) and Nei’s D (Nei 1972, 1978) are commonly used
procedures describing genetic structure in terms of summary
statistics. Even approaches relying upon pairwise measures
of genetic differentiation, such as isolation by distance
(Slatkin 1993; Rousset 1997), summarize relationships in
terms of averaging statistics such as a regression slope or a
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correlation coefficient. In contrast, evidence from popu-
lation genetics, phylogeography and ecology indicates that
the processes influencing the evolution of genetic structure
vary in both time and space (e.g. Rhodes et al. 1996) leading
to the expectation that the complexity of interpopulation
relationships may not be captured adequately by a single or
few averaging statistics. Both simplification and generality
often lead to a better understanding of underlying processes,
but they do not guarantee that we end up with a more
concise interpretation of how evolution has shaped the data.

Even in the presence of a significant summary statistic,
it is unclear that the associated a priori statistical model is
one that best describes the patterns of variation in the popu-
lation genetic data and, hence, reveals the correct signature
of underlying evolutionary processes. A significant statis-
tic signifies only that the proposed statistical model is suf-
ficiently correct to reject the null hypothesis, often one of
no differentiation. However, rejecting the null does not
mean that the statistical model is defined precisely or cor-
rect. For any given value of a mean measure of differenti-
ation (e.g. Fgp, @gp) there is an infinite number of ways in
which the differentiation between populations may be
structured. We cannot distinguish, for example, between
all populations being equally differentiated vs. subsets of
populations being categorically different. The current
repertoire of statistical genetic models lack the ability to
inspect both the “lack of fit" of our models to the observed
data and the resulting response surfaces (e.g. Box et al.
1978; Box & Draper 1987). As a result, additional informa-
tion is likely to be present in our genetic data sets that
remain quantified inadequately.

Due of the overall complexity of evolutionary processes
operating within and among populations of a species, ana-
lytical approaches that focus specifically upon the details
of genetic interactions and relationships among popula-
tions, as opposed to an overall average effect, will provide
a more integrated description of observed population
genetic structure. Indeed, the extent to which we embrace
this, often multivariate, complexity can impact the degree
to which we can quantify successfully both intraspecific
genetic variability (e.g. Smouse et al. 1982; Westfall &
Conkle 1992) and the effects of specific evolutionary pro-
cesses (e.g. Gavrilets 1997). The majority of methodological
approaches employed thus far have allowed us to depict
evolutionary affects on intraspecific genetic variation with
a broad-brush stroke. If we are interested in examining
how evolution has structured genetic variation at a finer
level of granularity, however, we may often need to look at
the problem using alternate perspectives.

Several models have been suggested recently that
move beyond averaging summary statistics. These analy-
tical approaches fall, roughly, into two broad categories. In
the first category are model-based approaches that either
extend or attempt to increase the precision of standard Fg~

based approaches. Often these models posit an a priori
hierarchical model of population relationships. Examples
of these include multivariate ordinations of pairwise dif-
ferentiation statistics using principal coordinates and multi-
dimensional scaling (e.g. Lessa 1990; Edwards & Sharitz
2000; Zhivotovsky et al. 2003) and methods aimed at maxi-
mizing among strata genetic variance such as sAMova
(Dupanloup et al. 2002). The second, more recent category
includes models based on the coalescence, such as GENETREE
(Bahlo & Griffiths 2000) and MIGRATE (Beerli & Felsenstein
2001). In this study we present a third category of models
for examining the distribution of intraspecific genetic
structure using a multivariate graph-theoretic approach.
This method, which we call Population Graphs, is free of
an a priori model of population arrangement (e.g. we do
not assume that populations are nested within either a
hierarchical or bifurcating statistical model). Further, these
relationships are not quantified in terms of averaging
statistics or coalescence parameters, but in the form of a
graphical topology (e.g. the pattern of genetic covariance
structures among all populations), which captures the high
dimensional genetic covariance relationships among all
populations simultaneously rather than in a pairwise
fashion. It is with this topology, which is easily visualized,
that we address both a priori and post-hoc hypotheses
regarding the distribution of intraspecific genetic variation.

To present the Population Graph framework, we intro-
duce briefly some graph theoretic notation as well as the
statistical methods of conditional independence. We then
demonstrate how one utilizes the Population Graph frame-
work by focusing on a set of general population genetic
and phylogeographical hypotheses using an empirical
example from the Sonoran Desert cactus, Lophocereus
schottii, presented recently in Nason et al. (2002). With this
nuclear marker data set, we show specifically how Popula-
tion Graphs can be used to address hypotheses amenable
to traditional analytical approaches, such as the effects of
historical vicariance and isolation by distance. Moreover,
we show how the graph-theoretic approach on which
Population Graphs is based allows us to identify and test
hypotheses regarding population genetic history that
would not have been apparent from traditional analyses.
We close by discussing the utility of Population Graphs for
addressing a wide range of population genetic questions
focusing on the dynamic nature of co-occurring evolutionary
processes.

The model

The essential goal of Population Graphs is to allow the
genetic data to describe the statistical relationships among
all populations simultaneously. Our approach to defining
these sets of relationships relies upon a graph theoretic
interpretation of population genetic structure. We begin by
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introducing some graph theoretic notations to describe the
Population Graph framework.

Graph theory

Graph theory is based upon the association among
mathematical sets. A set, S, is simply an unordered collection
of objects. The number of objects in S, denoted as S|, is
called the order of S. A set that has no elements is called a
null set and is written as &J. We writex € Sand y ¢ S to
indicate that x is a member of S and y is not a member of S.
If all the elements in S are also in another set, T, then S is a
subset of T, which is denoted as S < T. On the other hand,
when none of the elements of S are not in T, we write S &
T (i.e. S and T are disjoint). Finally, when examining the
relationship between two sets, we can write the intersection
of the two sets as S N T, representing the elements shared
between both sets.

