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Memorial University of Newfoundland 
 
Physics 2820    Matlab Basics   Winter 2005 
 
 
 The analysis and interpretation of the data and equations for ocean ecological problems requires 
that we use computer software. Many different software packages exist, and for many different 
platforms. Because this application requires a mix of graphics and analysis, we have chosen Matlab a 
software package that is available for most platforms, has a student edition, and which has been used as 
companion software with many different books and monographs.  Readers already familiar with 
Matlab will be able to skim, or skip this section, while readers learning about computational software 
for the first time may want to take some time to learn how to work with this software. We will quickly 
cover the basics, not intending a complete or fully comprehensive introduction, moving on to the 
applications that are of most interest here that is the routines that will enable us to solve the 
independent and coupled differential equations that we must face. The examples that we will work with 
will be chosen from ocean ecology and will allow us to further explore some of their characteristics 
while at the same time learning how to apply Matlab in ocean ecology. 
 

The roots of Matlab go back to the 1970s and a set of routines, originally written in FORTRAN, 
that were developed for solving matrix problems. The structure of Matlab still displays signs of these 
roots in that much of the syntax is built around vectors and matrices and the algebra for manipulating 
them. A reader familiar with linear algebra will likely find the syntax fairly intuitive (although how 
many times have you heard that about a piece of software only to be disappointed?).  Matlab is now 
commercial software, although student versions, at greatly discounted prices, now exist. The original 
commercial product was fairly simple with an interpreter and minimal graphics. It has since grown to 
include 3-D graphics, signal processing, wavelets, neural net software, statistics, differential equation 
solvers, etc. These extra packages are added as scripts, or programs, that the user can look at and 
modify. 
 

To invoke Matlab simply type the name and you will produce the prompt 
 
>> 
 
At the prompt everything is up to you. Note that Matlab is case sensitive so A and a are not the same 
thing. You also have to watch that you do not use variables that are already defined in Matlab, like pi, 
since this will make things confusing.  To leave Matlab simply type quit or leave. There is no graphical 
user interface built in so it is up to the user to know what they want to do.   There is a help facility that 
allows you to find out how to use commands, simply type the command name and you will get the first 
group of comment lines which normally tells you how to use the command.  So to get help on the plot 
command, you type help plot. You can also search for commands; begin by simply typing help help 
 
Note that there are two fundamental types of window in Matlab the command window, that you type 
in, and the graphics window. To clear the first window, type clc, to clear the second one type clf.  To 
abort some process type ^c (control c). The first thing that we have to look at is how Matlab treats 
numbers. Note that most math is done in double precision which means that at times Matlab can seem 
slow. Matlab does however permit you to define the number of significant figures that you look at. If 
you type algebra statements, Matlab, will just echo back the result so typing 
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>> (7+4)*3/2 
  
 produces 
 
 ans=16.5000 
 
Matlab puts the result into a variable labeled ans. You could have created your own variable by typing  
 
>> soln=(7+4)*3/2 
 
and adding a semicolon (;) at the end would suppress the echo. One could also perform a calculation by 
defining variables and then performing calculations with those variables 
 
>>var1=12.5; var2=17.5;  % here we define the variables 
>> soln=var1*(var2**3);  % here we calculate the result 
 
In the first line we have put two definitions on the same line, separated by a semicolon; Matlab is ok 
with that. At the end of the line we have put a % symbol that Matlab reads as a comment statement. We 
will see later that such commands can be written together in a file and then used by as a new set of 
commands and thus comments will be quite useful to us. On the second line, we define our new 
solution where the algebra now involves multiplication of the first variable times the cube of the second 
one. The exponent of var2 could be 0.5, that is a non-integer, so we can use exponents to define roots. 
Performing standard algebra is quite easy. 
 
Being a Matrix language,  the structure is in terms of scalars, vectors and matrices. Thus 
 
>> a=3.5;           b=4.0; 
 
define scalar real variables. One could also define a complex number (and there are a lot of advantages 
to working with complex variables in  Matlab) by writing 
 
>> d=3.5 + 2.4*j 
 
algebra works just like normal so that  c= a + b      and d=c*a   give the expected results. In the absence 
of a semi-colon as a line terminator the result of the calculation will be printed. That may be a good 
thing to begin with but the normal mode is to add a ; to the end of every line, just to be sure to suppress 
unwanted things. 
 
But what about vectors and matrices, how does Matlab work with them (and what are they)?  Vectors 
and matrices do have a mathematical meaning but for us, here in Matlab, vectors are simply rows or 
columns of numbers while a matrix contains both rows and columns. We will see later that vectors and 
matrices provide a natural way to express the linear algebra with which we will be working but for the 
moment let us just explore how to work with vectors and matrices in Matlab. Shortly we will explore 
some of the mathematics that is connected to vectors and matrices. 
 
