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Abstract.  Ecologists are familiar with two data structures commonly used to represent
landscapes. Vector-based maps delineate land cover types as polygons, while raster lattices
represent the landscape as a grid. Here we adopt a third lattice data structure, the graph.
A graph represents a landscape as a set of nodes (e.g., habitat patches) connected to some
degree by edges that join pairs of nodes functionally (e.g., via dispersal). Graph theory is
well developed in other fields, including geography (transportation networks, routing ap-
plications, siting problems) and computer science (circuitry and network optimization). We
present an overview of basic elements of graph theory as it might be applied to issues of
connectivity in heterogeneous landscapes, focusing especially on applications of metapo-
pulation theory in conservation biology. We develop a general set of analyses using a
hypothetical landscape mosaic of habitat patches in a nonhabitat matrix. Our results suggest
that a simple graph construct, the minimum spanning tree, can serve as a powerful guide
to decisions about the relative importance of individual patches to overall landscape con-
nectivity. We then apply this approach to an actual conservation scenario involving the
threatened Mexican Spotted Owl (Strix occidentalis lucida). Simulations with an incidence-
function metapopulation model suggest that population persistence can be maintained de-
spite substantial losses of habitat area, so long as the minimum spanning tree is protected.
We believe that graph theory has considerable promise for applications concerned with
connectivity and ecological flows in general. Because the theory is already well developed
in other disciplines, it might be brought to bear immediately on pressing ecological ap-
plications in conservation biology and landscape ecology.

Key words:  connectivity; conservation biology, dispersal; graph theory; habitat fragmentation;
habitat patches and landscape connectivity; habitat pattern; landscape ecology; metapopulation theory;
minimum spanning tree; Strix occidentalis lucidus.

that comprise a set of locations of entities of interest
(e.g., locations or distributional records of species of
concern); (2) geostatistical data that represent mea-
surements at locations separated by some distance; and
(3) lattices that assign a measurement or value to re-
gions within the landscape. In geographic information
systems (GIS) these data classes provide for two al-
ternative conceptual models of landscapes (Goodchild
1994). In the field view, a landscape is a continuous
surface defined by some variable(s) that can be mea-

INTRODUCTION

Ecological work is being done at increasingly larger
scales. For example, conservation biology is necessar-
ily concerned with large biogeographic areas (Noss
1991), and ecosystem management is inherently large
scale (Christensen et al. 1996). This has lead us to work
with new sorts of data sets summarizing the spatial
attributes of landscapes. Indeed, construction and anal-
ysis of spatial landscape data is the first step in virtually

all habitat conservation planning.

In the development of landscape-scale conservation
plans, we typically encounter one of three classes of
spatial data (Cressie 1993): (1) spatial point patterns
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sured at any point on the surface. Examples of fields
would include elevation, surface temperature, or veg-
etation biomass. Fields that are represented exhaus-
tively (i.e., the entire surface) are lattices, while in-
completely sampled representations are geostatistical
data. Alternatively, one might view a landscape as fea-
tures or objects, discrete entities that occupy positions
in an otherwise undifferentiated space. Elevation
benchmarks (points), temperature isopleths (lines), and
lakes (polygons) are examples of features.
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A lattice often is represented in one of two familiar
data structures (other less common structures are used
for certain applications, see Goodchild 1994). In vector
maps the patches are represented by vectors of coor-
dinates outlining each patch as a polygon. Patches are
treated as internally homogeneous. In the class of me-
tapopulation models called “‘island models,”” the patch-
es are islands of suitable habitat in a sea of inhospitable
matrix (nonhabitat). This modeling approach converts
the lattice from a field into a set of features (habitat
patches). Raster lattices or mosaics are grids in which
each cell is assigned to a discrete state or assumes some
value. The size of the grid cells defines the minimum
resolution or grain of the mosaic. A raster mosaic is a
field model. The island and mosaic data structures have
complementary strengths and weaknesses: vector files
are compact but sacrifice fine-grain information; mo-
saics retain this information at the expense of data vol-
ume. Ecologists generally are comfortable choosing or
converting between these two forms to match the data
structure to a particular application. For example, hab-
itat patches might be defined as regions (clusters) of
more-or-less similar cells, converting a mosaic into
polygon features.

Here we adopt a less familar lattice data structure,
the graph. A graph represents a landscape of habitat
patches as a set of nodes (points) connected to some
extent by edges between nodes (these are not the “‘edg-
es”’ of field—forest ecotones, although the term might
indeed connote a similar sense of adjacency between
patches). An edge between two nodes implies there is
some ecological flux between the nodes, such as via
propagule dispersal or material flow. Graph theory is
widely applied in various disciplines (computer sci-
ence, operations research) for a wide variety of appli-
cations concerned with maximally efficient flow or
routing in networks or circuits (Harary 1969, Thula-
siraman and Swamy 1992, Gross and Yellen 1999). The
theory is currently being stretched to even greater al-
gorithmic efficiency through its extension to applica-
tions on huge networks such as the worldwide web
(Hayes 2000a, b). While long used as a framework for
food-web theory in ecology (e.g., Pimm 1982), the for-
malisms of graph theory are not widely appreciated in
landscape ecology (Cantwell and Forman 1993). A
graph-theoretic perspective would seem to provide
powerful leverage on ecological applications con-
cerned with connectivity or ecological fluxes (van
Langevelde et al. 1998). In particular, graphs are ame-
nable to applications concerned with metapopulations
and conservation biology (Fahrig and Merriam 1985,
Verboom and Lankester 1991, Taylor et al. 1993, Schip-
pers et al. 1996). Here we illustrate the power and
potential utility of applying graph theory to landscape
analysis. We begin with an overview of graphs, and
then illustrate this approach with an empirical appli-
cation to habitat pattern for the Mexican Spotted Owl
(Strix occidentalis lucida). Our purpose is not to argue
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Fic. 1. An example of a graph defined by the sets of p

= 6 nodes {a,b,d,c,e,f} and ¢ = 8 edges {ab, bc, be, bd, cd,
de, df, ef}.

against other approaches already used in ecology, but
rather to present an additional option that has much to
offer to large-scale ecological applications.