A graph (G) is a mathematical mapping of two disjoint
sets, a set of nodes (V) and a set of edges (E), and is denoted
as G = {V, E} (Bollobas 2001). Within the Population Graph
framework, the set of nodes, v;e V;i={1,2, ..., N}, repre-
sent N sample populations and the set of edges, ¢; €
E;i=1{1,2, ..., K}, the set of multivariate measures of
genetic covariance between populations. A saturated graph
(Fig. 1A) is one in which all nodes are connected to all other
nodes and has K, ,,; = N(N - 1)/2 edges. Graphs can be
represented algebraically by an incidence matrix, which
describes the fopology of the graph. The topology, in its
most general sense, is simply the pattern of node connec-
tions. The following incidence matrix, A, describes the
graph in Fig. 1B. This incidence matrix has four rows and
columns; that is, the order of the graphis | V| = 4. Each ele-
ment of the incidence matrix A = {e;};1,j = 1,2, 3, 4 denotes
the presence (a nonzero value) or absence (a zero value) of

an edge, ¢;;, connecting nodes i and j.
0110
1010

A= 1
1101 o
0010

The strength of edges (i.e. the elements of A) can be vari-
able, resulting in a weighted graph, as is used for Popula-
tion Graphs. Incidence matrices for weighted graphs only
differ from eqn 1 in that the presence of an edge is rep-
resented by a real number rather than a ‘1’. Furthermore, the
incidence matrix, A, in this example is symmetric around
the diagonal, although neither graphs in general nor Popu-
lation Graphs require this. A nonsymmetrical Population
Graph incidence matrix would represent anisotropy in
genetic covariance, as may arise, for example, under isola-
tion by distance in linear spatial arrangements of popula-
tions (such as along a river).
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Fig.1 Two simple graphs. (A) A saturated graph consisting of
four nodes (circles) and six edges (lines connecting the nodes).
(B) A nonsaturated graph with the same order as (A) but with a
reduced edge set.

>,
¢
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The topology of a graph has several prominent charac-
teristics salient to the characterization of intraspecific
genetic variation. First, a subgraph, G,, of a larger graph G
is one in which the entire edge and node sets of G, are
included in G; thatis, G, = {V;, E;} is a subgraph of G if and
only if V, c Vand E; c E. A graph can be partitioned into
many subgraphs and we will return to this topic later when
discussing the interpretation of Population Graph. Second,
the degree of a node, d(v;), is simply the number of edges
connected to it. If d(v;) = 0 then the node i is called isolated.
From a genetic perspective, graphically isolated popula-
tions would be independently evolving entities. Next, a
graph may contain cycles, which are sequences of non-
repeating node-node paths that form a closed loop. Such
cycles in Population Graphs may result from reticulate
gene flow. The subgraph, G,, consisting of the nodes
V=1{V,, V,, V;} and the edges E = {{V,, V,,}, {V,, V,}, {V,,
V I} in Fig. 1B is a cycle. A tree is simply a sequence of con-
nected nodes and edges that have no cycles. Again, from
Fig. 1B, the subgraph G, is a tree when the node set is
V={V,,V, V, and theedgeset E = {{V,,V,}, {V,,V }}. With
this general introduction to graphs, we now describe how
one can use graphs to represent population genetic struc-
ture using multilocus marker data.

Genetic coding

We assume that genetic markers have been assayed for
a relatively large number of individuals spread across
several populations. For the purposes of this study we focus
specifically on codominant markers, such as allozymes
and microsatellites, and for the sake of brevity address the
issues of alternate genetic markers and sampling strategy
in a subsequent manuscript (Dyer and Nason, in prep).
Multilocus genotypes are translated into multivariate
coding vectors following the mapping described in Smouse
et al. (1982). This coding scheme produces a data vector, Py
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representing the multivariate genotype for the jth
individual. The full data matrix, X, will have m columns,
where m is the number of independent genetic variables
(e.g. the number of independently assorting alleles across
allloci), and n,,,; rows, representing all the individuals
within the N populations. Even though this method
produces a sparse matrix, with a reasonable number of loci
and individuals it approaches multivariate normality
(see Kempthorne 1969; Westfall & Conkle 1992, for a more
complete discussion). The set of individuals within the ith
population defines a multidimensional population centroid,
p;, in m-dimensional genetic space. The centroid defines a
unique m-dimensional coordinate representing the average
genetic individual within the ith population. This distance
metric has been chosen as it is identical to that used in the
AMOVA framework (Excoffier ef al. 1992), with which many
researchers are familiar.

Once the N population centroids are defined from the set
of all individuals, we then determine the contribution to
the overall genetic variation due to differences among all
pairs of populations. These pairwise distances define a dis-
tance matrix, D, whose off-diagonal elements, di]-, define a
statistical distance between populations in m-dimensional
genetic space. This matrix can be used to describe a satur-
ated Population Graph in which all nodes (populations)
are connected to all other nodes by edges of weight d;;.. In
Appendix I we demonstrate the general equivalence of D
to the distance matrix in aAmova (Excoffier et al. 1992) and
show how ®-statistics can be estimated directly from
the saturated Population Graph. Because all nodes are
interconnected, the topology of the saturated graph is not
immediately informative as to interpopulation relation-
ships. An informative topology is obtained from the mini-
mal incidence matrix containing the smallest edge set that
sufficiently describes the among population genetic covari-
ance structure. The translation of the population distance
matrix, D, to a minimal incidence matrix (as in eqn 1) relies
upon the techniques of conditional independence.

Genetic covariance and conditional independence

Conditional independence forms the foundation of several
commonly used parametric statistical models. For example,
in multiple regression the inclusion of a variable requires
the examination of its conditional independence to those
variables already entered into the model (Whittaker 1990).
In this case, we examine the Type III sums of squares for
the newly entered variable and compare that against the
sums of squares accounted for by the set of previously
included predictor variables (e.g. Draper & Smith 1981). In
addition to multiple regression, conditional independence
is also used in such statistical methods as logistic regres-
sion and contingency tables (Whittaker 1990). In the context
of Population Graphs, we are interested in determining

the minimal edge set that sufficiently describes the total
among population covariance structure. Following from
the regression analogy, each edge in the Population Graph
is analogous to a predictor variable. Our goal is to identify
edges that do not aid in sufficiently describing the total
among population genetic covariance structure. These edges
can be ‘pruned’ from the graph without significantly
decreasing the fit of the Population Graph model to the
population genetic data.

There are several methods amenable to calculating
conditional independence, including edge deviance,
covariance selection and vanishing partial correlations
(Dempster 1972; Whittaker 1990). For the sake of brevity,
we shall use the method of edge deviance in this paper as
it has recently been described in an evolutionary context
by Magwene (2001) and defer the comparison of alternate
methods to a subsequent manuscript. Briefly, the method
proceeds as follows. First, we must translate our pairwise
population distance matrix, D, into a covariance matrix, C.
Gower (1966) showed the duality of distance and covari-
ance matrices whereby the covariance between the ith
and jth element of Dis givenby ¢;; =-0.5(d; —d; —d ;+d ),
where the subscripts i and j index the elements of D and the
period subscript, ‘., indexes the mean of the rows and/or
column(s) in D. Following directly from Magwene’s
discussion of edge deviance, we proceed by inverting the
covariance matrix producing what is called a precision matrix
(Cox & Wermuth 1996). The ith diagonal element of the
precision matrix is equal to 1/(1 — R2), where R?is the multiple
correlation coefficient between the ith and all remaining
populations (Whittaker 1990). R? is also known as the
coefficient of multiple determination (Sokal & Rohlf 1995),
which is a measure of the proportion of variation in the ith
population jointly accounted for by the remaining popu-
lations. To aid in interpretation, the precision matrix is
standardized to a correlation matrix, R, using normal
matrix routines (see Johnson & Wichern 1992).