To define a vector , use square brackets with lists of numbers that can be simply separated or separated 
with commas  
 
>> A=[1.5 3.1  2.1]   % this produces a three element row vector 
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If we then define another such vector, say 
 
>> B=[1 3 4]             % and then add the two vectors together 
 
>> C=A+ B               % then we get a new row vector that is 
 
C = 2.5   6.1    6.1       
 
Note that C has three elements as well and that each element of A has been added to the element of B 
in the same position. This is vector addition and it is what Matlab wants to do by default. Of course to 
perform such addition, each vector must have the same number of elements.  The same result could be 
performed with a column vector. To define the same vectors as a column vectors, then write the same 
definitions but now use semicolons as separators, telling Matlab, to skip a row before filling in new 
data 
 
>>  A=[1.5;  3.1;  2.1] ;   B=[1; 3; 4]; C=A+B;   
 
The column vector C can be converted to a row vector by writing 
 
>> C=C’;   % this is referred to as letting C equal the transpose of C. 
 
Multiplication of vectors is somewhat more subtle. If you try to multiply C=A*B then you will find an 
error. If we want to multiply the each element of A by the same element in B then we have to write 
 
>> C=A.*B; 
 
where the .* tells Matlab to forget matrix rules for the moment and just perform the element by element 
calculation. If we want matrix rules to apply then we write 
 
>> C=A*B’; 
 
where the transpose operation is performed so that the number of rows of B will equal the number of 
columns of B. If you check this result then you will find that C is  a matrix with three rows and three 
columns. 
Another way  to define a matrix builds upon the earlier syntax for vectors  
 
>> C=[-1, 0 , 0; 2, 1, 3; 4, 2, 3]; 
 
This produces a matrix with three rows and three columns Here the semi-colons separate the rows of 
the matrix. If one needs to extend the line to define something then use an ellipsis (…) and keep on 
going. There is no limit to the number of line extensions that are allowed. 
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  The first index gives the row, the second index gives the column number.  We can determine the size 
of our matrix two ways. We can type  whos and Matlab will produce a list  of the variables together 
with the size and data type.  Another way is to use the size command 
 
>> [m,n]=size(C) 
 
will return the size of the matrix giving the number of rows (m) and columns (n).  We will use matrix  
syntax  regularly, in  several different problems, as it is very convenient for representing groups of  
coupled or related equations. 
 
One very useful way to generate sequences of numbers is to use the colon operator, thus typing  
 
A=1:5  is equivalent to typing out     a=[1, 2, 3, 4, 5]; 
 
The general form of this syntax is A=A_start:A_step:A_end where A-Start is the beginning value, 
A_step the step size and A_final the final value. This can be very useful for generating lists of numbers 
in Matlab. :One can also change the step size between elements, making it non-integer, or negative if 
you like.  
 
 
One can also use the colon operator to extract things from a  matrix thus 
 
>> D=C(:,2:3);          %  extracts columns 2 & 3 from the matrix that we typed above 
 
>> E=C(2:3,:) ;          %  extracts rows 2 & 3 from the same matrix 
 
One can also choose to extract specific elements from the matrix 
 
Thus if one has a larger matrix and defines v=[1, 3, 5]  then if 

 
 

Then we extract rows 1, 3 and 5 from the second column of the matrix. 
 
One can also easily compute the transpose A.’ and the complex conjugate of the transpose A’. 
 



































If this is the matrix  A and we define 
 
C=A(v,2); 
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One can do algebra with matrices fairly easily, any multiplication with a scalar operates on all the 
elements of the matrix 
 
Thus 

 
But if you are multiplying a matrix by another matrix then there are two options, true matrix 
multiplication and element-by-element multiplication, and you need to be careful to clearly indicate 
which you want. For straight multiplication, matrix multiplication, simply write C=A*B. For element-
by-element multiplication then you must write  C=A.*B.  
 
Try all this out with a few examples to see how it works and convince yourself of what Matlab  is 
doing.  You will discover that there are other aspects of the syntax that we have not discovered, details 
that are probably best learned by exploration and a certain amount of trial and error. 
 
You can generate arrays of numbers using two commands ones and zeros 
 
>> ones(3,3)    % will create a 3 by 3 matrix filled with ones 
>> zeros(3,1)   % will create a column vector filled with zeros 
 
>> A=zeros(3,1); B=ones(3,1); 
>> C=[A B] 
C = 
 

0 1 
0      1 
0      1 

 
creates a two column and three row matrix with zeros in the first column and ones in the second 
column. 
 
If you want to find out what is in a matrix or perform some simple calculations on them then you can 
use 
 
>>min(A)   % takes the minimum in each column 
>>max(A)   % takes the maximum in each column 
 
>> [y,i]= min(A)   % gives the value and the position 
 
>> mean (x)   % calculates the arithmetic mean 
>> median(x)  % media value 
>> std(x) %  calculates the standard deviation 
>> var(x) % just the square of the standard deviation 
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Polynomials and roots 
 
A polynomial of degree n has the general form of 
 
 
 
We can define and find the roots of such functions quite easily in Matlab. There are a lot of physical 
problems which require the analysis and use of these functions. 
 
