
Rotating Nonlinear Vortical Patterns on a Gamma Plane
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Nonlinear barotropic vortical patterns on a γ -plane are investigated analytically.
The solutions describe large-scale Rossby waves rotating anticyclonically with
zero circulation. The Rossby waves are predicted to rotate with a specific
angular velocity. The stream function–vorticity relation is assumed to be
nonlinear, which may lead to a pronounced asymmetry within the pattern. The
similarity between the simulated patterns and the Antarctic Circumpolar Wave
is highlighted.

1. Introduction

In this paper, we examine the effect of rotation and the variation of the Coriolis
parameter with latitude on a class of vortical structures in polar regions.
A linear variation of the Coriolis parameter (the β-plane approximation)
is widely used in describing many mid-latitude processes. In the polar
regions, a quadratic approximation can be used to represent the Coriolis
parameter (the γ -plane approximation). Rotating vortical structures with zero
total circulation currently attract a great deal of attention with numerous
theoretical, experimental, and observational studies (e.g., [1–4]). Our study
addresses a class of vortical patterns formed by a Rossby wave with zero
circulation.

We are motivated by the Antarctic Circumpolar Wave (ACW) phenomenon,
a recently discovered vortical pattern rotating around the Antarctic that
modifies the velocity field of the Antarctic Circumpolar Current (ACC) (e.g.,
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[3, 4]). White [5] suggested that the ACW may be part of the global El
Nino-Southern Oscillation Wave and may affect climate in some parts of the
Southern Hemisphere (e.g., [6]). In this paper, we model the ACW as an
anticyclonically rotating Rossby wave. We also show that a cyclonic current
(rotating in the contrary relative to the Rossby wave) is an inherent part of our
solution.

Planetary vortices have been studied for over four decades, starting with the
pioneering work by Longuet-Higgins [7]. To date, most work has focused only
on understanding of dynamics of vortical structures on the β-plane (e.g., [8]).
Nof [9] developed a model for modons, based on the nonlinear equations
for a horizontal shallow flow on a γ -plane. The inclusion of nonlinearity
allowed the author to present new modon solutions for the polar regions, which
transform into the well-known solution derived by Stern for the mid-latitude
case [10]. A limitation of [9] is that only nonrotating solutions were studied.
Compact rotating vortex tripoles and multipoles of higher order consisting
of a central vortex and a number of satellite vortices on a γ -plane were
recently investigated theoretically in [11], which are similar to those observed
in the pioneering experiments [2]. Fluid particles in the central core and the
satellite vortices reported in [11] revolve in opposition, and the whole pattern
rotates steadily. In our study, we focus on nonlinear and generally asymmetric
multipole structures in a circular channel on the γ -plane.

On the technical side, our approach differs from previous studies. Theories
using point vortices as a part of the construction (e.g., [1, 12]) are beyond
the scope of the present paper. We classify the approaches adopted before
as follows. First, there are studies on embedded finite size vortices which
arise around the critical point in a shear flow. A recent analytical study
employing this approach was, for example, reported in [13]. The shape of the
separatrix in [13] is not prescribed a priori but is found as a part of the
solution. Another approach relies on the circularity of the separatrix and a
linear relation between streamfunction and vorticity (e.g., [9]). In [11], the
streamfunction–vorticity relation is assumed to be linear in the exterior of
the separatrix and nonlinear in the interior area. Here, we assume that the
streamfunction–vorticity relation is nonlinear in the whole domain. We show
that once a nonlinear streamfunction–vorticity relation is prescribed, it defines
a set of asymmetric vortex patterns with specific amplitudes.

The paper is organized as follows. In Section 2, we formulate the
equations of motion for rotating vortices on a barotropic γ -plane and identify
the relevant parameters. Then, we present the derivation of an asymptotic
long wave equation describing a finite amplitude vortex pattern steadily
rotating in a circular channel. In Section 3, we present semi-analytical
solutions of the derived equation for the particular case of vortices
rotating around the Antarctic. In Section 4 some concluding remarks are
offered.
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2. Formulation

We consider the two-dimensional pattern of a purely barotropic fluid rotated
with an angular velocity c around a geographical pole in a circular channel
of the width L on a gamma plane. The dimensionless equation for the
streamfunction ψ in this case is the following (e.g., [14]):(
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The streamfunction is introduced in the usual way

u = ψξ, vξ = −ψφ, (2)

where u, v are velocities in the eastward and the northward directions; ξ is
dimensionless radial distance to the geographical pole scaled with the channel
width L; and φ is the longitude. The dimensionless parameter ε in (1) is
defined as follows:

ε = L/RE � 1. (3)

Thus, we consider the length scale of the flow to be much smaller than the
radius of the Earth RE . It is convenient to introduce the Rossby number in the
standard form Ro = U/2�L , where � is the rotation rate of the Earth and U
is a typical circumferential velocity.

