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Abstract. In this paper we present a simple analytical model
for low frequency and large scale variability of the Antarc-
tic Circumpolar Current (ACC). The physical mechanism of
the variability is related to temporal and spatial variations of
the cyclonic mean flow (ACC) due to circularly propagating
nonlinear barotropic Rossby wave trains. It is shown that
the Rossby wave train is a fundamental mode, trapped be-
tween the major fronts in the ACC. The Rossby waves are
predicted to rotate with a particular angular velocity that de-
pends on the magnitude and width of the mean current. The
spatial structure of the rotating pattern, including its zonal
wave number, is defined by the specific form of the stream
function-vorticity relation. The similarity between the sim-
ulated patterns and the Antarctic Circumpolar Wave (ACW)
is highlighted. The model can predict the observed sequence
of warm and cold patches in the ACW as well as its zonal
number.

1 Introduction

The Antarctic Circumpolar current (ACC) is a strong flow
transporting about 130 Sverdrups. It encircles the Antarctica
thus connecting waters between the Atlantic, Pacific, and In-
dian Oceans. Available observations suggest that the ACC
contains a series of sharp temperature and density fronts,
each separating two distinct water masses. Two major cir-
cular fronts in the ACC are the Subantarctic Front (SAF) and
the Polar Front (PF), whose mean paths are now well de-
fined (Gille, 1994). The ACC flow varies with time and its
variability can be divided into the short-timescale variabil-
ity due to the local effect of mesoscale eddies (e.g.Sarukha-
nian, 1985) and lower-frequency variability at greater spa-
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tial extent. In this paper, we will focus on effects related
to lower-frequency variability, which has the potential to in-
fluence larger-scale ocean flow and climate variability. An
example of such low-frequency variability is the Antarctic
Circumpolar Wave (ACW) discovered byWhite and Peter-
son(1996) andJacobs and Mitchell(1996). The ACW con-
sists of anomalies in sea-surface temperature, sea-level pres-
sure, and sea-ice extent (Connolley, 2003) that propagate
eastward around the Southern Ocean because of advection
by the ACC.

In this paper, we present a theoretical model to a mech-
anism leading to variability of the ACC due to the Rossby
wave trains propagating between the SAF and PF, which are
conceptualized as boundaries of the waveguide that provide
meridional trapping for the Rossby waves. Flow in these
Rossby wave trains slowly varies with time thus contribut-
ing to low frequency variability of the ACC, similar to that
observed in the ACW. The patterns in the ACW were initially
identified as zonal wave number 2 (ACW2). They circle the
globe in about 8–9 yr, thus 4 yr is the apparent period at any
location (White and Peterson, 1996), (Jacobs and Mitchell,
1996). According to calculations byCai et al.(1999), the
ACW has zonal number 3 (ACW3). Recently,Venegas
(2003) reported that the inter-annual band during the period
1980–2000 is the linear combination of two signals, namely,
the ACW2 and the ACW3 with different temporal and spa-
tial characteristics. The physics of the ACW, in particular the
role of coupling in the ocean-atmosphere system, has been
actively debated. The initiation of the ACW may be the re-
sult of atmospheric teleconnections related to the El Nino-
Southern Oscillation or arises from, or is at least maintained
by, atmosphere-ocean coupling within the Southern Ocean.
Other authors argue that the ACW is a passive ocean response
to atmospheric forcing, and not a true coupled mode. These
mechanisms are reviewed inRintoul et al.(2001). In this
paper we will neither discuss the mechanisms for initiation
of the ACW, nor the ocean-atmosphere coupling or forcing
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issues. Our aim is to show that the Rossby wave train be-
tween the SAF and PF is a fundamental mode of motion in
the Southern ocean, and to present a simple mathematical
model for this mode. Indeed, only the fundamental mode of
motion can be sustained for long periods of time under vary-
ing ambient conditions and complicated atmosphere-ocean
interactions. A model for this fundamental mode, including
prediction that zonal number for the patterns is likely to be
2 or 3, with intermittent warm and cold patches, is the major
result of the paper.