The ijth off-diagonal element of the standardized preci-
sion matrix, ry;, is simply the partial correlation coefficients
between the ith and jth populations. Absolute values of ;;
which are zero denote pairs of populations whose covari-
ance structure are conditionally independent, given all the
other populations in the data set. That is, within the edge
set E there is a sufficient number of alternate paths through
the graph, whose presence explain the overall pattern of
population covariation such that the removal of ¢;; does not
influence the total genetic covariance.

Determination of how small r; must be to be considered
zero is the final step in estimating the conditional independ-
ence structure of the Population Graph. Whittaker (1990)
showed that a statistic of information divergence, called
edge exclusion deviance (EED), could be used to determine
if values of r;; are not significantly greater than zero. Edge

ij
exclusion deviance is calculated as: EED = —#,, In[1 — (r;)2],
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where 1, is the number of individuals in the entire data
set. EED has an asymptotic x2 distribution with one degree
of freedom (Whittaker 1990). Using the EED values, we
determine the minimal edge set E_;, describing the hypo-
thesized topology of the Population Graph. The goodness-
of-fit for this topology can be evaluated analytically
by estimating the model deviance, D = n, .., In(1Z1/1S1),
where |Z1 is the determinant of a MLE estimate of the
covariance matrix (see Edwards 1995 for its calculation)
and | S| is the determinant of observed sample covariance
matrix (Whittaker 1990). The model deviance, D, also has
an asymptotic ¥ 2 distribution with the degrees of freedom
equal to the number of excluded edges. Significant values
of D suggest that the topology does not fit the data. For a
more complete discussion of model testing, see Magwene
(2001).

Hypothesis testing in Population Graphs

In general, hypotheses are evaluated in Population Graphs
by examining either the overall topology or specific topo-
logical features of the graph itself. For example, a common
a priori hypothesis in many population genetic studies
is one specifying a restriction in gene flow between two
groups of populations (e.g. vicariance), which is evaluated
typically by examining the significance of an average
differentiation statistic between groups such as ® or 6. The
same hypothesis can be evaluated using Population Graphs
by focusing on topological features of edge connectivity
between specified groups of populations. While Population
Graphs are not limited to testing only this type of hypo-
thesis, the practice of assessing the significance of topological
features within a graph is so common we will focus first on
how these hypotheses are evaluated. Later, using the L.
schottii data set, we will demonstrate methods for testing
other categories of hypotheses in Population Graphs.

The null hypothesis regarding the topology of a Popula-
tion Graph under restricted gene flow, for instance due to
vicariance, states that the presence or absence of an edge
connecting nodes should be independent of the hypo-
thesized geographical barrier to gene flow. If the null is
true then the number of edges connecting nodes across the
hypothesized barrier to gene flow should be as numerous
as the number of edges in other portions of the graph. As
it turns out, as every edge is connected to only two nodes,
by definition, the pattern of edge/node connections has a
binomial expectation (Bollobas 2001). Given a Population
Graph, G, with parameters K= |E| edgesand N = | V|
nodes the average probability of observing an edge connect-
ing any two nodes can be modelled as a binomial random
variable, B(p, K,,)), where the parameter p is:

K

= 3
PK 3)

total
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where

Ktotal = w (4)

enumerates the number of edges in a saturated graph
(following Bollobés 2001).

By way of an example, consider the graph G = {V, E} with
parameters N and K as above. Further, we are interested in
partitioning G into two complete subgraphs, G, and G,,
withnode sets, V, and V,, where VUV, =Vand V, "V, =
. We assume that these subgraphs are not disconnected
(the trivial solution) and share a set of edges, Ky, connecting
the two subgraphs. The subgraph G, has N; = | V; | nodes
and K| = | E; | edges. Similarly, the subgraph G, has N, =
|V,I =N-N;nodes and K, = | E,| =K-K, - Ky, edges.
The probability of finding an edge connecting G, to G, is:

NINZ
K

)

total

and the probability of observing Ky, or fewer such edges
is:

Kbtw K
pa<Ky) = [i ]pi(l - p)Kt 6)

i=0

If we are not testing an a priori hypothesis regarding
the significance of G, and G, we need to correct p(x <K,,)
to take into account the number of ways we can obtain a
]. This

1
general binomial approach facilitates the testing of a wide

range of both a priori as well as post-hoc topological hypo-
theses within the Population Graph framework.

In addition to the binomial approach, one may also use
permutation to evaluate the significance of topological
features. Following from above, we can easily simulate the
null distribution of the number of between subgraph edge
counts within the set of graphs, Gy, of the same order as
G. Thenode set of each graph in G, ;; will be partitioned into
populations belonging to subgraphs as in G,y ;; the observed
graph. From the set of graphs in, we extract the null distri-
bution of between subgraph edges, K, , on which we evaluate
the significance of the observed value. General permuta-
tion approaches are covered in depth in Manly (1997) that
can be adapted easily to graph theoretic hypotheses.

subgraph of size N, by multiplying eqn 6 by [Z\I\]]

Case study: L. schottii

Chief among the historical factors influencing intraspeci-
fic genetic variation are deep time geotectonic events over
the past several million years and shallow time glacial-
interglacial cycles over the most recent hundreds of
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thousands of years. The relative importance of geological
and climatic factors on the present day distributions of plant
and animal taxa has long been contentious (Cracraft 1988;
Riddle 1996; Avise 2000). Molecular data are being brought
increasingly to bear on this problem, with the strongest
inference obtained when testing pre-existing regional hypo-
theses concerning dispersal and vicariance as opposed
to generating ad hoc explanations from genetic data alone
(Cruzan & Templeton 2000; Knowles & Maddison 2002).

The Sonoran Desert of the southwestern United States
and northwestern Mexico is an area of active ecological
and evolutionary research due to its diverse habitats, high
taxonomic diversity and well-characterized geotectonic
and palaeoclimatic history. In particular, three major geo-
tectonic events are predicted sources of vicariance for the
region’s biota (Case et al. 2002): (i) the formation of the Sea
of Cortéz (c. 5 Mya) separating peninsular Baja from main-
land Mexico; (ii) the Isthmus of La Paz separating the
southern Cape Region and south-central Baja and resulting
from the formation of a trans-peninsular seaway connect-
ing the Sea of Cortéz and the Pacific Ocean (c. 3 Mya); and
(iii) a geologically cryptic mid-peninsula vicariance event
in Central Baja (suggested by vertebrate allozyme and
mtDNA data; Riddle et al. 2000), resulting from the forma-
tion of a trans-peninsular seaway during the mid Pleis-
tocene (c. 1 Mya). Layered onto these deep time events are
more recent Pleistocene climatic cycles driving changes in
geographical distributions that may have eroded or even
erased evidence of older vicariance events.