GRAPHS AND GRAPH THEORY
Definitions

Graph theory has rich vocabulary and some defini-
tions are necessary to the following discussion. The
following largely follows Harary’s classic (1969) text.
A graph G is a set of nodes or vertices V(G) and edges
E(G) such that each edge e = v,y; connects nodes v;
and v;. In this, nodes v; and v; are adjacent and each is
incident to their shared edge. A graph of m nodes and
n edges is G(m,n) and has order m and value n. The
graph G is defined by its sets {v,} and {e;}, but it is
common to represent these sets as a diagram (Fig. 1).

A path in this graph is a sequence of nodes—a walk
from v, to v,, such that each node is unique (i.e., no
node is visited more than once). This implies that the
edges of a path are also unique. The length of a walk
is the sum of the lengths of its edges. A walk is closed
if vo = v, (i.e., the node first is revisited), and a closed
path of three or more nodes is a cycle. A path that
includes no cycles is a tree. A tree that includes every
node in the graph is a spanning tree. There might be
several of these for any given graph. The spanning tree
with the shortest length is the graph’s minimum span-
ning tree. The path defined by the edges ab, bc, cd, df,
de is the minimum spanning tree in Fig. 1.

A graph is connected if there exists a path between
each pair of nodes, that is, if every node is reachable
from some other node. An unconnected graph may con-
sist of several subgraphs. A graph component is a con-
nected subgraph, that is, a subgraph in which every
node is adjacent to at least one other node in the sub-
graph. A connected graph that can be disconnected by
the removal of a key node has a cut-node at that point.
The minimum number of nodes that must be removed
from a connected graph before it disconnects is its
node-connectivity k(G). Equivalently, the minimum
number of edges that must be removed to disconnect
a graph is its edge- or line-connectivity N\(G), and an
edge whose removal disconnects a graph is a cut-edge
or bridge. (Ecologists use a variety of terms to connote
connectivity. The connectivity terms above have a spe-
cial meaning in graph theory that does not correspond
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to general usage. Rather than confuse things further,
we will continue to use ‘‘connectivity’’ in a general
sense and use the more specific terms ‘‘node-connec-
tivity” or “‘edge-connectivity’’ when more precision is
needed.)

A graph’s diameter, d(G), is the longest path between
any two nodes in the graph, where the path length
between these nodes is itself the shortest possible path.
Finding the shortest path between two nodes is a central
task in graph theory (Dijkstra’s [1959] algorithm is the
classic solution). If nodes i and j are adjacent, then the
shortest path length [; is the direct route d;;. If the nodes
are not adjacent, any path must be along adjacent step-
ping-stone nodes in the graph. This requires discov-
ering all possible paths between nodes i and j, and then
finding the shortest path length /;. The longest of these
(shortest) lengths [; as taken over all nodes j is the
eccentricity of node i, e(i). The diameter of the graph
is the maximum eccentricity over all nodes i. In Fig.
1, e(a) is the summed lengths of edges ab, bd, and df;
and d(G) = e(a).

Data structures

A graph is defined by two data structures describing
its nodes and edges. The nodes are a set provided by
an array or list. For particular applications the list also
might include additional attributes describing each
node. For landscape applications the nodes might be
habitat patches, and each patch i = 1, ..., m might
be located by its spatial centroid (x,y) and described
by its area or size s;, perhaps its core area or carrying
capacity, or perhaps some index of its habitat quality
or productivity.

Additionally, a graph requires a matrix that sum-
marizes connections between nodes. There are three
such matrices: (1) A distance matrix D has the elements
d; that are the functional distances between patches i
and j. These distances might be measured as minimum
edge-to-edge or centroid-to-centroid distances; alter-
natively, distances might be weighted to reflect the nav-
igability or resistance of the intervening matrix be-
tween two nodes (Gustafson and Gardner 1996). (2) A
flux rate or dispersal probability matrix P expresses the
probabilities that an individual in node i will disperse
to node j (or the rate at which some material will un-
dergo such a flux). The matrix D might be used to
construct a probability matrix P. For example, we
might assume that dispersal probability can be ap-
proximated as negative-exponential decay,

Py = exp(0 X dij) (1)

where 9 is a distance-decay coefficient (8 < 0.0) that
determines the steepness of the relationship. This func-
tion is convenient because we can index the dispersal
function by noting that the tail distance corresponding
to P = 0.05 is In(0.05)/6, which allows us to compute
6 given a known tail distance for a species. Here, “‘tail
distance”’ is the distance to an arbitrarily selected point
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on the flat tail of the dispersal-distance function. Of
course, other forms of dispersal-distance functions are
possible (Clark et al. 1998, 1999). (3) The edges of a
graph are summarized most succinctly in its adjacency
matrix A, a binary matrix in which each element is
defined a; = 1 if nodes i and j are connected, otherwise
a; = 0. The diagonal of A, a;;, is also set to O (graphs
include no self-loops). In practice, A may be generated
from either of the matrices D or P by choosing a thresh-
old distance or probability to define adjacency. Each
of these matrices is m X m and symmetric except in
special cases beyond the scope of our current discus-
sion (but see below, Eq. 2). Note that if the geographic
locations or other attributes of the nodes are not of
interest, all of the information in the graph is contained
in the matrices.