If we have a polynomial of the form  
 
 
 
in Matlab would be written as 
 
>> p=[1, -2, -3, 10] % or you could write p=[1 -2 -3 10] 
 
and we could find the roots of this polynomial with 
 
>> roots(p) 
ans= 
 
-2 
2+i 
2-i 
 
Note that roots will only work with polynomials and so if we want to find the roots of more complex 
functions then we have to look further. There are also commands in Matlab for the evaluation of 
polynomials. So 
 
>> x=1:30; 
>> y=polyval(p,x)  % will evaluate this function for the values of x defined 
 
We could also multiply two polynomials using the conv function. Thus 
 
>> p=[1, -2, -3, 10]; b=[3 5 7 9]; 
>> c=conv(p,b) 
c= 
 
 3 -1 -12 10 11 43 90 
 
and we can divide one polynomial into another 
 
>> deconv(b,a)  % which will divide b by and yield a quotient q and remainder r  
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Integration 
 

We developed several different approaches to performing numerical integration and developed a cript 
for integration that uses Simpson’s 1/3 rule. In Matlab there are two commands to carry out integration 
trapz  and quad 

If we want to integrate the function f(x)= sinx + x2 then we would first need to define that function in 
Matlab. We could integrate it using trapz 
 
>>x=0:0.1:10; 
>> y=sin(x) + x.^2;   % Here we have to define the values of the function numerically 
ans= 
 335.1875 

or if we want to integrate using the quad function (more powerful and reliable) then we would 

 
>> fx=inline(‘sin(x) + x.^2’)  % here we have to define the function analytically 
>>quad(fx,0,10); % to integrate from 0 to 10 
ans= 
 335.1724 

 
 

 Simple Graphics  
 
Plotting in Matlab is fairly easy. Simple plot commands are very straightforward and there are a lot of 
options, most of which we will ignore here, that will permit you to generate pretty much any type of 
plot that you need. This structure makes it easy to learn how to do the basics very quickly without 
being caught up in the complexities of syntax and commands that are necessary to produce very fancy 
plots.  
 

 Indeed if you have two vectors x and y to plot one against the other simply type plot(x,y) and 
you are done. For example the data above, the vectors B and C can be plotted with the command 
plot(A,B)  with the values for A being plotted on the x-axis and the B values on the y axis. You can add 
things to the plot like a title title(‘title’) or labels on the x and y axis xlabel(‘axis_name’) and 
ylabel(‘axis_name’) and after that the plot is done! 
 
Consider a simple example 
 
X=-4.0:0.05:4.0          % create the data for the x axis 
Y1=exp(-0.5*X).*sin(5*X); %  y data will be an exponentially decaying sinusoidal oscillations 
figure(1);                      %  you can have more than one figure window, call this one number one 
plot(X,Y1);                           % do the plotting here 
xlabel(‘time’); ylabel(‘temperature’);  % label the x and y axes 
hold on;                                % we can overlay additional plots, first hold the plot window 
Y2=exp(-0.5*X).*cos(5*X); % define a cosine curve this time 
plot(X,Y2);                            % here we do the plotting 
grid; gtext(‘My best plot’);   % overlay a grid and put on a text label; 
hold off                                 % we have done with this plot and so can turn off the hold 
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You can have more than one plot window open at one time using the figure command and so you can 
have figure(1), figure(2) and so on. The active figure will be the last one that you have identified with 
the figure command. 
 
It is also possible to generate multiple plots on a single page. The easiest way to do this is with the 
subplot command. The syntax for this command is subplot(mnp) where m by n  defines the number of 
rows and columns of plots, thus 3 by 2 gives three rows of plots and two columns for a total of six 
plots; subplot(321) would work with the first of the 12 and subplot(326) with the sixth. To avoid 
ambiguity with many plots, it is best to separate (m,n,p)  with commas. 
 
You can also define functions  and use them. Note that the functions are pulled from your own 
directory first, before Matlab looks for its own functions,  so be careful not to redefine a function like 
sin or cos.  Matlab  should warn you if you use an inappropriate function name but it may forget and 
you could cause problems. 
 
function v=f101(x) 
v=sin(x.^3); 
 
and a routine to plot this function would be 
 
x=2:0.04:4;   % define the data 
y=f101(x);     % invoke the function 
plot(x,y);             % plot and then label the function 
xlabel(‘x stuff’); ylabel(‘y stuff’); 
figure(2)       % let’s see what a different approach looks like 
fplot(‘f101’,[2,4],10);    %  use the fplot function defining and plotting the data 
xlabel(‘x stuff’); ylabel(‘y stuff’); 
 
 
 There are other ways in which you can present your plots as we have, linear-linear, and various log 
plots semilogx(x,y), semilogy(x,y), loglog(x,y) to change the scaling.  One can also change the line 
styles, the default is solid but one can choose dashes - , dots . by simply typing plot(x,y,’-‘)  There are 
also  a number of specific built in plotting features that we have not touched upon, error bars, 
histograms, stemplots, rose plots and many others. A more complete summary of  Matlab  graphics 
features can be found in the manuals that come with the software or one of the introductory texts that 
have been written that make extensive use of the graphics (e.g. Etter 1993; Lindfield and Penny 1995; 
Biran and Breiner 1999). 
 