The geographical concordance of phylogenetic topolo-
gies with ancient geological events has led Riddle ef al.
(2000) to two general conclusions regarding present day
Sonoran Desert vertebrates: first that lineage diversifica-
tion resulting from vicariance events in deep time persists
as important sources of taxic diversity, and second that
Quaternary climatic fluctuations have had relatively little
impact on biogeographical distributions of taxa in Baja.
Sonoran Desert plants, in contrast, are mostly of tropical
origin and frost sensitive, suggesting that their popula-
tions may be more prone to extinction during climatic
fluctuations and less likely to persist on opposite sides of
historical sources of vicariance.

Using traditional population genetic tools, Nason et al.
(2002) tested these hypotheses with respect to a Sonoran
Desert plant, the endemic columnar cactus, senita (L. schot-
tii). A total of 21 Continental Sonoran and Peninsular Baja
populations of L. schottii were assayed for 29 polymorphic
allozyme loci. The distribution of genetic variation was
decomposed using a hierarchical F-statistic model with the
following levels: individuals nested within populations;
populations nested within putative Continental Sonoran
and Peninsular Baja phylogroups defined by a Sea of Cortéz
vicariance event; and among phylogroups. Nason ef al.
(2002) found genetic differentiation among populations to

be exceedingly large for an insect pollinated plant species
(Fgr = 0.431), as was the genetic variance among phylo-
groups (Fpp = 0.302). Isolation by distance was significant
among Peninsular Baja and among Continental populations
(but not between), consistent with the hypothesis of limited
gene flow within regions (the lone exception was a Contin-
ental population, SenBas, to which we return shortly). A popu-
lation phenogram of all Peninsular Baja populations,
constructed using Nei’s genetic distance and neighbour
joining, revealed a clear pattern of consecutive nesting of
populations from south to north supporting the hypothesis
of recent northward range expansion. The phenogram des-
cribing Sonoran populations contained less spatial structure.

From the L. schottii data set, we examine two distinct sets
of hypotheses using Population Graphs. The first set is
concerned with more traditional population genetic
and phylogeographical questions regarding the historical
vicariance between the putative Continental and Peninsular
phylogroups (akin to testing for significant differentiation
among strata or Hy: F,, = 0in Nason et al. 2002) and the
presence of isolation by distance. The second set of hypo-
theses focuses on specific topological characteristics of
the Population Graph, examining the placement of a
particular continental population (SenBas) within the
graph and, more generally, the relative importance of indi-
vidual populations in maintaining genetic connectivity, or
information flow, among all populations.

The L. schottii Population Graph

A total of 948 individuals with 29 multilocus genotypes
were translated into a 21 x 21 population distance matrix,
D (Table 1; below diagonal). The Population Graph repres-
enting the minimal topology of 21 L. schottii populations
has 50 edges (significant edges shown in Table 1; above the
diagonal) with two visually identifiable subgraphs (Fig. 2).
This minimal edge set, E_; , depicted in Fig. 2, represents
the best fit model among several alternate topologies (model
deviance: D = 162.4559, d.f. = 160, P = 0.43). Techniques
for exploring alternate topologies are beyond the scope of
this study, as it requires a full mathematical treatment (see
Magwene 2001 for a general overview). We return to this
topic in a later manuscript focusing on global human
population genetic structure (Dyer and Nason, in prep).
The smaller of the subgraphs, hereafter G, and depicted
with lighter coloured nodes in Fig. 2, contains populations
PL, LF, CP, Seri, SG, SI, SN and TS, all of which are Con-
tinental Sonoran populations. The larger subgraph, G,,
contains the remaining populations that are, with the
exception of SenBas from southern Arizona, all Baja Penin-
sular populations. A single connection, or bridge, con-
necting SenBas and PL forms the only link between G, and
G,. The connectivity of SenBas within Fig. 2 suggests that
even though it is geographically proximal to Continental

© 2004 Blackwell Publishing Ltd, Molecular Ecology, 13, 1713-1727
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Table 1 Population-wise multivariate statistical distances (d;; below diagonal) and standardized inverse correlations (r;; above diagonal) among peninsular Baja and mainland Sonora

populations of Lophocereus schottii. Population names in italics denote Continental Populations. Standardized correlations significantly greater than zero are denoted in bold (above
diagonal) and index the minimal edge set in the Population Graph shown in Fig. 2. Significance was evaluated using edge exclusion deviance (see text)

BaC CP Ctv LaV LF Lig PL PtC PtP SenBas  Seri SG SI SLG SN SnE SnF Snl StR TS TsS