These few data structures are central to most oper-
ations on graphs. Additional data structures sometimes
are defined, typically to lend computational efficiency
to numerical algorithms for graph analysis (Buckley
and Harary 1990, Thulasiraman and Swamy 1992).
Again, we need not attend these complexities now.

Graph operations

There are two general classes of operations on
graphs, which we might categorize as being primarily
edge related or node related. In landscape applications
these correspond to research questions concerning the
addition or removal of functional connections between
patches (e.g., dispersal corridors), and issues concern-
ing the gain or loss of habitat patches through changes
in land use or management. We illustrate some of these
relationships using a hypothetical landscape of habitat
patches in a nonhabitat matrix. The 50 habitat patches
range in size from 1 ha to 32 ha on a doubling scale,
with a small amount of Gaussian noise added to each
patch size (total area 396 ha). The patches are randomly
located in a 10 X 10 km (10000-ha) landscape. The
mean distance between patches is 5024 m. For illus-
tration, dispersal probabilities are defined by p; = 0.05
for d; = 1500 m. While purely hypothetical, this land-
scape has a range of patch sizes, patch density, and
spatial extent equivalent to that of often-cited Cadiz
Township in southern Wisconsin, USA (Curtis 1956,
Burgess and Sharpe 1981); the dispersal function is
consistent with data collected for the Song Sparrow
(Nice 1933). The graph’s minimum spanning tree, as-
sembled using Prim’s classic (1959) algorithm, is
traced in Fig. 2.

To make the edge more relevant to dispersal among
patches in a habitat mosaic, we can redefine the graph
so that its edges are defined in terms of dispersal fluxes.
In this we use the dispersal matrix P as well as the
patch size array s, because dispersal flux depends not
only on the probability of dispersal but also on the
source strength of the donor patch. Thus, the expected
dispersal flux from patch i to node j is:
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Northing (km)

0 2 4 6 8 10
Easting (km)

FiGg. 2. A hypothetical landscape of 50 circular habitat
patches in a 100-km? landscape. Edges drawn comprise the
minimum spanning tree of the graph (based on distance).

fi= "% pp @
where s, is relativized as the proportion of total habitat
area s, and p'; is the probability of dispersal from i
to j, normalized by i’s row sum in P. The normalization
is necessary because each row of P must sum to 1.0,
while relativizing s forces the donor sources to sum to
1.0. Computed this way, the dispersal flux matrix is
not necessarily symmetric. This indeed defines a di-
rected graph or digraph, which has two edges for each
pair of nodes, one in each direction. Gustafson and
Gardner (1996) have noted the ecological importance
of such asymmetries in dispersal probabilities. Here we
simplify this graph by averaging the two directions,
yielding an area-weighted flux w; for each pair of

nodes. Finally, for convenience this weight is subtract-

ed from 1.0 so that the flux value has the same rank

order as distance itself (i.e., smaller fluxes at greater
distances). The flux weight w; is thus
S Tt

wy = wy = 1= (%) 3

The minimum spanning tree computed for this area-
weighted flux matrix (Fig. 3) is different from the dis-
tance-based tree (Fig. 2) in an ecologically appealing
way, as illustrated by the change in the tree to span
across the larger node near the center of the graph
instead of the smaller node at the bottom of the figure.
Because of its larger size and expected number of prop-
agules, the larger patch is a more likely connection.
Similarly, the emergence of edges as ‘‘spokes’ from
larger patches reflects the area effect on dispersal rates,

Ecology, Vol. 82, No. 5

consistent with a ‘‘core—satellite’’ (mainland—island)
model of metapopulations (Harrison 1994).

Edge removal

Clearly the result of adding or removing edges in a
graph is to effect its overall connectivity. For example,
Fig. 4 illustrates the loss of edges as we successively
constrain adjacencies to shorter distances. Here adja-
cencies are thresholded at distances of 1500 (i.e., P =
0.05) 1250, 1000, and 750 m. As the threshold distance
decreases, the graph fragments into subgraphs that are
themselves further disconnected at shorter threshold
distances. The between-node distance in this graph is
5024 £ 2526 m (mean * 1 sp) while the mean nearest-
neighbor distance is 590 + 346 m. Note that the graph
becomes essentially disconnected at distances that are
quite short relative to the distribution of all between-
node distances. The question thus arises, Is there a
systematic relationship between the connectivity of a
graph and the number of edges retained or removed?
Ecologically, this question translates into determining
how functional links or corridors should be preserved
in order to maintain overall connectivity of the habitat
mosaic.

Approach.—We can approach this question by re-
moving edges from a graph systematically and then
summarizing overall connectivity in the process. We
begin with all edges included in the graph and then
systematically remove edges until the graph is arbi-
trarily sparse.