Ultimately one can change all the parameters in plotting by simply adjusting the ‘handle’ of the 
graphics. We will not explore that here although the manuals provide good guidance on that. To 
explore that type 
 
>> h=plot(x,y) 
>> get(h) 
 
Each of the handles that exist in  Matlab can be adjusted with a set command and so you have 
enormous power to adjust the plot to your liking but there are so many possibilities that you can in 
practice get lost in playing with the graphics rather than plotting and interpreting your data. 
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Plotting in two and three dimensions. 
 
Visualizing data in one dimension, e.g. time series of population abundance or temperature, is generally 
quite straightforward.  The graphical issues do become more complicated, however, as we move to 
higher dimensions.  Plotting  the surface temperature of a lake is not difficult in principle, but what if 
the data are not uniformly located about the lake and how do we represent a time series? With just this 
simple problem of representing temperature on a surface we have opened questions of interpolation 
schemes, a problem for which long books have been written (e.g. Cressie 1991), while the time series 
issue leads us into much more sophisticated forms of data analysis or computer movies.  Once we move 
into three-dimensional data such as the temperature structure through the lake, then relatively 
sophisticated graphics packages are required and great care and effort is required to produce useful and 
interesting results.  Matlab is quite capable of all these tasks although for complicated three-
dimensional data software packages specifically designed for such problems will produce much better 
results. Here we shall focus on two-dimensional data, how to contour and plot data like the lake sea 
surface temperature, and show how to do some simple three-dimensional plotting.  
 

In two and three dimensions, we have a few choices in plotting data; we can plot points, we can 
use colour maps, we can contour lines, we can use vector arrows (for velocity data) or we can plot 
trajectory lines in two or three dimensions. We will not cover all the possibilities but will look at the 
most commonly faced problems, ones which will come up again later in the text. 
 
We begin with some data vectors in x and y 
 
>>  x=-100: 5: 100; 
>>  y=x; 
 
which we need as a matrix that is created by  
 
>> [X,Y]=meshgrid(x,y); 
 
This result produces two matrices of equal size for X and for Y that will cover the complete domain for 
which we can now calculate a third variable z. we will plot a simple hyperbolic parabaloid,  a saddle 
function that has some interesting spatial function. 
 
>> z=X.*X  _ Y.*Y; 
 
There are several different choices for plotting these data that are three dimensional in x, y and z.  
 
>> plot3(X,Y,z);      %  plot the lines which by default will change colour 
>> mesh(X,Y,z);      %  plot a coloured mesh surface 
>> surf(X,Y,z);        %   a mesh surface but now with the colours filled 
>> surfl(X,Y,z);       %  a filled coloured mesh surface with directed lighting 
>> contour (X,Y,z);    % a contour plot of the surface 
>> image(x,y,z);                    % a simple 2-D colour fill representation of z (note (x,y) vectors) 
>> imagesc(x,y,z);                 % same as image but now scaled 
 
For the colour plots a scale bar can be obtained by typing  colorbar after invoking the plotting 
command. Labels can be produced on the contour plots by using clabel  after the contour command 
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>> h=contour(X,Y,z);      clabel(h); 
 
It is possible to define the contours that will be labeled but for complicated contour plots the labels 
often get in the way and it may be necessary to locate the labels manually. The plot3 command will 
produce a trajectory in space that is most easily illustrated by the following example 
 
 
 
>> x=0:0.04:40; 
>> plot3(sin(x),cos(x),x); 
 
Plotting the trajectory in the phase plane can be particularly illuminating, either a two dimensional line 
or as a three-dimensional representation as here. Such three dimensional plots are a neat way to explore 
the relation between variables such as position, velocity and force. 
 

In order to plot points it is necessary that they be on an even grid.  In the examples above the  x 
and y points were created on an even grid so it was not a problem as will generally be the case where 
we can use synthetic computer data. There are however often cases when spatial or time series data are 
not evenly space. For simple plots, it may be acceptable to leave them as unevenly spaced points and 
just plot them as points, e.g. time series points of temperature where the sampling time is uneven or 
there are gaps in the data. But for two and three-dimensional data such an approach will in general be 
unsatisfactory and it will be necessary to interpolate the data from their irregular locations to an evenly 
spaced grid. If we can do this in two or three dimensions then we will also be able to do it in one 
dimension and so we will have a quite general tool that will be useful in other circumstances. As 
mentioned above, interpolation of irregularly spaced data can be a quite difficult mathematical 
problem, one that we will only touch upon. Our goal here is to present some simple routines in Matlab  
that will work with simple problems. For difficult spatial mapping problems the reader will have to 
look elsewhere (Cressie 1991,  Daley 1991; Emery and Thomson 1999) .  Transferring data from 
random locations to an even grid is an art but if we are not too fussy then it can be fairly easy.  
 

There are two random number generators in Matlab  - rand and randn 
 
>> rand(1,3) 
ans = 
 
 0.9501     0.2311   0.6068 
 
>> randn(1,3) 
ans = 
 
0.4326   -1.6656   0.1253 
 
Every time that you invoke one of these commands you will get a different result. Note that rand 
produces random numbers between 0 and 1. The other function, randn, generates random numbers 
between + and – infinity centered about 0. You can see the difference by making very many numbers 
and then plotting the result: 
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The above plots show that rand produces numbers that are evenly distributed between 0 and 1. The 
other function for generating random numbers, randn, produces random numbers with a normal 
(Gaussian) distribution centered about 0. 
 