BaC -0.04 0.05 015 -0.01 0.07 0.00 0.05 0.10 0.07 0.00 -0.02 0.02 -0.01 0.01 011 -0.01 0.07 0.23 0.06 -0.01
CcP 10.93 -0.03 0.04 0.07 0.02 -0.04 0.01 -0.03 0.01 0.41 0.21 -0.05 0.04 0.15 0.03 0.03 0.00 0.00 0.20 -0.01
Ctv 6.84 1043 -0.02 0.01 0.02 0.00 0.00 0.25 0.10 0.00 0.00 -0.02 0.64 0.01 0.00 0.20 0.05 -0.04 0.00 0.00
LaV 9.04 1323 1076 0.01 0.08 -0.02 0.05 0.02 0.01 -0.02 0.04 0.00 -0.02 -0.01 0.23 0.09 -0.03 0.03 0.02 0.38
LF 10.76 429 1012 1344 0.02 039 -0.01 -0.02 -0.01 0.04 0.28 0.17 0.01 0.06 -0.02 -0.01 0.01 -0.03 0.06 0.01
Lig 9.75 12.35 9.82 1218 1240 0.01 0.09 0.03 0.05 0.02 0.02 0.01 0.01 0.03 0.06 0.04 0.10 0.19 0.03 0.05
PL 10.77 524 1023  13.67 246 12.60 0.00 0.00 0.07 0.00 0.15 0.34 0.03 0.06 0.02 -0.02 -0.02 0.00 0.05 0.04
PtC 1075 1384 1196 10.65 14.01 12.88 14.07 0.01 0.04 0.01 0.03 0.02 -0.01 0.03 0.09 0.04 -0.01 0.12 0.05 0.49
pPtP 6.46 10.44 265 1033 1021 9.62 1025 11.64 011 -0.01 0.00 0.02 0.03 0.01 0.01 0.30 0.15 0.01 0.00 -0.01
SenBas 7.67 9.05 573 1141 8.95 10.40 8.87  12.07 5.82 0.06 0.00 -0.01 0.03 0.05 0.00 0.02 0.05 0.07 0.01 0.00
Seri 10.57 267 1023  13.37 397 1213 471 1371 10.16 8.58 0.19 0.05 -0.01 0.25 0.01 -0.02 0.03 0.01 0.06 -0.02
SG 11.37 370 11.04 13.67 286 12.85 3.60 1420 10.95 9.48 3.46 013 -0.04 0.05 -0.01 0.02 0.00 0.01 -0.01 0.00
SI 10.70 529 1037 1374 3.19  12.65 295 1412 1024 9.21 4.67 391 0.01 0.07 0.00 0.02 0.00 0.02 022 -0.01
SLG 722 10.32 1.39 1094 10.09 10.02 10.17 1212 3.26 6.13 1024 11.07 1032 -0.03 0.03 0.18 0.10 0.00 0.03 0.04
SN 10.60 4.08 1047 1349 449 1232 498 1373 1036 8.91 357  4.53 496 10.56 0.04 -0.01 -0.01 0.02 0.17 0.00
SnE 776 11.75 8.74 8.44 1202 10.81 12.05 1047 8.55 9.68 11.61 1239 1218 8.85 11.66 0.03 0.05 019 -0.05 0.09
SnF 727  10.69 270 1045 10.63 9.97 1077 1199 2.99 6.54 10.62 1134 10.77 3.01 10.90 8.83 0.10 0.03 -0.02 -0.05
Snl 6.88 9.82 446  10.68 9.73 9.31 993 11.58 4.45 6.66 949 1038 9.93 4.61 9.91 8.50 4.86 0.09 0.02 0.05
StR 6.64 11.39 8.58 9.82 1152 925 1149 10.06 8.07 8.63 11.08 11.84 1148 874 11.18 7.62 8.53 7.74 -0.03 0.08
TS 10.22 4.36 991 1331 444 1220 481 13.63 9.91 891 443 4.88 4.34 9.84 460 1205 1043 949 11.37 -0.01
TsS 9.83 1342 10.86 748 1324 1208 13.25 691 1070 11.42 13.38 13.67 1356 10.88 13.39 911 11.17 1040 931 13.29
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populations (see Fig. 1in Nason et al. 2002), it shares a higher
degree of genetic covariance with Peninsular Baja popula-
tions. In contrast, the original hierarchical analysis of
Continental vs. Peninsular populations in Nason et al. (2002)
grouped SenBas with the remaining Continental popula-
tions due to its geographical proximity. The authors did
single out SenBas as unusual because it alone exhibited no
pattern of isolation by distance with other populations (see
Fig. 3B in Nason et al. 2002). Given palaeoecolgical evid-
ence of the absence of L. schottii from northern Baja and
Sonora prior to 2000 years ago (Van Devender ef al. 1994;
Penalba & Van Devender 1998), the Population Graph sug-
gests a new hypothesis for the origin of SenBas, that it is the
result of a relatively recent long-distance dispersal event
out of Peninsular Baja. This hypothesis would explain the
clustering of SenBas within the Peninsular subgraph, G,, as
well as the lack of isolation by distance between this
population and the remaining continental populations.

Vicariance and isolation by distance in Population Graphs

The presence of vicariance and isolation by distance are
two hypotheses commonly addressed in population genetic
analyses. We begin our examination of the Population
Graph in Fig. 2 by evaluating the significance of these
two hypotheses. As outlined above, vicariance within a
Population Graph should be visually evident by relatively
few edges between populations spanning the hypothe-
sized source of vicariance. In Fig. 2, it is immediately
obvious that subgraphs G, and G, may be separated by a
potential source of vicariance, which in this case corre-
sponds to the Sea of Cortéz. Nason et al. (2002) tested this
a priori hypothesis by examining the genetic differenti-
ation between these two putative phylogroups and found a
significantly large amount of among phylogroup variation;
Fpr =0.302; CI95% = (0.177-0.435). Here we test the same

Fig. 2 Population Graph representing the
genetic relationships among Peninsular (dark
nodes) and Continental (light nodes) popu-
lations of Lophocereus schottii. The differences
in node size reflect differences in within
population genetic variability, whereas the
edge lengths represent the among population
component of genetic variation due to the
connecting nodes. Both node sizes and
edge lengths are projected within a three-
dimensional drawing space.

hypothesis within the Population Graph framework using
both the binomial representation outlined above as well as
a permutation-based approach.

From Fig. 2, we find that subgraph G, has N, = 8 nodes
and K, = 16 edges and subgraph G, has N, = 13 nodes and
K, = 33 edges (assuming for the time being that the SenBas
population is part of the Peninsular subgraph). From eqn 5
above, the null hypothesis states that the probability of
obtaining an edge connecting G, to G, in the graph is:

NlNZ
p=—1"2-04952

total

Further, within the entire graph, containing K = 50 edges,
the probability of observing a single edge (a bridge) con-
necting G, to G, is (K,,,, = 1 from eqn 6 above):

Kbtw K
p(x < Kbtw) = z [ .]pi(l - p)K’l =717e - 14
izo \!

a highly significant result. This significant result suggests
that the Sea of Cortéz, as represented in the topology of
Fig. 2, has indeed acted as a significant source of vicariance
between the two subgraphs (or putative phylogroups
following Nason ef al. 2002). Because we are focusing here
on demonstrating the use of Population Graphs, we refer
the interested reader to the original analysis of these
data for discussion of the evolutionary significance of
this vicariance.

In addition to the binomial test for vicariance, we also
performed a permutation test to highlight the duality
of these two analyses. Again, under the null hypothesis,
the Sea of Cortéz has no influence on the topology of
represented in Fig. 2. As a result, we can simulate a large
number of random graphs of the same size and order as
that show in Fig. 2. From these graphs, we can build the

© 2004 Blackwell Publishing Ltd, Molecular Ecology, 13, 1713-1727
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Fig. 3 The probability of observing edges connecting Peninsular and
Continental populations of Lophocereus schottii using the binomial
(solid lines) and permutation (dashed lines) tests. The observed
number of interphylogroup edges (K, = 1) is indicated by the
filled circle.

null distribution of how many edges are predicted, under
the null, to connect Peninsular and Continental populations.
We show in Fig. 3 the probability densities for both the
binomial and permutation tests for the graph parameters
outlined above. Both approaches yield similar results; namely
that the probability of observing a single bridge connecting
these two phylogroups is exceedingly unlikely if the Sea of
Cortéz is not acting as a source of vicariance. The binomial
and permutation approaches are not the only methods to
test the significance of topological features; however, they
do are relatively intuitive and follow from the work on
random graph theory. We return to discussing other
analytical approaches in a subsequent manuscript.