2 Simplified theory

We consider the two-dimensional flow of a purely barotropic
fluid, which is rotated with an angular velocityc around a ge-
ographical pole in a circular channel of the widthL . We use
the gamma plane approximation, which means that the exact
expression for the Coriolis force is expanded about a pole.
This approach differs from the widely used beta plane ap-
proximation where expansions are about some mid-latitude
location. We introduce the stream function in the usual way
u= ψξ , v ξ = −ψφ , whereu, v are velocities in the eastward
and the northward directions;ξ is dimensionless radial dis-
tance to the geographical pole scaled with the channel width
L; φ is the longitude. Our idea is that a circular channel
created by the SAF and PF acts like a waveguide with non-
penetratable boundaries. The dimensionless equation for the
stream functionψ in this case is the following e.g.Derzho
and Afanasyev(2008),

∇
2ψ−

ε2

Ro

ξ2

2
=F(ψ−c

ξ2

2
), ε=L/RE � 1, (1)

whereF is an arbitrary function to be determined from the
relation between the potential vorticity and the stream func-
tion at some cross sections of the flow. As it follows from the
latter inequality, we consider the length scale of the flow to be
much smaller that the radius of the EarthRE. Ro =U/2�L is
the Rossby number,� denotes the rotation rate of the Earth,
U is a typical circumferential velocity. We also use the hy-
drostatic and rigid lid approximations. The validity of these
approximations for the problem was discussed byDerzho
and de Young(2011). Classical papers likeStern(1975) as-
sumed thatF is linear. We will assume that the potential
vorticity-stream function relationF has a weakly nonlinear
functional form thus extending the classical approach.
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whereλ is a constant andf determines the functional nonlin-
earity in the vorticity-stream function relation. That weakly
nonlinear relation was experimentally confirmed byDerzho
and Afanasyev(2008). Here we focus on the solutions of
Eq. (1) whose radial variations appear at much shorter scales

compared to the angular oneψ =ψ(ξ,8), 8= σφ. We seek
asymptotic solutions of Eqs. (1, 2) in the form of power series
in the small parameterσ 2. We look for solutions of Eqs. (1,
2) in a circular channel with inner and outer rigid boundaries
located atξ = R1 and ξ = R2, respectively. As shown by
Derzho and de Young(2011), the regular zeroth order solu-
tion of Eqs. (1, 2) satisfying the boundary conditions has the
form,
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where the functionA in Eq. (3) is to be determined from the
solvability condition to the first approximation. The constant
λ and functionW(ξ) can be determined for given valuesR1
andR2 as shown inDerzho and de Young(2011). The first
term in Eq. (3) has physical meaning of an ambient mean cur-
rent, which is the ACC in our study. The second term denotes
a disturbance superimposed on that current, it corresponds
to the ACW-like pattern in our application. It can be shown
from Eq. (3) that the mean current is approximated as the cur-
rent with a constant angular velocity. The non-dimensional
expression for that velocitycm and its dimensional counter-
part,cm,dim , are the following,

cm =
ε2

Ro λ
+c, c

m,dim =
L2

R2
E

2�

λ
+cdim. (4)

