SAMPLING

Pelagic - "open sea", or the water column Benthic - "bottom" Oceanic - refers to the open ocean environment Neritic - the inshore, often defined as shelf depths (200 metres or less) Nekton = organisms capable of making significant headway against currents

Plankton = organisms NOT capable of making headway against currents

Biological Sampling

Plankton

Nekton

Benthos

Issues

•Size of target organisms (too small or big for sampler)

•Number of target organisms (rare, common, clogging)

•Behaviour of organisms (avoidance, attraction)

•Patchiness of organisms in space & time (evenly distributed, patchy)

•Structure of environment (cryptic species, logistic issues)

•Ethics (whales, habitat destruction) Traditionally, we have sampled the oceans in two ways.

1. Dedicated oceanographic cruises (typically weeks in duration)

drawbacks....

other times?storms, under ice etc.?

2. Deploy oceanographic sensors on fixed moorings drawbacks...

limited duration/sampling intensity (battery power)
data available after mooring recovered
mooring may be lost
require ship for deployment & recovery
poor spatial resolution

data source: Smith, W. H. F. and D. T. Sandwell, Global Seafloor Topography from Satellite Altimetry and Ship Depth Soundings combined with GTOPO30

) V-5000m

Time-Space Plot for Instrumentation

Protista - small unicellular organisms, some of which have photosynthetic capability and others of which do not

Radiolarian

Tintinnid

Phytoplankton: Sampling

net sampling

-small size of phytoplankton necessitates very fine mesh
-very poorly quantitative (clogging)
-stress on cells (some burst)
-miss smallest cells

 transmissometer - shine a beam of light across a path of water and measure how much light reaches the other side -not just phytoplankton blocking light, particularly in coastal waters

•fluorometer - generates light at a given wavelength, which will cause pigments to fluoresce. Measure chlorophyll fluorescence to estimate phyoplankton conc.

-fluorescence varies with different species & conditions -can be made *in-situ*

-can be related to carbon, but Fluor:Chl pigment and Carbon:Chl not constant

Phytoplankton: Sampling

bottle sampling (Nansen (old), Niskin, or Go-Flo)
 -samples most abundant phytoplankton (smallest)
 -need to concentrate sample for larger cells

-bacteria, protista, phytoplankton

Rosette of Niskin Samplers

Multispectral Fluorometer

-fluorescence ~ phytoplankton

Flow cytometry uses pigments

In situ flow cytometer

SeaWifs - Sea-viewing Wide Field-of-view Sensor

-subtle changes in ocean color can signify various types and quantities of marine phytoplankton

Problems
Nearshore (other particles
Cloud, fog
Surface veneer only

Zooplankton:

Animals that live in the water column but are incapable of making substantial headway against currents

Holoplankton:

Zooplankton that complete their entire life cycle in the water column

Meroplankton:

Organisms that spend time in the water-column but also as part of the benthos. Primary example is planktonic larval stage of benthic adults. Nekton:

Pelagic animals capable of making headway against a current

Zooplankton: Sampling

Net collection - catch organisms retained on the mesh

- •various net sizes, shapes, mesh sizes
- •wide mouth opening on a metal ring, collecting jar on narrow cod end •towed horizontally, vertically, or obliquely
- •opening and closing nets available sample selected depth intervals
- •flow meter allows estimate of water volume sampled
- •some zooplankton detect nets (visually or from turbulence) and avoid them •some gelatinous zooplankton are destroyed

•100-200 µm mesh used to collect large micro- & macro- zooplankton (200+) -clogs quickly

- -must be towed slowly (to avoid tearing)
- -fast-swimmers avoid it
- •nano- and microzooplankton (< 200 μ m) not quantitatively sampled in nets -collect water in bottles or by pumps instead and concentrate water sample (centrifugation, filtration, settling)

-oblique or vertical tows

-paired samples for various analyses

-different mesh, net size for different applications (e.g., ichthyoplankton 333mm, bivalve larvae 100mm)

Hardy-Longhurst Plankton Recorder

Moored version (with pump, computer)

-towed behind ships of opportunity

-collects multiple zooplankton samples for wide spatial coverage

Opening-closing nets

-allow sampling at a discrete (single) depth

MOCNESS

-Multiple Opening / Closing Net & Environmental Sensor System -allows collection of multiple discrete samples -expensive and difficult to handle

Video Plankton Recorder

-very fine resolution
-animals in context
-limited taxonomy, no
good for low densities

Acoustic towed body

-fine scale resolution-broad coverage-poor taxonomic resolution

Sampling for Plankton

Gear	Deployment	Advantages	Disadvantages
Plankton nets (fine)	Small boat	Cheap, any platform	poorly quantitative for some taxa (net avoidance, bow wave), integrates depth
Plankton nets (coars	Small boat e)	Cheap, any platform large volume sample	poorly quantitative for some taxa, misses smaller taxa, integrates depth
Opening/ Closing net	Larger boat ts	Quantitative, any depth	Need big ship, cumbersome expensive
Pumps	Medium boat	Quantitative, no hydrodynamic bias	Can be expensive, small volume
Towed Video/ acoustic	Medium boat	Quantitative, broad coverage	Expensive, poor taxonomic resolution

Fisheries Scientists Participate in Harvesting

Eggs and Larvae Midwater Trawls (e.g., Tucker) Pumps Nest Surveys

Juveniles IGYPT Trawl Beach seine SCUBA Traps Tagging Submersibles

Adults Nets (e.g. Campelan Trawl) Acoustics Ladders Tagging Fisheries Data Submersibles Scuba Aerialsurveys

Passive versus Active Entrapment Gear

Active Entrapment Gear is towed or pulled through the water

Passive Entrapment Gear is fixed gear -attraction to bait -predictable paths of movement

Trap

Pelagic trawl

Purse seine

Species Selectivity

Longlining -bait, hook shape and size very important

Trawling

-mesh size and selectivity-bycatch-behavior of fish-habitat structure

Nets

-square versus diamond mesh -length of cod end and net -mesh size

SMOLOWITZ FIGURE 5 (page 51) Lobster traps. Drawing by Robin Amaral.

Fisheries acoustics...

Samples whole water column

•Non-invasive/destructive, so natural behaviour relatively undisturbed

School behaviour (schooling)

•Gear-avoidance issues reduced

molluscs

echinoderms

decapods

Megafauna visible in photos

polychaetes

molluscs

crustacea

Macrofauna > 300 μm

copepods

foraminifera

nematodes

Meiofauna > 44 or 63 μm

Grab sampler -semi-quantitative -bow wave -shape of sample -shallow only

Epibenthic sled

•semi-quantitative

deep and shallow

•Hyperbenthos and epibenthos

Box / Spade corer

•quantitative

deep and shallow

Multi corer

•Quantitative for macro and meiofauna

deep and shallow

Submersibles

•allow collection of samples at precise scales and locations

•very expensive, difficult to get

SCUBA divers

-can access only a very restricted subset of habitats
-time consuming and difficult to access broad areas
-tropical diving not the norm!