We use the hydrostatic approximation which is valid for sufficiently shallow
(L is much greater than the oceans depth H) fluid

H � REε2. (4)

We also assume that

(2�L)2/(gH ) � 1. (5)

It is well-known that once the latter inequality is valid, the rigid lid approximation
can be used [15].

When ψ � c ξ 2

2 so the left-hand side of (1) is linear and only waves of

small amplitudes can be described. Otherwise, ψ ∼ c ξ 2

2 so the left-hand side
of (1) also contains nonlinear terms.

Equation (1) can be integrated to yield

∇2ψ − ε2
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ξ 2

2

)
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where F is an arbitrary function to be determined from the relation between
the potential vorticity and the streamfunction at some cross sections of the
flow. Classical papers such as [10] assumed that this relation is linear. We will
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assume that the potential vorticity–streamfunction relation F has a weakly
nonlinear functional form thus extending the classical approach. That weakly
nonlinear relation was experimentally confirmed in [14].

F = −λ

(
ψ − c

ξ 2

2

)
+ σ 2 f

(
ψ − c

ξ 2

2

)
, σ � 1, (7)

where λ is a constant and f determines the functional nonlinearity in the
vorticity–streamfunction relation . Substitution into (6) gives

1
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When σ = 0, the specific choice (7) for F in (6) leads to a linear equation
for the streamfunction even if its amplitude is not small and all nonlinear
terms on the left hand side of (1) are retained. Here, we focus on the solutions
of (8) whose radial variations appear at much shorter scales compared to the
angular one

ψ = ψ(ξ, �), � = δφ, δ � 1. (9)

Thus (8) now reads
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)
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We seek asymptotic solutions of (10) in the form of power series in the
small parameter δ,

ψ = ψ (0)(ξ, �) + δ2ψ (1)(ξ, �) + · · · (11)

We look for solutions of (10) in a circular channel with inner and outer
rigid boundaries located at ξ = R1 and ξ = R2, respectively, thus boundary
conditions are

ψ�(R1, �) = 0, ψ�(R2, �) = 0, ψ(ξ, �) = ψ(ξ, � + 2πδ). (12)

It can be shown that the regular zeroth order solution of (8) satisfying the
boundary conditions (12) has the form

ψ (0) =
(

ξ 2

2
− 2

λ

) (
ε2

λRo
+ c

)
+ A(�)W (ξ ), (13)

W (ξ ) = J0(
√

λξ )Y0(
√

λR1) − J0(
√

λR1)Y0(
√

λξ ), (14)

J0(
√

λR2)Y0(
√

λR1) − J0(
√

λR1)Y0(
√

λR2) = 0, (15)

where the function A in (13) is yet to be determined. The constant λ can be
determined from Equation (15) for given values R1 and R2.
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The specific choice of the angular velocity of rotation in the form

cs = − ε2

Roλ
, (16)

eliminates the part of the solution (13), which is independent of the longitude.
Thus, the specific choice (16) eliminates a mean zeroth order current in our
solution. Extension to the case with non-zero zeroth order mean current is
quite straightforward and will be presented elsewhere.

The first-order equation reads

1
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ξ 2

2

)
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The requirement that all terms in the latter equation have to be of the same
order leads to the scaling

δ = σ, cs = O(1). (18)

Equation (17) is to be solved along with the boundary conditions (12)
applied to the first-order streamfunction.

Re-writing (17) in a self-adjoint form and applying the Fredholm alternative
(solvability condition) yield the equation for the amplitude function A(�)

A��

∫ R2

R1

W (ξ )2

ξ
dξ =

∫ R2

R1

ξW (ξ ) f

(
A(�)W (ξ ) − cs

ξ 2

2

)
dξ. (19)

Equations (13) and (19) define the streamfunction in the leading order and
are the principal theoretical result of the present study.