Taking L from observations, then calculating non-
dimensional distancesR1 andR2 from the pole to the SAF
and PF, and calculatingλ according to the procedure de-
scribed inDerzho and de Young(2011), Eq. (4) determines
the dimensional angular velocity for the rotating Rossby
wave pattern if the mean current is prescribed using the data
from observations. The next step is to resolve the spatial
structure of the Rossby wave pattern. Equation (1) is to
be solved along with the boundary conditions applied to the
first order stream function. However, to determine the spa-
tial structure of the zeroth order solution, we only need to
consider the solvability condition to the first order stream
function. Re-writing Eq. (1) in a self-adjoint form and ap-
plying the solvability condition yields the equation for the
amplitude functionA(8) similar to that inDerzho and de
Young(2011). Equation (3) and the expression forA(8) de-
fine the spatial pattern for the stream function in the leading
order. As it was shown in laboratory experiments (Derzho
and Afanasyev, 2008) specially designed for modelling of
polar flows, the vorticity – stream function relation is weakly
nonlinear. A straightforward extension beyond a linear rela-
tionship usually used by many authors, e.g. (Stern, 1975), is
a quadratic polynomial forf . This choice off reduces the
solvability condition to the Korteveg-de Vries type equation
for the amplitude of Rossby wave,
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Fig. 1. Period of rotation of the Rossby wave train in years versus
the waveguide width (mean distance between the SAF and PF), in
km for different magnitudes of the mean current: 2 cm/s - dots, 8
cm/s - solid line, 12 cm/s - dash line. The negative period indicates
that the Rossby wave train propagates against the mean current

Fig. 2. Maximum dimensional circumferential velocity at the outer
circumference (3760 km) versus s1 for mode numbers N =1,2,3

Fig. 3. The streamline pattern for the quadrupole case (N = 2);
s1 = 0.912

Fig. 1. Period of rotation of the Rossby wave train in years versus
the waveguide width (mean distance between the SAF and PF), in
km for different magnitudes of the mean current: 2 cm s−1 – dots,
8 cm s−1 – solid line, 12 cm s−1 – dash line. The negative period
indicates that the Rossby wave train propagates against the mean
current

f (B)= s1 B+s2B
2,A88 = I0+A I1+A2 I2, (5)

whereI0,I1, andI2 are constants that depend ons1,s2,c, and
cm.

Numerical analysis of Eq. (5) along with the condition of
zero circulation leads to the expression for the Rossby wave
amplitude as function of longitude. Analytical results for the
case with zero mean flow were presented inDerzho and de
Young (2011), these results are extended here for the more
realistic case with ambient mean current. Equation (5) has
solutions in the form of cnoidal waves with the wavelength
2 π
N

(for the original angular coordinateφ,N = 1,2,... where
N is the zonal number. Our specific choice ofN corresponds
to a 2N -pole. Similarly toDerzho and de Young(2011), it
can be shown that the problem has a unique solution onces1,
s2, and the magnitude of the ambient shear are prescribed.
That is the wave amplitude and spatial structure are com-
pletely and uniquely defined by the specific form of the
vorticity-stream function relation and the magnitude and the
width of the ambient current.

3 Application to the ACC conditions

Here we present our calculations for the special case of a vor-
tical pattern rotating around the Antarctic aimed at explain-
ing a mechanism for slow frequency and large scale variabil-
ity of the ACC. Our solution for a vortical pattern in a polar
region consists of two parts, the first part is a Rossby wave
while the second part is a current. Our physical assumption
is that the Subantarctic Front (SAF) and the Polar Front (PF),