We can use these random number generators to produce some three dimensional data (x,y,z) 
 
>> x=rand(100,1)*200 - 100; 
>> y=rand(100,1)*200 - 100 ; 
>> z=x.*^2 – y.*^2; 
 

The  vectors x and y are randomly distributed points having values ranging from –100 to 100.  
To see their distribution in space use plot(x,y,’x’) which will produce an xy plot showing the locations 
of all the data locations. We cannot yet plot the  z function because its values are irregularly spaced and 
most of the functions that we used before to plot the same function, when the data were regularly 
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spaced, required that regular spacing.  In order to plot these data we will have to generate a regular grid 
that we will use to overlay onto our irregular spaced data points. We begin with a set of regular points 
from –100 to 100 and then use the meshgrid  command again to generate a matrix of evenly spaced xy 
points. We then use the command griddata to fit a surface to the data.  There are three possible ways to 
interpolate the data: linear (the default), cubic and nearest neighbour.  
 
>> x_reg=-100:1:100;  % generate a regular spaced x series 
>> [xi,yi]=meshgrid(x_reg,x_reg);             % make a matrix mesh of regularly spaced points 
>> zi=griddata(x,y,z,xi,yi);             % grid the irregularly spaced data onto the mesh 
>> mesh(xi,yi,zi);   % plot a mesh surface 
>> hold on;    % hold the plot so that we can overlay the points 
>> plot3(x,y,z,’ok’);   % now overlay the original points as black  circles 
 
 
Three other interpolation functions exist in  Matlab that provide similar results; interp1, interp2 and 
interp3. They provide one-, two- and three-dimensional interpolation with somewhat different syntax 
for the input data. These interpolation routines require that the data be monotonic, that is they must 
always increase in value, although they can be at irregularly spaced intervals.  
  
 
 
Solving linear equations 
 
 So far, we have explored a number of different ecological equations, and while we have looked 
at the solutions to the more simple equations, we have not yet developed any general approaches that 
will allow us to solve these equations to look directly at the solution. We have techniques for exploring 
the characteristics of the solutions, e.g. phase plane analysis and dimensional analysis, but we clearly 
need some tools for generating solutions. Some of the simpler problems do have analytical solutions, 
solution in equation form, that we can find but most problems, even some that are relatively simple 
ones do not have analytical solutions and it is only through numerical analysis and the application of 
computers that we solve these problems. 
 In this section, we will develop techniques for solving ordinary differential equations. Such 
equations may have multiple variables,  for example predators (P) and prey (H), but there is only one 
independent variable. Time is the independent variable in this predator-prey problem. Thus when we 
write the differential equations the differentials are in time alone and our final solution will be written 
for the different variables in terms of time alone. We will see later (in Chapter 5) that most physical 
problems generate partial differential equations, that depend on time and space. Most ecological 
problems are of course ultimately related to both space and time, and as we shall see have to be written 
as partial differential equations, but we choose to begin our approach to differential equations with the 
simple ordinary form.  
 We begin with the simplest set of equations, coupled linear equations, and see how we can 
solve them using Matlab.  Consider the following set of equations 
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These are three linear equations in three unknowns (x1, x2, x3). It is linear because none of the 
independent variables are multiplied by each other or appear with an exponential other then one. 
Nonlinear equations are almost always more difficult to solve. 
We could write the above equations as  
 
 
 
 
 
 
 
which we can write in our generalized matrix notation as  
 
  
 
Where our matrix is A, x is the column vector containing our variables (x1, x2, x3) and b is a column 
vector containing the constants on the right (7, 2.5, 6.2).  The solution to this is obtained by multiplying 
this equation by the inverse of the matrix A 
 
 
 
 
The inverse of a matrix by itself just gives us the identity matrix and writing the inverse times b as the 
matrix divide into b (which is like dividing by A) then we obtain 
 
 
 
 
 
Note that this is b divided by A and that it matters whether the A or the b comes first in Matlab, try it. 
It does matter whether one writes A\b or A/b  and so one must be careful. The solution  to the above 
problem can therefore quickly be found in Matlab, once the matrices and vectors are defined by simply 
typing 
 
>> x=A\b 
 
with the result that x1=0, x2=-1 and x3=1. This approach will of course only work when the number of 
equations is equal to the number of unknowns. Note that not all sets of equations are solvable, the 
information may be contradictory. If there are fewer equations than unknowns, then we have an 
underdetermined set and can only find partial solutions. If there are more equations than unknowns 
then the system is said to be overdetermined  and we must resort to numerical methods. The most 
common numerical approach is the least squares technique, which may be linear or non-linear. 
Linear least squares looks mathematically quite similar to our direct approach. The goal is to make the 
square of the difference between the ‘fit’ and the observations as small as possible, hence the name 
least squares. For fitting a straight  line to data it is easy to show graphically what we mean by this 
approach (see Figure 5). Our goal is to minimize the distance between the sum of the squared distance 
between the fitted line and the observation points.  
 