The next hypothesis we test concerns the spatial arrange-
ment of populations with respect to their genetic differ-
ences under a model of isolation by distance (IBD). IBD is
a non-random association of genetic similarity resulting
from limited gene exchange among geographically separ-
ated populations (e.g. Slatkin 1993). Several approaches
have been used to test for isolation by distance, ranging
from simple regression of pairwise Fq; and genetic dis-
tances on physical distance to more sophisticated evolu-
tionary models (e.g. Slatkin 1993; Roussett 1997). Population
Graphs can also be used to investigate isolation by distance
by examining the relationship between graph and geograph-
ical distances.

By definition, the graph distance between nodes i and j
is the shortest path through the graph connecting them, I;,.
The length of this minimum path can be measured in terms
of the minimum number of edges separating nodes (in
unweighted graphs), or the minimum path length (in
weighted graphs). In a Population Graph, the graph dis-
tance, I;;, corresponds to the among population component
of genetic variance, 63 (following Appendix I), for all pairs

© 2004 Blackwell Publishing Ltd, Molecular Ecology, 13, 1713-1727
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Fig. 4 Relationship between graph distance, [, and physical
separation between populations (km) as a measure of isolation by
distance (P < 0.001, R2 = 0.48).

of populations. As with other IBD methods, these pairwise
graph distances are regressed on the geographical separa-
tion (using nonparametric methods due to the lack of
independence). Under the model of IBD, we expect a pos-
itive relationship between pairwise genetic and geograph-
ical measures of differentiation. For the set of Peninsular
populations, G, in Fig. 2 excluding SenBas, we find a sig-
nificant relationship between graph distance and physical
distance (Fig. 4; P <0.001, R2 = 0.48). Similar results were
found when testing for IBD among Continental Sonoran
populations (P = 0.017; R2=0.15; figure not shown).
Finally, we found no significant relationship between
the geographical and graph distances between G, and G,
or between SenBas (a southern Arizona population)
and populations from either of these subgraphs. These
results concur with Nason et al. (2002), who found a signi-
ficant relationship between a pairwise estimator of gene
flow (M) and physical distance for the same subset of
populations.

Population assignment and graph connectivity

Based upon the topology of the Population Graph, we have
assumed that the SenBas population in southern Arizona,
while geographically associated with the remaining
Centennial populations, is genetically more similar to existing
Peninsular populations. The connectivity of SenBas (Fig. 2)
with a single Sonoran population (PL) and four northern
and central Baja populations (Ctv, StR, PtP and BaC)
supports the hypothesis of a relatively recent long-distance
dispersal event out of Baja into southern Arizona. This
interpretation of the data provides an explanation for the
apparent lack of isolation by distance between SenBas
and all remaining Continental populations as shown
above and reported in Nason et al. (2002). The improper
assignment of SenBas to the Continental phylogroup
highlights the differences between an a priori allocation of
populations within a hierarchical structure vs. allowing



1722 R. J. DYER

the data to define their own set of relationships as advocated
here.

We test the hypothesis that SenBas is genetically Contin-
ental, despite its high degree of connectivity with several
Peninsular populations, using the binomial properties of
edge connectivity outlined above. The null hypothesis for
this test states that the topology of the Continental sub-
graph, consisting of SenBas and the remaining Sonoran
populations, has a pattern of edge assignment that sup-
ports the inclusion of SenBas with the remaining Continen-
tal populations. The node set for this subgraph, V', contains
nine populations (SenBas, PL, LF, CP, Seri, SG, SI, SN and
TS), whereas the edge set, E,, has 17 edges (Fig. 2). We evalu-
ate this subgraph, G, = {V;, E;}, in terms of how likely it
is to observe a graph with N; = 9 nodes and K, = 17 edges
that contains a pendant (a node with a single edge as
depicted by SenBas).

The binomial nature of edge connectivity leads to an
expectation for the degree, or number of edges, for each
node. The probability that any two nodes are connected,
following eqn 3 above, is P = 0.472 for all graphs of the same
size as G;. The expected degree of any node is given by
P(N; - 1) = 3.78. Using the binomial distribution, we find the
probability of observing any graph of this size where at least
one of the nodes has degree one. This probability is given by:

p(pendant|N,,p) = [1\1[3];)1(1 - p)Ns1 =0.0108 (5)

Notice here, we used the combinatorial 1\1’3 in our calcula-

tions of the probability. In this case, it is necessary because
the hypothesis being tested was not a priori; rather, it
tested for the probability of observing a single pendant
within a graph defined by the parameters p and N;. From
these results, it appears that within the set of all graphs of
this size, it is significantly rare to observe any of them
containing a pendant. The high degree of connectivity
between SenBas and Peninsular populations combined
with the single connection to a Continental Population is
consistent with the hypothesized Baja origin of SenBas
individuals.

Finally, we focus on the overall topology of the Popula-
tion Graph in Fig. 2 to address the topic of genetic connec-
tivity among all populations. In so doing, we shift our
focus from population genetic and phylogeographical
hypotheses and towards ones addressed typically in con-
servation genetics. However, the issue of genetic connec-
tivity is just as salient to the former fields of inquiry as the
latter. From a conservation genetic perspective, popula-
tions targeted for preservation are often ones with high
genetic variability. Genetic variability is quantifiedtypic-
ally with summary statistics including: the proportion of
polymorphic loci (P), heterozygosity (H), and the number
of alleles per locus (A). The size of the nodes in Fig. 2 sum-

marizes these statistics in multivariate space as it is defined
as a measure of the within population genetic variance.
As indicated in Fig. 2B, populations BaC and TS have the
largest within-population genetic variability for each phylo-
group. These populations also have the largest P, H and
A (Nason unpubl. data). Nason et al. (2002) showed a
significant reduction in P, H and A when regressed on
latitude (P < 0.001 in all cases) consistent with the hypo-
thesis of a recent northward range expansion.

In addition to identifying the differences in within-
population genetic variation or heteroscedasticity (a statis-
tical test of which is to be addressed in a later manuscript),
we can use the topology of the graph to identify populations
important to the flow of genetic material across the land-
scape. For example, the within-population genetic vari-
ability of PL and SenBas is not as large as other populations
in Fig. 2, yet they form the only connection between
Continental and Peninsular phylogroups; that is, any path
originating in one phylogroup and ending in the other
must pass through these two populations. Nodes that have
this characteristic are called articulation points. In general,
any subset of nodes whose removal significantly increases
the length of the minimum spanning tree for the graph
are of importance to the overall graph connectivity, and
in Population Graph terms the overall flow of genetic
material across the graph.