To summarize the connectivity of the graph, we com-
pute three metrics at each step of the edge-removal

10

Northing (km)

0 2 4 6 8 10
Easting (km)

F1G. 3. A minimum spanning tree for the landscape graph,
based on area-weighted normalized dispersal probabilities be-
tween patches (see Graphs and graph theory: Graph opera-
tions).
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0

Fic. 4. Edge thinning: Connectivity of the landscape graph as edges are sequentially removed, at threshold distances of

(a) 1500 m, (b) 1250 m, (¢) 1000 m, and (d) 750 m.

(x 10%)

115

R <10

—-— Diameter
---- Number

Number of nodes or components
Diameter of largest component

0 P 0

0 1000 2000 3000 4000 5000
Threshold distance (m)

FiG. 5. Edge thinning. Trend in number of nodes, and

order and diameter of largest node as edges are sequentially
removed from the landscape graph.

sequence. Because the number of components increases
as the graph disconnects, the number of graph com-
ponents is one index of overall graph connectivity. A
second metric is the order (number of nodes) of the
largest remaining component. But order does not dis-
tinguish between linear chains of nodes as compared
to compact constellations, and so we compute a third
metric, the diameter of the largest component, to sum-
marize the effective size of a graph. (In percolation
theory, these last two terms would correspond to the
area and radius of gyration of the largest cluster in a
raster map; see Stauffer 1985.)

Fig. 5 illustrates the trend in number of components,
order of the largest component, and diameter of the
largest component as edges are sequentially removed
from the graph. The graph shows a rather abrupt tran-
sition from connected to disconnected over a narrow
range of distances. The trend in graph diameter, perhaps
counterintuitive at first glance, shows an initial increase
in diameter as direct paths between distant nodes are
lost and replaced by longer stepping-stone paths; di-
ameter then decreases as these stepping-stone paths are
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lost. This edge-removal scenario also could be per-
formed on edges defined in terms of area-weighted dis-
persal fluxes. Redefining edges in this way alters the
order in which particular edges are removed in an edge-
thinning scenario (not shown) but does not alter the
shape of the relationships illustrated in Fig. 5.

Ecological implications.—A graph disconnects with
a threshold behavior reminiscent of other similar phe-
nomena in landscapes, such as the percolation threshold
characteristic of raster lattices (Gardner et al. 1987,
1992). Given this behavior, the questions arise, At what
threshold distance does the graph come unconnected?
How does this distance compare to the dispersal ca-
pabilities of species of concern? This determines how
a given species might perceive the landscape, i.e., to
what extent that species might act as a metapopulation.
We would expect different species to experience land-
scapes in scale-dependent ways, reflecting the scaling
laws of allometry as well as species-specific habitat
affinities (O’Neill et al. 1988b, Pearson et al. 1996).
Thus, the same landscape might appear connected to
some species while other species experience it as dis-
crete (isolated) habitat patches; these cases would cor-
respond, respectively, to the ‘“‘patchy population” or
“nonequilibrium” variants of metapopulations (Har-
rison 1984).

For a landscape that is more-or-less connected, iden-
tifying the bridges or cut-edges at particular distances
(scales) would be helpful for prioritizing site acquisi-
tion or protection, as these sites would be expected to
influence overall connectivity the most.

Landscapes comprising multiple connected sub-
graphs have further management implications that are
more logistical or administrative: These regions (sub-
graphs) might be analyzed or managed separately, as
nearly decomposable subsystems of a larger system
(Tansley 1935, Allen and Starr 1982, O’Neill et al.
1986).

Node removal

The illustrations thus far have focused on graph edg-
es or, by analogy, functional connections between
patches in a landscape. But in many cases our concern
is not with edges but rather with the nodes themselves.
In particular, the gain or loss of habitat patches is cen-
tral to landscape change in general and land manage-
ment in particular. Here we turn our attention to habitat
patches. As loss of habitat is probably the central driv-
ing force in conservation biology, we focus on the im-
plications of the loss of habitat patches from a land-
scape. In terms of a graph: How does the graph change
as nodes are removed?

Approach.—Consider three ways in which a habitat
patch can be important to a landscape-scale metapo-
pulation. (1) A patch might influence a metapopulation
through its contribution to overall recruitment potential
(R) as governed by its local natality, or mortality rates
as influenced, perhaps, by patch area or habitat quality.

Ecology, Vol. 82, No. 5

(2) A patch also might be important to dispersal flux
(F), indexed as the flux of individuals or propagules
away from their natal patches. A patch can have a high
contribution to overall dispersal flux only if it is pro-
ductive and well connected. Such patches are the
“sources’ in source—sink models in metapopulation
theory (Pulliam 1988). (3) A patch might also contrib-
ute to traversability 7 of the landscape as a means of
spreading of risk (den Boer 1968, Levins 1969). In this
we are especially concerned with patches that would
provide for a long-distance rescue effect, an index of
the metapopulation’s capability to rebound eventually
from a perturbation to a significant portion of its range.
A small stepping-stone patch might be important to
traversability without contributing substantially to
overall productivity or dispersal flux. For a landscape
to have high traversability in this sense requires that
it be sufficiently disconnected that a disturbance would
not affect all patches at once, while still being suffi-
ciently connected that local populations extirpated by
such a disturbance eventually could be recolonized
from afar.
We index recruitment R for the landscape as

m
R=2 5%k )
i=1
where s; is patch size (fraction of total habitat area)
and k; is some scaling function related to habitat quality
as this relates to natality or mortality rates in that patch.
In practice this might be based on cover type or other
measured environmental variables.
The index of dispersal flux F is

F=>
i=2

which includes only dispersal away from the natal
patch, and because P is symmetric, need only be tallied
from the lower triangle of the matrix.