 We work with a simple straight line problem to illustrate the least squares approach. 
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where a and b are constants and we consider that we have m observations or trials each of which has 
some error associated with it. Our goal is to find the a and b that minimizes the total of the errors ei 

 

 
 
 
Normally it is  the yi that we  measure  and we assume that the error is all in the yi and that there is no 
error in the xi  at all 
 
 
 
And our goal is to find the coefficients that provide the best fit t o the observations, which we explicitly 
accept contain some error. We seek to minimize the sum of the squared errors 
 
 
 
 
If we write our matrices and vectors as 
 
 
 
 
 
 
 
 
 
Then one can show (see Lindfield and Penny 1995) that the solution to the coefficients is given by 
 
 
 
which is written in Matlab  as 
 
>> x=inv(A’*A)*A’*Y 
 
but we can write this much more simply in  Matlab as 
 
>> x=A/Y 
 
with the same result. As an example, let us generate a test case using the following function to generate 
our data and adding some noise to make the result a little more interesting. Note that the function is 
linear even though we have an exponential in x. The equations must be linear in the coefficients for the 
linear least squares technique to work. Either the equations must be linear from the beginning or it must 
be possible to transform them into a linear form. 
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We set the coefficients as a=1.5 and b=2.5. One can generate some test data and then solve with some 
noise added so that we don’t make it too boring 
>> x=1.1:0.1:11.1;    % define the x data 
>> y=1.5 + 2.5*exp(x) + rand(10,1)/10; % calculate our observations with some noise 
>> A=[exp(X) ones(101,1)]’;   % setup the A matrix based upon our equation 
>> Coef=A\y     % find the coefficients allowing Matlab to echo 
 
You can play with this script to explore how the result depends upon the amount of noise that is added. 
As you might expect, the quality of the result degrades as the noise is increased in amplitude. 
 
 Representing Differential Equations 
 
The solution techniques that we have looked at so far have been to linear equations, not to differential 
equations. What happens when we add a derivative term to the equation? How will we solve it then? 
The basic idea of the solution is quite simple. We remove the differential term by integrating the entire 
equation. Since integration is reverse differentiation this will have the effect of removing the 
differential terms. We will see that this is fairly easy to implement for simple problems but even with 
ordinary differential equations the numerical approach can be quite subtle. One thing to keep in mind 
as we develop these numerical approaches is the fundamental limitations of numerical solutions. The 
numerical representation is always an approximation to the exact equations. The quality of that 
approximation depends upon  the character of the problem and our skill but it will always be an 
approximation. Thus our solutions will be imperfect and sometimes, if we are careless, or the problem 
is particularly difficult, the solution may be quite poor.  Pointing out these concerns at the beginning is 
not intended to cause you to avoid numerical solutions but it is important to pay attention to the 
numerical details and not to blindly assume that the numerical result is correct or that any approach will 
work. As with lots of problems, there are a thousand wrong ways to solve a problem and only a few 
correct ones. 
 

Differential equations provide us with a model description of a biological or physical  system. 
For the most part, we shall consider what are referred to as initial value problems, that is we have an 
equation which describes the dynamics of our problems and we have some initial values that determine 
the starting location for the trajectory. Thus we might know the numbers of predators and prey on a 
specific date and we want to predict their future numbers. There are analytical solutions to many simple 
problems but for most of the real problems that are of interest, these analytical solutions are 
inadequate. Today even for some of the simpler problems it is simply easier to apply a numerical 
technique to solve the problem. But how do we do that?? What are the basics of the approach? 
 
First we must consider how represent differential equations. The computer does not solve the 
differential equations by looking at the analytical terms, at least not in the approach that we are 
developing here. So as a first step, the analytical terms, such as the gradient, or derivative of a function 
f(x) which is   df/dx   must be represented. There are three standard options available: (i) Forward 
differencing in which we approximate the slope by stepping a distance h forward (ii) Backward 
distance in which we approximate the slope by stepping a distance h backward and (iii) Centered 
differencing in which we average over the forward and backward difference. Numerically these are 
written as 
 
Forward Difference                      Backward Difference                       Centered Difference 
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Graphical representation of (a) forward, (b) backward and (c) centered differencing schemes which are 
used to represent the firs derivative, or the slope, of the function f(x). 
 
It should be clear that each of these approaches involves an approximation to the actual slope at the 
point of interest. We can improve the accuracy of the representation by making h smaller but the 
smaller that we make h the more work that the computer will be asked to do and there will be a point 
where the computer is not able to solve our problem because it is taking too long taking detailed 
calculations. Our general goal in formulating the numerical representation of our problem is to make it 
accurate but we also need to consider efficiency. So there will often be a tradeoff between the two. 
Here in the world of numerical computing you do not always get to have your cake and eat it too.  
 