Here we focus SenBas and PL because these two popu-
lations form a bridge between the two inferred phylo-
groups and are the graphs most apparent articulation
points. This bridge may be present in the graph for one of
two reasons. First, this bridge may simply represent the
most intermediate point of connectivity between phylo-
groups in terms of their genetic covariation. In this case, the
removal of SenBas or PL from subsequent graph construc-
tion would reveal alternative connections between the
two phylogroups formed through other population pairs.
Conversely, SenBas and PL may represent the only possible
link between the two phylogroups. In this case, excluding
either population would result in two completely discon-
nected subgraphs. We can evaluate these alternate hypo-
theses by removing each one of the two populations in turn
and reconstructing the overall topology. To accomplish
this we must recalculate the incidence matrix following the
removal of either population because the resulting topology
is based upon the pattern of genetic covariation among all
populations. The Population Graphs resulting from the
exclusion of either SenBas or PL reveal two distinct, dis-
connected subgraphs (not shown). The genetic covariance
structure of the remaining populations does not support
the hypothesis of robust genetic connectivity between Con-
tinental and Peninsular populations without either of the
articulation populations. These results suggest that both
SenBas and PL represent the sole source of genetic connect-
ivity between Peninsular and Continental populations.

© 2004 Blackwell Publishing Ltd, Molecular Ecology, 13, 1713-1727



Discussion

The evolution of population genetic structure is a dynamic
process influenced by both historical and recurrent
evolutionary processes. Vicariance and gene flow, in par-
ticular, create a system of interacting populations whose
genetic relationships can be readily investigated within a
graph theoretic framework. The methods presented in this
study provide an introductory treatment of the use of
graphical techniques for addressing hypotheses regarding
the genetic connectivity of a set of populations within a
phylogeographical context. With the example of L. schottii,
we have shown how the information contained within the
topology of a Population Graph can be utilized to address
important population genetic questions concerning the
nature and significance of genetic separation and isolation
by distance. However, if traditional population genetic
approaches provide mechanisms to address the same types
of questions it becomes relevant to ask why one would
specifically use Population Graphs.

There is a fundamental distinction between the models
applied to the decomposition of genetic variance using
traditional structure statistics (e.g. Wright's F-statistics,
AMOVA, etc.) and the methods outlined above for Popula-
tion Graphs. This distinction lies in the fact that when we
apply structure statistics to a set of data we impose pre-
defined hierarchical models that we believe reflect the spatial
and temporal scales evolutionary processes have operated
on to create the observed distribution of genetic structure.
The estimation of a significant summary statistic under a
predefined model does not mean that the allocation of popu-
lations to specific strata is correct, nor does it signify that
the hierarchical separation of strata conform to the spatial
or temporal scales at which the underlying population
genetic processes operate. Rather, it simply implies that the
current arrangement of strata is sufficient to assume non-
random association of genotypes. Short of permuting all
strata to find the ‘best’ fit of the model to the data, there are
no methods available to evaluate the assumed hierarchical
population model. With the L. schottii data set, there are
over 2.1 x 106 different ways to allocate 21 populations
into two phylogroups. Clearly, evaluating the fit of such
population models is not feasible given the amount of
time necessary to enumerate all possible arrangements
and the effect it would have on the experiment-wise error
rates.

By allowing the data to define their own topology, based
upon the genetic composition of the entire data set, Popu-
lation Graphs are not subject to the problem of incorrectly
assigning populations to higher-level strata. We speci-
fically used the example of L. schottii with respect to the
SenBas population to highlight the potential pitfalls of
specifying a particular a priori model. Nason et al. (2002)
had no prior information suggesting that one of their sam-
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ple populations (SenBas) was the result of a long-distance
dispersal event. Only by examining how the all the popu-
lations organize themselves within the topology of the
Population Graph did the Peninsular origin of this
Continental population become apparent. The ability to
resolve intrapopulation relationships, within the context
of the genetic covariance structure of all populations, is
not a strength of traditional population genetic methods.
Methods such as pairwise analyses allow the elucidation
of pairs of relationships, however, we have no a priori
reason to assume that evolutionary processes operate in a
pairwise fashion. Methods such as Population Graphs
presented here, which focus on the details of population-
level relationships within the context of the covariance
structures from all populations, are likely to be particularly
useful for population genetic structures more complex than
that of L. schottii.

Population Graphs also provide a single heuristic approach
to addressing a variety of general population genetic questions.
As shown above with L. schottii, questions concerning
genetic differentiation, isolation by distance, population assign-
ment and genetic connectivity are all addressed under a
single analytical framework. In contrast, traditional popu-
lation genetic analyses require different analytical procedures
to address each of these questions, some of which, such as
population assignment and genetic connectivity, are still
being developed (e.g. Cornuet ef al. 1999).

In a more general context, by focusing on an average
effect, significant summary statistics indicate only broad
trends across an entire data set. The complexity of interacting
evolutionary forces shaping intraspecific genetic variation
can easily be generalized by summary statistics. Indeed,
most of our understanding of how evolutionary processes
operate is based on just such statistics. However, if significant
details of the evolutionary process lie in the relationships
among sets of individual populations rather than their
average effects then we must adopt approaches that do not
distill the complexity of these relationships into a single or
small set of values. Rather, we must adopt methodologies
that capture this complexity without undue averaging
across strata. A Population Graph is one such method.
While it is possible to extract analogues of the traditional
summary statistics from this approach, the main focus
Population Graphs is directed towards a holistic quanti-
fication of population interactions across an entire data set.

It must be pointed out that the Population Graph frame-
work does not increase the precision of a summary
statistics. In fact, in some cases it appears to decrease the
precision resulting in a larger variance around the test
statistic (Dyer unpubl. data). The degree to which the vari-
ance surrounding the test statistic increases depends upon
the order and size of the graph, as well as how among-
population components of genetic variation (e.g. the edge
lengths) are distributed across the topology. We address
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this issue in greater depth as well as provide an index
relating to how minimizing the topology influences the vari-
ance around summary statistics in a subsequent manuscript.

Finally, we believe that the intrinsic visual nature of
Population Graphs facilitates the interpretation of popula-
tion genetic data. Several aspects of population genetic
structure are immediately apparent in the L. schottii graph
(Fig. 2) including the unique placement of SenBas, the
separation of Continental Sonoran and Peninsular popula-
tions, and the difference in within population genetic
variability. While we have chosen to illustrate Population
Graphs using the L. schottii data set because of its relative
simplicity and obvious patterns, in other species the pat-
terns in the data will often be more complex. In these cases
especially, being able to visually inspect the relationships
among all populations may prove to be immensely import-
ant for exploratory data analysis, data interpretation and
the development of subsequent hypotheses.