The effect on traversability 7 is indexed as the di-
ameter of the largest component in the graph formed
on the removal of some node(s). Thus, traversability
is defined as follows:

T =d(G') = Max(e,, i € G") (6)

i=1
Py X 85 Xk (5)

1

J

where e(i) is the eccentricity of a node i in the largest
component G'.

We begin with the entire graph and iteratively re-
move nodes in three ways: (1) removal of a random
node at each iteration; (2) removal of the smallest node
(minimum patch area) remaining in the graph; and (3)
removal of the endnode with the smallest area. An end-
node in a spanning tree is a terminal ‘‘leaf’’ in the tree,
that is, is adjacent to only one other node. After each
iteration, all edges incident to the removed node are
also removed, and so new endnodes emerge as the node
thinning proceeds. In this case the spanning tree is
based on area-weighted fluxes (Fig. 3). For all three
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F1G. 6. Node thinning. The figure shows the trend in over-
all recruitment R as nodes are sequentially removed at random
(drawn with 1 sp), according to minimum size, and by prun-
ing a flux-weighted minimum spanning tree (see Graphs and
graph theory: Node removal: Approach).

node-thinning scenarios, we began with an adjacency
matrix defined on area-weighted dispersal fluxes (Eq.
2), thresholding this value arbitrarily to a level cor-
responding to the maximum diameter of the initial
graph. In the case of random thinning, we generated
confidence limits by performing 100 stochastic trials,
saving the mean and standard deviation for each thin-
ning sequence.

In this example recruitment is indexed in terms of
node area alone, and R exhibits a linear reduction as
nodes are removed randomly (Fig. 6). By contrast, both
minimum-area thinning and endnode pruning retain
much higher recruitment potential because they place
a premium on node area. By definition, the minimum-
area thinning scenario retains the most recruitment po-
tential as nodes are removed.

Because dispersal flux is defined to include node
area, minimum-area and endnode-pruning thinning sce-
narios produce similar effects on overall dispersal flux
(Fig. 7). The slight and inconsistent differences be-
tween these two scenarios suggest that area itself is the
more important effect.

The advantage of endnode pruning is most evident
in its effect on overall traversability of the graph (Fig.
8). In this case ~35 nodes (70%) can be removed before
traversability decreases substantially. By contrast, the
minimum-area thinning scenario is not very different
than random thinning, as neither of these considers
node location as a criterion for node removal.

Ecological implications.—The exact shape of these
curves is landscape specific and so is not of particular
interest in general. Similarly, the noise in the example
curves is also landscape specific. What is important is
the relative differences among the three curves. The
discrepancy between these curves, especially for min-
imum area as compared to endnode pruning, under-
scores the importance of connectivity as compared to
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FiGg. 7. Node thinning. The figure shows the trend in dis-
persal flux F as nodes are sequentially removed at random
(drawn with 1 sp), according to minimum size, and by prun-
ing a flux-weighted minimum spanning tree (see Graphs and
graph theory: Node removal: Approach).

patch area itself. In cases where the curves are quite
different we would expect dispersal to be important,
while in landscapes for which the curves are similar,
research or management might focus on habitat area.
This is a method to infer, in a preliminary way, the
relative importance of habitat area and connectivity for
a given landscape. The importance of either area or
connectivity emerges from the deviation of either curve
from the confidence limits generated by random-thin-
ning trials.

Importantly, the result of this analysis will be unique
to any particular landscape and so there cannot be any
general expectation. We can anticipate, however, that
certain kinds of landscape mosaics might be especially
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amenable to this approach. Naturally connected net-
works such as those constrained by topography (e.g.,
high-elevation vegetation zones, or riparian habitats)
might tend to show a high importance of connectivity
because these networks have a strongly linear or chain-
like structure that imparts importance to key links in
the chain. By contrast, in habitat mosaics that are more
centrally arranged as compact constellations, connec-
tivity might not be as crucial an issue. This can be
anticipated, perhaps, by examining the minimum span-
ning tree for the landscape, focusing on the fraction of
nodes in the tree that are endnodes or that are adjacent
to only two nodes in the tree.

Importance of individual nodes

Presuming that the removal of nodes has a significant
impact on overall recruitment, dispersal flux, or trav-
ersability of a graph, it is logical to ask, Which nodes
are most important to preserving the graph’s structure?
That is, Which habitat patch(es) are most influential
on metapopulation processes within the landscape? An
answer to this question would help researchers or man-
agers to prioritize sites for further study, monitoring,
or protection.

Approach.—We index a patch’s impact on recruit-
ment, dispersal flux, and traversability by computing
the landscape-level index for each metric R, F, and 7,
and then we systematically remove each node from the
graph and recompute the overall metric. The node’s
impact is the difference in the overall metric that its
removal elicits (see Keitt et al. [1997] for a similar
approach using raster lattice data structures). Again,
we begin with an adjacency matrix defined by a thresh-
old flux value chosen to maximize 7 for the graph.

In this hypothetical landscape, the three highest-
ranked nodes are different for each criterion R, F, and
T (Fig. 9). One large patch is ranked fourth in its effect
on recruitment and first in its effect on traversability.
The four large nodes, of course, are the most important
to recruitment potential. Four nodes that are central to
clusters of nodes are most important to overall dispersal
flux, and in this particular landscape these do not hap-
pen to be the largest patches. The most important node
for traversability is the one that effectively bridges the
left and right sides of the graph. Nodes whose removal
substantially prunes a long branch of the spanning tree
are similarly important to traversability.