which are reasonably well-defined narrow jets (about 40 km
wide) create a wave guide for a Rossby wave train.Gille
(1994) analyzed GEOSAT altimetry data and presented the
mean paths of the SAF and PF jets. Although topography
affects the tracks of these paths, they remain quite close to-
gether around the Antarctic continent. According to Fig. 9
from Gille (1994) the distance between mean SAF and PF
paths varies from about 100 km to more than 500 km in some
parts of the South Indian Ocean. However, since these dis-
tances are much smaller than the distance from either SAF
and PF to the South pole, the SAF and PF paths can be ap-
proximated as two circumferences. As the SAF and PF sep-
arate distinct water masses, we conceptualize them as rigid
boundaries, which create a circular channel. In our calcu-
lations, we choose the internal circumference at which the
radial velocity is zero to be located at 3400 km. First, it is
interesting to note that according to Eq. (4) the angular ve-
locity of rotation of the vortical structure is independent of
the zonal number. This conclusion is supported by the fre-
quency domain decomposition of the interannual variability
in the Southern Ocean performed byVenegas(2003), where
variability was detected with time scale of 5 yr for the zonal
mode 2 and 3.3 yr, for the zonal mode 3, respectively. The re-
sulting period of rotation for the whole patterns is then 10 yr,
same for both zonal modes 2 and 3. As can be seen from
Eq. (4), the period of rotation of the vortical pattern (Rossby
wave train) is independent of the specific coefficientsσ , s1,
s2 in the stream function-vorticity relation Eq. (2). It de-
pends,however, on the width and the magnitude of the am-
bient current. In Fig. 1 we show the period of rotation of
the vortical pattern as a function of the distance between
the SAF and PF for various magnitudes of the mean cur-
rent, namely 2 cm s−1, 8 cm s−1 and 12 cm s−1. It is seen that
the Rossby waves propagate against the current if the waveg-
uide between the SAF and PF is sufficiently wide. In this
case, the vortical patterns propagate around the Antarctica in
3–4 yr, and this period only weakly depends on the magni-
tude of the mean current. As the distance between the SAF
and PF becomes shorter, the period of rotation increases, and
reaches infinity (patters do not rotate at all) at some width of
the waveguide. When the distance between the SAF and PF
further decreases, the pattern sense of rotation changes, and
the pattern rotates in the same direction as the mean current
does. The width at which the rotation of the pattern change
direction is strongly affected by the magnitude of the mean
current.Venegas(2003), among others, reported that the ve-
locity of propagation of anomalies of the sea surface tem-
perature observed in the ACC, is about 8 cm s−1. In our the-
ory, no mean circulation due to the Rossby waves themselves
is assumed, so it is reasonable to identify this velocity with
the average velocity of ambient current. A magnitude of the
mean current of 8 cm s−1 at the inner boundary, according to
Eq. (4), leads to a period of 8.6 yr for rotation of the Rossby
wave pattern, when the length scale (waveguide width) is set
atL= 360 km. This period is close to that observed for the
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Fig. 1. Period of rotation of the Rossby wave train in years versus
the waveguide width (mean distance between the SAF and PF), in
km for different magnitudes of the mean current: 2 cm/s - dots, 8
cm/s - solid line, 12 cm/s - dash line. The negative period indicates
that the Rossby wave train propagates against the mean current

Fig. 2. Maximum dimensional circumferential velocity at the outer
circumference (3760 km) versus s1 for mode numbers N = 1,2,3

Fig. 3. The streamline pattern for the quadrupole case (N = 2);
s1 =0.912

Fig. 2. Maximum dimensional circumferential velocity at the outer
circumference (3760 km) versuss1 for mode numbersN = 1,2,3

variability of the ACC reported inWhite and Peterson(1996)
who suggested periods of 8–9 yr. As the wave guide is quite
narrow, so there is no much difference between the mean cur-
rent magnitudes at the inner and the outer boundaries of the
waveguide according to Eq. (3). Our choice for the magni-
tude of the ambient current and the length scale leads to a
flow rate of 121 Sv if we assume that that the average depth
of the oceans is 4 km. This value is close to 130 Sv, the flow
rate in the ACC, reported by many authors. It can be shown
(Derzho and de Young, 2011) that solutions to our problem
can only exist ifs2< 0. Here we examine the cases2 = −1
and setσ = 0.3; these parameters affect the magnitude of the
velocity field in the wave for givens1. We will show below
that this choice of parameters lead to reasonable agreement
with observations. With all these parameters are set, it is
straightforward to analytically determine possible values of
s1 for which stationary rotating vortex patterns exist. Ba-
sically, in the present model, we aggregate many physical
effects into a couple of coefficients in the vorticity-stream
function relation. The advantage of such approach lies in
simplicity as separate parameterisation of many complicated
processes, in particular, the ocean-atmosphere interactions,
leads to accumulation of inaccuracies associated with each
parameterisation.