One step in guiding our selection of a numerical representation is to consider the error associated with 
each representation. One can evaluate the error of these different representations (and there are many 
more) by considering their expansions in terms of a Taylor series (see for example Lindfield and Penny 
1995). The first two approaches, which are quite similar and only differ in that one steps forward while 
the other steps backward, both have the same error that is given by 
 
 
  
  
 
The centered difference scheme has a quite different looking error 
 
 
 
 
 
 
Note that the first  error depends on the second derivative,  f’’(x); the second term depends on the third 
derivative, f’’’’(x).  The other difference between the two terms is that the forward and backward 
schemes are first order in h while the centered scheme is second order in h. This difference is very 
important since it dramatically effects the error of our result as we shrink h. If we decrease h by 10 then 
the errors for the first sechemes decrease by 10 but if we do the same for  the centered scheme then the 
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error decreases by 100, a dramatic improvement. We don’t know how the second and third derivatives 
compare, although we hope that the third is in general smaller than the second, but since h  is a small 
quantity then as h gets smaller then we should in general find that centered differencing is better then 
forward or backward differencing. It may still be that at the start of a calculation that we must begin 
with forward differencing, this is particularly true of time derivatives, since this is the only way that we 
can get things moving.  
 
There are of course more complicated schemes and it is natural to ask why we do not try them, should 
not the errors continue to get smaller as we go to higher order schemes? 
 

 

Thus more complicated schemes may not be much more accurate than simple schemes and offer us 
small reductions in the error but at the expense of substantially increased complexity.   Elegance and 
simplicity in numerical representation are desirable both because they are usually associated with 
numerical efficiency and also because they make numerical implementation more straightforward. It is 
usually straightforward to build up the software code for a numerical model, step by step, but the final 
result can be quite complex and difficult to work with. Simplicity of design can be a definite advantage 
in working with and debugging such software. It is unfortunate but nearly inevitable that debugging 
will be necessary at some stage. There is, of course, an entire literature on this subject. It is enough for 
us to note that (i) that we need to represent analytical functions and (ii) that there are often tradeoffs in 
our choices. 
 
 
Solving differential equations  
 
Having learned how to numerically represent the terms in the differential equations, we now have to 
move towards actually solving these equations.  We will begin with some very simple intuitive 
approaches that will be easy to understand and to implement. It will not be hard to generalize the 
simple approaches to show how more robust techniques can be developed.  The basic idea of solving 
these differential equations is to integrate them to find the functional solutions. The equations 
themselves provide the differential representation. Our goal is to remove the differential terms and find 
the functional representation.  Thus if we have a simple differential equation that can be generally 
written as  
 

 
 
then our goal here is to find y(t) which involves integrating both sides of the above equation. While the 
idea is straightforward the approach to implementing it is not. As with the numerical representation of 
the terms, there is no general approach that will provide us with an error free result. Each set of  
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equations will have its own characteristics and we will need to be careful to make sure that our 
approach is working properly for the problem at hand. 
 
 The first technique that we will look at is called Euler’s method. All the others take a similar form so 
we shall understand the basics if we see how to use this method. We begin by writing the forward 
difference scheme 
 
 

 
This equation can now be rewritten to find the value of y at a future time n+1 

 
The parameter h is the time step size, something we can adjust, the time derivative of y  is given by the 
original function f(y,t), defined by our original equation.  We will require knowledge of y at some 
earlier time n, written here as yn, in order to step forward in time. Thus if we know the value of y at 
time t=0  then we can find y for t=1, t=2, t=3  and so on 
 
 

 
A Taylor series expansion can be used to show that the error for this solution is in fact quite large and 
is given by  

 
In general, we would like to see the error to be above order one in h so that the error can decline very 
quickly as h decreases in size. This poor error for the Euler solution approach is a sign that the 
technique may not be all that robust,  as we shall see shortly. 
 
Let us explore the characteristics of this solution by looking at a specific example, one for which we 
know the solution. Let us consider the equation 
 

 
The exact solution of this equation is 
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So when we develop our numerical solution we will be able to compare it with the exact solution. This 
will not be possible in general but it is a good idea to test an algorithm the first time you take it for a 
drive just to be sure that it is doing what it claims to be capable of and also to be sure that you have set 
it up properly. 
 
 
% Example of Euler’s method solution 
finish=50;  % the number of steps to move forward 
start=0;  % the start location for our solution 
step=1.0;  % the step size 
steps=(finish - start)/step + 1; % given the first three parameters then the number of steps 
y=100; t=0;  % y=100 at time t=0, we need a first guess, here we take it from the equation 
yvals=y;  % storing the first value of y 
tvals=start;  % storing the first value of time 
for i=2:steps  % step forward the Euler solution from 2 to the number of steps 
   y1=y+step*(-0.1*(y-10)); % increment the  next value of y using the Euler formula 
   t1=t+step;  % increment the time in the loop 
   tvals=[tvals, t1]; yvals=[yvals,y1]; % store the new value of time and y 
   t=t1; y=y1;  % reset the time and y in the loop and prepare for the next step 
end   % end of the loop 
t=0:50;  % create a vector of time for the analytical equation 
clf;   % clear the screen 
plot(t,90*exp(-0.1*t)+10);    % plot of the exact solution (with the equation inside the plot command) 
hold on;  % freeze the graph to prepare for the Euler solution to be plotted 
grid;   % lay on a grid to make it easier to compare the two solutions 
plot(tvals,yvals,'r:')     % now  plot  the approximate Euler solution, admire the result! 
   