Ecological implications.—Which patches are most
crucial to maintaining overall recruitment, flux, and
traversability? These might be different patches for
each metric, or some patches might be important for
all metrics. This will depend on the particulars of a
given landscape, including the definition of habitat
quality as it effects recruitment, the distribution of
patch sizes, and their arrangement within the landscape.
In every case, patches identified as important warrant
special attention in management or monitoring
schemes.
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Note that this analysis, even performed from prelim-
inary or inadequate data, can be a powerful guide in
marshalling further research or monitoring. For ex-
ample, even if one merely suspects that dispersal is
important, the patches identified as being important are
the monitoring sites most likely to provide the data that
would confirm (or disprove) that suspicion. Thus, the
approach provides a direction in which to proceed even
in the absence of sufficient data to make confident pre-
dictions.

EcoLOGICAL APPLICATION
The case of the Mexican Spotted Owl

An example system particularly suited to landscape
graphs is the spatial population structure of the Mex-
ican Spotted Owl (Strix occidentalis lucida). The Mex-
ican subspecies of the spotted owl is distributed from
Utah and Colorado south to Central Mexico (USDI
1995). In 1993 the subspecies was listed as threatened
under the Endangered Species Act. A graph-theoretic
approach was used previously to characterize owl hab-
itat connectivity across four southwestern states (Utah,
Colorado, New Mexico, and Arizona [USA]) as part of
a federally mandated conservation plan (Keitt et al.
1995, 1997).

The habitat distribution for Mexican Spotted Owls
is highly fragmented in the Southwest because suitable
foraging and nesting sites are largely determined by
topographic relief. Because of the arid climate and oro-
graphic effects, much of Mexican Spotted Owl habitat
is divided into ‘‘sky islands’’ surrounded by grasslands
and desert. Juvenile spotted owls are known to disperse
considerable distances in search of vacant nesting ter-
ritories. Thus it is highly likely that dispersal success
plays an important role in the genetic, demographic,
and metapopulation structure of the Mexican Spotted
Owl.

Since dispersal success depends principally on the
time and energy spent searching for suitable sites, the
connectivity of suitable habitat patches is a prime con-
cern when making habitat conservation decisions. In a
previous study, Keitt et al. (1995, 1997) analyzed dis-
tance relationships among hypothesized spotted owl
habitat patches. Their analysis identified two kinds of
patches that contribute to landscape connectivity. The
first were large core patches that provided regional dis-
persal routes simply because of their size and extent.
The second were small stepping-stone patches that de-
spite their small size contributed greatly to potential
dispersal because of their location. The spatial analysis
was used as a basis for ranking habitat patches and
making habitat-conservation recommendations.

Here we use the data of Keitt et al. to demonstrate
the application of minimum spanning trees to habitat
conservation. Our goal is not to make specific rec-
ommendations about spotted owls, but rather to illus-
trate a general approach of applying graph theory to
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habitat-conservation efforts. We assume that the Mex-
ican Spotted Owl is structured as a metapopulation and
use Hanski’s incidence-function approach (Hanski
1994, 1998) to simulate the effect of different habitat-
alteration scenarios.

First, we constructed two potential habitat scenarios
based on reported spotted owl habitat preferences
(USDI 1995). We used forest type and forest density
maps derived from AVHRR (advanced very high res-
olution radiometer) satellite imagery (Evans et al.
1993, Zhu 1994). The first habitat map, which we refer
to as the ‘‘island model,” was identical to the one used
by Keitt et al. (Fig. 10). It consisted of all grid cells
in the habitat cover map labeled ‘‘ponderosa pine” or
“mixed conifer.”” Mexican Spotted Owls breed prin-
cipally in mixed conifer forests and forage extensively
in adjacent stands of ponderosa pine. Adjacent habitat
cells were then joined to form clusters or islands. After
removing clusters <10 km? in area (approximate ter-
ritory size, USDI 1995), the remaining 250 habitat clus-
ters were analyzed with respect to proximity and lo-
cation.

The second habitat map we refer to as the ‘““mosaic
landscape.” It was generated from the same landscape
coverages, but instead of clustering certain cover types,
we combined forest type with forest density to arrive
at a measure of habitat suitability. Forest density ranged
between O (no trees) and 1 (closed canopy) (Zhu 1994)
and forest types included mixed conifer, ponderosa
pine, and pinyon—juniper (Evans et al. 1993). The forest
types were given weights (mixed conifer = 1.0, pon-
derosa pine = 1.0 and pinyon-juniper = 0.2) and these
weights were multiplied by forest density to arrive at
a suitability index in each 1-km? grid cell. Suitability
was then averaged in 25-km? blocks to arrive at the
final mosaic.

The incidence function models a situation in which
populations experience stochastic extinction and re-
colonization events. In Hanski’s formulation, the prob-
ability of a local extinction is

E, = nnn<L~i) %)
SF
where s, is the effective size of patch i, e is the minimum
viable patch area and x is a parameter that scales the
intensity of environmental disturbances. (For consis-
tency, we retain our earlier notation rather than adopt-
ing Hanski’s, which conflicts with terms defined pre-
viously in this paper.) Effective size is considered a
surrogate for the size of the local population and can
be scaled to take into account habitat degradation. For
the island landscape, we set s; equal to the patch area.
In the mosaic landscape, s; was the area (a constant
since all patches were of equal size) multiplied by the
mean habitat quality within each habitat cell.