In Fig. 2, we present the maximum dimensional circumfer-
ential velocity at the outer circumference versuss1 for vari-
ous zonal mode numbersN = 1,2,3. The maximal radial
velocities are not shown as they are much smaller than the
circumferential ones. It can be seen that regions of existence
for different zonal modes are separated. There are intervals
where the only mode 1 or mode 2 only can exist. Regions of
existence for modes 2 and 3 can overlap. But if mode 3 is
excited, it is unlikely that the mode 2 exists at the same value
of s1 as the mode 2 pattern should produce quite large flow
velocities.

Again, we recall that the leading order stream function
patterns can be found from Eqs. (3), (4), (5). These pat-
terns are shown in Fig. 3 for the case of quadrupole (N = 2);
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Fig. 3. The streamline pattern for the quadrupole case (N = 2);
s1 = 0.912

Fig. 3. The streamline pattern for the quadrupole case (N = 2);
σ = 0.3, s1 = 0.912

s1 = 0.912 . The pattern is quite symmetric and the actual
cnoidal Rossby wave train is close to a sinusoidal packet.
However, this does not mean that the linear theory can pre-
dict properties of such flow, actually our theory predicts that
there is a unique amplitude that satisfies our mathematical
formulation for the prescribed set of parameters. Linear the-
ories are unable to predict an amplitude of the wave and con-
sequently do not predict the magnitude of the velocity field in
it. For the mentioned set of parameters, we calculated that the
maximum of the circumferential velocity due to the waves is
15 cm s−1, while the magnitude of the the radial velocity is
1 cm s−1. We also note that the variation ofσ does not qual-
itatively change the results. For example, whenσ = 0.3 and
s1 = 0.912, the predicted Rossby wave pattern has exactly
the same velocity field as forσ = 0.1 ands1 = 8.208.

The most important feature of the pattern shown in Fig. 3
is that the model predicts the existence of the closed stream-
lines in the flow, which in nature can be treated as patches of
trapped fluid. Two regions of closed streamlines are attached
to the inner boundary (PF), which separates cold Antarctic
waters and the ACC waters, these two patches are supposed
to be cold bodies of water. Two other regions of closed
streamlines are attached to the outer boundary (SAF),which
separates the ACC and warmer waters from the North. These
two patches are expected to be filled with warm waters cap-
tured from the outside the ACC. The ACW also has two
trapped bodies of cold water and two of warm water, and
the observed sequence of warm-cold-warm-cold is the same
as predicted by our model.
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4 Conclusions

Here we modeled the variability of the ACC due to nonlin-
ear Rossby wave trains with zero circulation. The train is
predicted to rotate around the Antarctica. The angular ve-
locity of rotation of the vortical Rossby wave pattern is not
arbitrary, but is predicted to be at a specific rate, which is in-
dependent of the zonal number but rather depends on the dis-
tance between the SAF and PF, and the strength of the mean
current. The pattern propagates against the ACC for large
distances between the SAF and PF and collateral to the ACC
when this distance is short. Once the vorticity-stream func-
tion relation is prescribed, our model predicts that there is a
unique nonlinear vortex pattern for each zonal mode num-
ber. Various modes are allowed to exist, however they have
reasonable amplitudes (those leading to the observed veloci-
ties) in different range of parameters in the stream function-
vorticity relation, perhaps indicating that they are driven by
different physical mechanisms. This conclusion is consistent
with observations reported byVenegas(2003). Reasonable
values for the distance between the SAF and PF and the mag-
nitude of the average mean current lead to reasonable agree-
ment for the period of rotation and the velocity field charac-
teristics. The theory also predicts that the Rossby wave pat-
terns include patches of trapped fluid that could carry fluid
from the inner (colder) and outer (warmer) boundaries of
the ACC thus explaining the sequence of the warm and cool
patches carried by the ACW. A more detailed modeling of the
ACC and ACW would require a spatially explicit numerical
model, which is beyond the scope of the present study. We
also believe that the detailed account of the spatial features,
e.g. bathymetry, would not qualitatively change the main idea
of the proposed mechanism for the low frequency variability
of the ACC.
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