 
We can explore the sensitivity of the solution by changing the step size and the plotting the result. As 
the step size increases then the two curves look quite different. As the step size decreases then they 
come closer together. The calculation is so simple here that changing the step size does not much 
influence the computation time. As we shall see the problems do not have to become much more 
complicated before changing the step size will indeed have a noticeable effect hence decreasing the 
step size will not always be a sensible approach to improving the solution. 
 
Let us look back now to consider how we have developed this solution.  We will see that that the Euler 
approach is not generally useful but the approach that we have taken is one that will work even for 
more sophisticated algorithms. What is the general approach here? 
 
(1) Specify the initial conditions – we need the starting guess 
(2) Choose a time step – in this case this is where we influence the solution the most 
(3) Calculate the present value of the function – here the algorithm does its work 
(4) Calculate a new value of the function – the second stage of the algorithm and then 
(5) Go back to (3) until done 
 
 
The limitations of the Euler approach may not be apparent from the example that we have worked with 
above. It is important to test any new approach very carefully because while a solution may work with 
one type of problem it may break down in other situations. But how accurate are these solutions and 
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when do we know that we have the right  solution. The best lesson is to be careful because all these 
techniques break down somewhere, so you have to be careful. 
 
If we have an equation 
 

Ky
dt
dy

=  

 
then the Euler solution is of the form 

 
 
 The Euler solution repeatedly applies this solution and if you work through the algebra then you can 
show that the solution has the general form   

 
And if h is small then this approaches the value   

 
 
 
Runge-Kutta Techniques 
 
The true workhorses of the differential equation world are a class of techniques named after their 
founders Runge-Kutta (rung-uh cut-ah). The basic idea is pretty much the same as that of the Euler 
approach but with some more thought about how to keep the forward step closer to the function so that 
the integration is more precise and more stable. There are many different versions of this basic 
approach although the basic idea behind the implementation is always common. More sophisticated 
algorithms seek improved efficiency or are targeted towards specific types of differential equations. 
Differential equations can have different general characteristics that will determine how they should be 
dealt with. Analytical solution techniques are tailored to the type of the equation and so too with the 
numerical solution approaches.  We will not consider all aspects of the Runge-Kutta approach, since 
there are so many, but will point out the general strategy 
 
 
The starting point of this formula is the Euler equation 
 

 
The solution is stepped forward yn+1 based upon the previous value  yn  and the step size h times the 
function f(yn,tn) which is evaluated at the departure point (yn,tn).  We have already seen how this works. 
The trick in the Runge-Kutta approach is to evaluate the function f at a slightly different point. Stepping 
forward makes sense but in the Euler approach we are trying to step forward based on the information 
at the starting point and this can get us into trouble. If we pick up some additional information on the 
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way, as we move forward, then we correct for some of the errors that we might carry with us from the 
starting point. The first step is to write 
 

 
Where we now write the forward step in terms of the previous value, just as before but now we 
evaluate f at a  point (yn+1/2,tn+1/2) that is somewhere between the starting position and the next step and 
is given by 
 
 

This scheme is referred to as first order because it involves one ‘correction’ to the slope evaluation that 
is used to step the Runge-Kutta scheme forward. Even this very simple form of the Runge-Kutta 
approach is an improvement over the Euler method as we can quickly see by looking at an example of 
approximating the function  
  

 
 
Let us consider Euler’s method at different time steps 
 
 
 

 
where the exact solution is  

 
 
After just a few steps, at the same step size,  the Runge-Kutta solution is substantially better then the 
Euler solution. The Runge-Kutta approach is better and better behaved than the Euler approach and will 
work with most differential equations, pretty much all the ones that we will face here in this text.   
 
We shall not consider the specific details of the Runge-Kutta implementation but will write down the 
second and the fourth order approaches, simply as examples.  The higher order approaches simply add 
additional intermediate steps to further correct the forward integration. In general, the solution 
improves with additional terms but there is of course a computational price to be paid and ultimately 
there is a tradeoff between improved estimation and numerical efficiency. The most commonly used 
scheme, one that provides the optimal tradeoff, is the fourth order scheme which is truly the workhorse 
of differential equation solvers. There are race horses, and other types of ‘four-legged’ solvers but the 
fourth scheme gets the job done without acting up too much. 
 
The second order scheme is 
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and the fourth order Runge-Kutta is 
 

 
As an exercise it is instructive to write your own solver, at least once, as it illustrates how 
straightforward the idea really is. In the Matlab solver only takes a few lines of  coding and a 
homemade solver will work with nearly all of the differential equations that we shall see. The solvers 
that we will use in Matlab are more sophisticated than the typical homemade ones. They try to be 
efficient and check to ensure that they are working properly. In an effort to be efficient, they adjust the 
time step,  essentially lengthening it if the function is not changing quickly.  The improved efficiency is 
balanced by the time it takes to ensure that the algorithm is working and as a result the Matlab  routines 
are not necessarily superfast although they are in general well-behaved. 
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