Hanski also introduced a colonization function that
relates the number of propagules arriving in a patch
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and the probability of successful establishment. Col-
onization probability increases as sigmoid function of
the dispersal input and is given by

1
C=—F% ®)

y
1+ |2
P

i

where P; is the number of propagules arriving in patch
i, and y is a parameter that relates to the capacity of a
species to successfully establish in a new patch. P, is
estimated as follows:

R=Z%WW®%) )
J

where ¢, is a switch set to 1 if patch j is occupied and
0 otherwise, 0 is the dispersal-distance coefficient, d;
is the distance between patch i and j, and s; is the size
of patch j.

Given probabilities of colonization and extinction,
we can then use the incidence function

G
L_Q+E

(10)

to compute the long-term quasi-stable equilibrium
probability that patch i will be occupied (Diamond and
May 1977, Hanksi 1994). Given suitable data, it is
possible to estimate the main parameters ¢, 6, x, and y
for a particular species and landscape. To do so requires
presence—absence data for many patches, preferably
over many population—turnover events. Collecting such
data for large vertebrates such as the Mexican Spotted
Owl is difficult if not impossible. In this case, however,
we are not actually attempting to predict the viability
of spotted owls in the Southwest. Rather, we simply
wish to illustrate one possible scenario and its conse-
quences for habitat conservation problems. For the sim-
ulations reported here, we used ¢ = 1, 8 = 0.05, x =
landy = 5.

Decisions regarding habitat preservation need to
consider future patterns of habitat loss and degradation.
If one or a few patches are at risk at any given time,
it implies a different planning response than if the land-
scape is systematically converted into alternative land
use. Here we consider a scenario in which available
habitat is gradually removed until all the habitat is lost.
An important question is, of course, How much habitat
can be removed before a species becomes extinct? Un-
fortunately, this question has no generally meaningful
answer because of the high uncertainty in any predicted
consequence of habitat alteration (Taylor 1995). All
habitat is valuable. The question thus becomes, Which
patches should we choose to preserve given limited
resources, time, and data? It is our position that the
relative ranking of patches is most useful in the deci-
sion process. In the following scenarios, we assume
that habitat will be lost, but that we get to choose the
order in which patches are lost. We then compare the
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F1G.9. Node sensitivity on removal. The figure depicts the relative importance of individual patches to overall recruitment
R (in red), dispersal flux F (blue), and traversability T (green) of the landscape graph. The four highest-ranking patches for

each metric are labeled 1-4.

success of different methods of ranking patches at
equivalent levels of habitat destruction.

The three methods of ranking patches are based on
the node-removal algorithms discussed previously (see
Graphs and graph theory: Node removal, above). We
used random removal, minimum patch weight (weight
equal to area in the island landscape and to mean habitat
quality in the mosaic landscape), and minimum-weight
pruning of the minimum spanning tree. For each of the
three rankings, we removed an equivalent area of hab-
itat from the landscape and calculated the mean patch
occupancy of the remaining patches using the inci-
dence-function model. On each removal step, the model
was run for 10 000 iterations and results were averaged
over an additional 100 iterations, yielding an index of
habitat occupancy at steady state.

When patches were removed in random order and in
order of patch weight from the island landscape, oc-
cupancy declined dramatically as habitat was removed

(Fig. 11). Removal of least-weight patches exhibited a
characteristic signature of a percolation transition: an
abrupt change in qualitative dynamics at a critical den-
sity of habitat. For these simulations, the transition
appeared to occur when about 20% of the landscape
area was removed. Once a sufficient number of patches
were removed, the least-weight ranking resulted in
roughly the same or worse than removing random
patches.

When island patches were pruned from the minimum
spanning tree, a dramatically different result occurred
(Fig. 11). Occupancy actually increased until nearly all
the habitat was removed. This results from the fact that
pruning the spanning tree maintains the integrity of the
landscape by not only providing large core populations,
but also by providing dispersal routes between core
habitats.

For the mosaic landscape, the results were much less
dramatic, although the minimum-spanning-tree ranking
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performed as well or better than patch-weight ranking
(Fig. 12). The reason that occupancy remained high
even at a high degree of habitat loss has to do with the
spatial scale of the modeled disturbance. In the mosaic
landscapes, extinctions in habitat cells were spatially
independent. Thus, extinctions were localized in space,
and, as a result, the importance of traversability was
not as large.

An important implication of these simulations is that
the landscape graph can provide a useful, static guide
to dynamic processes unfolding on the landscape. In
particular, this static approximation does not require us
to estimate all of the parameters of the metapopulation
model, but still provides useful insights into the be-
havior of the landscape. The correspondence between
the graph model and a more complicated dynamic mod-
el will, of course, increase as one incorporates more
detailed ecological information into the graph in terms
of how the nodes and edges are defined (see below).

DiscussioN

We have presented a general introduction to graph
theory as it might apply to conservation applications
couched in metapopulation theory. In this, we hope to
take advantage of extremely efficient computational al-
gorithms already available for graph operations (Thu-
lasiraman and Swamy 1992, Gross and Yellen 1999).
For instance, Keitt et al. (1997) used a raster model
and percolation theory to examine connectivity in an
application similar to that presented here. They were
forced to restrict their analysis to a few hundred habitat
patches because of computational limitations even for
powerful computers. Using a graph-theoretic frame-
work for the same general problem can extend the anal-
ysis to at least an order of magnitude more patches;
implementing more efficient coding of these same al-
gorithms (such as those used in computer science)
would extend this capability by at least another order
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F1G. 11. Metapopulation persistence, based on the island
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of magnitude. Moreover, the graph-theoretic frame-
work provides for facile manipulations of landscapes
and ready summaries of landscape structure in terms
of shortest paths, diameter, subgraphs, and so on. Thus,
our purpose is to illustrate a means of facilitating land-
scape analysis. This does not mean that graph theory
should subsume other approaches based on alternative
approaches; we suggest graph theory as a computa-
tionally powerful adjunct to these other approaches.