Conclusions

The primary focus of Population Graphs is concerned with
examining specific topological characteristics of the graph
in terms of the relationships among individual populations.
The focus on topological characteristics is essential as the
structure of the graph represents a model of how evolu-
tionary processes have acted on interacting populations.
Albert & Barabasi (2002) argue that when the time scales
governing the dynamics on any type of graph are compar-
able to those characterizing the graph assembly (e.g. the
process governing the connectivity of nodes), the dynamical
processes influence the resulting topology. In the case of
Population Graphs, it is the interaction of historical and
recurrent evolutionary processes that structure genetic
variation within and among populations and as a result
each of these processes are expected to leave specific
topological features within the overall graph.

We are currently examining several aspects of the evolu-
tion of topological features within Population Graphs.
What we have presented here is a simply an introduction
to the utility of graphical methods for describing popula-
tion genetic structure. Currently we are actively expanding
upon the framework presented herein. Some of the most
important directions include: (i) quantifying the direction-
ality of genetic covariation as would arise from periods
of range expansion, anisotropic gene flow or source-sink
dynamics; (ii) a more complete analysis of the relative
importance of particular populations (articulation points)
or edges (bridges) to the graphs overall connectivity; (iii)
topological clustering algorithms for objectively partition-
ing a graph into completely induced subgraphs; and (iv)
the set of topological features characteristic of particular
models of evolution (e.g. stepping-stone, N-island). By
characterizing the topological features that are expected to

emerge due to identifiable evolutionary processes, we are
in a better position to interpret correctly the topologies we
observe in natural populations.
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Appendix I

Corollary between Population Graphs and the AMOvA
analysis

In this Appendix, we show how the a saturated graph is
identical to the genetic variance decomposition under the
AMOVA framework. Our overall goal is to show how the
genetic variance can be partitioned into population wise
components in a manner similar to Long ef al. (1987). The
AMOVA analysis is a random effects, multivariate analogue
of Weir and Cockerham’s 6 (Weir & Cockerham 1984) that
relies upon an elegant use of squared genetic distances, 5;‘}-,
measured in a pairwise fashion between all individuals.
For a single strata analysis, the sums of squared distances
(SSD) allow the partitioning of the total genetic variance,
6%, into within- (or error) and among-population components
of genetic variation, 63, and 6%, respectively. The ratio
of 63 to 6% supplies the statistic of differentiation, ®gy.

The error variance, 6%, in the AMova model is the sum,
across populations, of the average genetic distance among
all individuals within populations. From Excoffier ef al.
(1992), with some simplification due to considering a
non-nested model, it is given by (notation changed from
Excoffier et al. 1992 for consistency):

SSW
of = MSW = —=—

n; n

.8

i=1 k=1
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where N is the number of populations (or nodes), n; is
the number of individuals within the ith population, and
83 is the pairwise squared genetic distance between the
jth and kth individuals in population i. The construction
of Population Graphs partitions the within population
sums of squares as:

SSW

62 = MSW =
w N-1

N n:
1 i i _
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where | N | is the number of nodes (populations) in the
graph, p;;is the jth individual within the ith population and

is the centroid of the ith population in m-dimensional
space. Therefore, the average distance between an indi-
vidual and its population centroid is defined as the error
variance attributable to that particular population. We define
the volume of a node within the graph as v; = SSW,. The sum
of all node volumes would equal the total sums of squares
within populations.

The decomposition of the among-population component
of variance, MSA in the AMovA framework, is given by:

MSA = _ 554
total — N
NI ID-
_ 1 k=11=1
Ny =N iS3 1+ 1
_ 1 55A10 N 5541453 . 4 SSAN qusN
N — N 2 2 2
(A3)

where the notation is as above with the addition that N,
; represents

is the total number of individuals and 55A
the contribution to the overall among population sums of
squares due to the differences between populations i and j.
The quantity SSA, ;is divided by two because the among-
population sums of squares due to individual pairs of
populations is calculated twice, once in terms of the distances
between populations i and j and again for the calculation
of the distance between j and i. Within the distance-based
approach of the Amova framework, SSA;, ;is the distance
between the centroids of the ith and jth population, exactly
how we have defined the off-diagonal components of
the incidence matrix within Population Graphs. Therefore, the
among-population component of genetic variance in the
AMOVA model is equal to the sum of the edge lengths in
Population Graphs.

From a graph theoretic perspective we can define a
graph, G, consisting of the node set V ={ A, B, C } and the
edge set E = {¢;, e,, e;} (Fig. A1A). Again, the sum of the
volumes of all nodes is defined as 6%, and the sums of
the edges are similarly defined as 63. Therefore, an overall
@ for all three populations is estimated, by the definitions
of how we construct Population Graphs, as:
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Fig. A1 Graphical representation of population genetic differentiation among three populations (A, B and C). Differentiation among
populations quantified by edges e;, e, and e;. All graphs have the same ®g;. (A) All populations equally differentiated from each other.
(B) Nonsymmetrical differentiation among three populations under the constraint that the sum of edge lengths is equal to the sum of the
edge lengths in (A). (C) Permutation of populations within a graph where the sum of the edge lengths equals the previous two examples.

where | E| is thenumber of edges, | V| is the number of nodes,
v, is the volume of the ith node and the 65 and 6%, terms
follow the definition of random effects estimates of differenti-
ation of Weir & Cockerham (1984) and Excoffier et al. (1992).

There are two salient points to make with respect to the
geometry of averaging statistics such as ®g. First, the
centroid of any population is, by definition, determined
entirely by the genetic identity of the individuals within
the population. This means that the coordinates of the
population centroid are independent of how different a
particular population is from others. The distances from
the centroids to the individuals within a population define
6% So, 62, is independent of where populations are
located in m-space. The only thing that affects an average
statistic of genetic differentiation such as ®g, or its univari-
ate analogs such as Fgp or ®gp, is 64.

© 2004 Blackwell Publishing Ltd, Molecular Ecology, 13, 1713-1727

Second, 63, defined as the sum of the edge lengths, has
no unique solution. The Population Graph in Fig. A1A is
portrayed as an equilateral triangle, that is e; = e, = e;, and
o4 is defined as the sum of these edge lengths. However,
there is an infinite number of other ways one could draw a
triangle with the restriction that the sum of the lengths of
all edges equals that shown in Fig. A1A. Figure A1B and
A1C also show the arrangement of three populations
within three unique topologies. However, if the sums of
the edges all equal the same 63, then all three will estimate
the exact same @g; value. In general, for any set of popu-
lations, the nature of the pairwise genetic relationships
among populations will not be revealed in statistics of
average differentiation. However, heterogeneity in the
nature of these relationships will be represented explicitly
in the topology of a Population Graph.
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