Graph theory is not appropriate for all landscape
applications. It is best suited to landscapes that can be
represented reasonably as discrete patches in a matrix
that itself can be treated as ‘“‘nonhabitat.” In cases
where intervening land covers or habitats do matter,
these might be incorporated into the calculation of be-
tween-patch distances. For example, by assigning a
“resistance’” or navigability value to each cover type,
the intervening matrix can be accounted for in the dis-
tances (Gustafson and Gardner 1996). In some cases
the effective distances between patches, and hence their
dispersal probabilities, are asymmetric. For example,
if gravity matters so that distance uphill is effectively
farther that distance downhill, then asymmetries should
be preserved in the distance matrix. This would yield
a directed graph or ““digraph,” with two edges between
each pair of nodes. Most graph operations can be ap-
plied to digraphs as well as to simple graphs; the al-
gorithms are somewhat more complicated but are well
developed and readily available.

For some landscapes it may be inappropriate to use
a graph representation. If habitat patches are poorly
resolved spatially because habitat quality varies con-
tinuously and subtly over the landscape, then aggre-
gating this variability into discrete patches would be
inappropriate. In such cases a model based on a con-
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tinuous surface (a field model) would provide a better
rendition of the landscape.

One compelling feature of a graph-theoretic frame-
work is that it can be a heuristic framework for ongoing
research. For example, with very little data one can
construct a graph of habitat patches (however crudely
defined) and then explore the structure of the graph by
considering a range of threshold distances to define
edges (as in Fig. 4 and 5). This preliminary exploration
can provide some idea of landscape connectivity rel-
ative to the dispersal capabilities (however uncertain)
of a species of interest. Similarly, constructing the min-
imum spanning tree for the graph can indicate the back-
bone of the habitat mosaic, and node-removal sensi-
tivity analysis can provide an initial estimate of the
relative importance of patches in the landscape. These
preliminary analyses also marshall further study by
identifying those patches where field studies should be
concentrated. For example, the patches highlighted in
the node-removal analysis offer themselves as likely
candidates for further field studies. Importantly, as
more or better data are collected these can be incor-
porated, infusing more ecological information into the
graph and consequently adding more precision and con-
fidence to the analyses. In the examples we have pre-
sented, defining edges in terms of dispersal probability
rather than simple distance can affect the analyses dra-
matically. This argues in favor of infusing as much
biological information as possible into the graph frame-
work. Ultimately, the graph model might incorporate
sufficient biological information that it can provide a
bridge to other computational models such as Markov
processes (e.g., Norris 1997) or Petri nets (Peterson
1981, Reisig and Rozenberg 1998). Roberts (1976) pre-
sents Markov chains as stochastic versions of weighted
graphs; in the examples we present, the focus would
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FiG. 12. Metapopulation persistence, based on the mosaic
model. Depicted are results of random, minimum-weight, and
weighted tree-pruning patch-removal scenarios for the habitat
mosaic landscape. For random scenarios, plotted values are
means * 1 sp based on 100 trials.
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be on the dispersal probability matrix. Petri nets are
bipartite directed multigraphs (bipartite, with two types
of nodes; multigraphs, with multiple edges per node)
used in computer systems and communication theory.
Thus, graph theory can provide a consistent heuristic
framework that can begin quite simply but grow in
complexity as more information is incorporated.

CONCLUSIONS

The shift from raster and vector-based landscape in-
dices (Gardner et al. 1987, O’Neill et al. 1988a,
McGarigal and Marks 1994, Gustafson 1998) to mea-
sures of connectivity based on a graph representation
is an important step toward making landscape ecology
a discipline useful to conservation planners. The graph
representation allows us to merge population process
(recruitment, dispersal) with landscape pattern (patch
size, shape, and location) to arrive at process-based
measures of connectivity, both for whole landscapes
and for individual patches (Hanski 1998).

There are many other important considerations be-
yond landscape connectivity to be considered in con-
servation planning, such as the timing of when partic-
ular sites may be acquired and the opportunity costs of
adding a site to the reserve network. Our approach to
landscape analysis is in no way incompatible with other
kinds of risk analysis or cost-benefit analysis. We
strongly advocate best current practices for monitoring
and modeling threatened populations. These may in-
clude both simple analytic models and more complex
metapopulation and individual-based models with pa-
rameters estimated from known biological constants or
from statistical data analysis.

We realize that all too often, managers do not have
the luxury of waiting for more or better data, nor do
they have the time or resources to apply the latest the-
oretical models. Managers need results, usually based
on inadequate or nonexistent data, and they need them
urgently. Graph-theoretic analysis of landscape net-
works may fill an important niche in this regard. The
approach does require spatial habitat data of reasonable
quality, but these are increasingly available. More im-
portantly, because our approach does not require long-
term population data, it can be used as a kind of rapid
landscape-scale conservation assessment tool that al-
lows initial prioritization of habitat resources and can
guide the development of data collection and moni-
toring.
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