3. Results

Let us choose f in the form of a quadratic polynomial,

f (B) = s1 B + s2 B2. (20)

This choice of the relationship between vorticity and streamfunction is just
a straighforward extension beyond a linear relationship usually used by many
authors (e.g., [10]).

This choice of f reduces (19) to the Korteveg–de Vries type equation for
the wave amplitude,

A�� = I0 + AI1 + A2s2 I2, (21)

I0 = s1cs I01 + s2c2
s I02, (22)
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I1 = s1 I10 + s2cs I11, (24)
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I2 =

∫ R2

R1

ξW (ξ )3dξ

∫ R2

R1

W (ξ )2

ξ
dξ
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We can integrate (21) once assuming (without loss of generality) that
A�(� = 0) = 0, A0 = A(� = 0);

− 3

2s2 I2
A2

� = (A0 − A)(A − A1)(A − A2), (27)

where
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2
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2
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(28)

A2 = −A0

2
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√(−A0

2
− 3I1

4I2s2

)2

− A2
0 − 3I1

2I2s2
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s2 I2
.

(29)

It is worth noting that A1 < A0 < A2.
In this paper, we are looking for patterns with zero circulation, which

implies that ∫ 2πδ

0
A(�) d� = 0. (30)

Periodicity of our problem (latter equation in the set (12)) requires that the
wavelength (in radians) of the cnoidal wave is to be 2πδ

N . General analysis of
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(21) along with (30) leads to the expression for the wavelength,

2πδ

N
= 4K (m)√

A1 − A2

√
−3

2s2 I2
, (31)

m = A1 − A0

A1 − A2
, (32)

where N = 1, 2, 3... is a mode number, K(m) is the complete elliptic integral
of the first kind.

It can be shown that all characteristics of cnoidal waves with a wavelength
2πδ
N can be expressed in terms of m and N ,

δ2 AH = −6mK 2(m)N 2

π2s2 I2
, (33)

δ2cs = 4K 2(m)N 2

π2s2 I11

(
2 − m − 3E(m)

K (m)

)
− δ2s1 I10

s2 I11
, (34)

δ2 A0 = −6K 2(m)N 2

π2s2 I2

(
1 − m − E(m)

K (m)

)
, (35)

where AH = A1 − A0 is the height of the cnoidal wave (difference between the
amplitudes corresponding to the crest and to the trough). E(m) is the complete
elliptic integral of the second kind. It is important that m cannot be chosen
arbitrarily, but rather should be defined from (32), (28), (35), (34). After some
algebra, we arrive at the equation for m,

Q1(R1, R2, m) + δ4s2
1

N 4
Q2(R1, R2) + δ2s1

N 2
Q3(R1, R2, m) = 0, (36)

where

Q1(R1, R2, m)=3K 4(m)

I2π4

[
12K 2(m)
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− 4(m − 1) + 8(m − 2)

E(m)

K (m)

− 16

3
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I 2
11

(
2 − m − 3E(m)

K (m)

)2]
, (37)

Q2(R1, R2) = I10

I11

(
I02 I10

I11
− I01

)
, (38)

Q3(R1, R2, m) = −
4K 2(m)

(
2 − m − 3E(m)

K (m)

)
I11π2

(
2I02 I10

I11
− I01

)
. (39)
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Once s1 and s2 are set, so (36), and (37), (38), (39) determine m, which
in turn determines A0, AH , and cs using the relations (35), (33), and (34),
respectively. It is clear that solutions to this problem (31) can exist only if
s2 < 0. Here, we set s2 = −1 and as in the final dimensional expressions for the
velocity field the key parameter is σ , the scale in the streamfunction–vorticity
relation, and s2 only appears in the product s2σ (or equally s2δ).

Equation (27) has solutions in the form of cnoidal waves with the wavelength
2π
N (for the original angular coordinate φ)

A(φ, t) = A0 + AH Cn2

[
2K (m)

N

2π
(φ − cst)

]
, (40)

where Cn is the Jacobi elliptic function of the index m. It is straightforward to
show that the specific choice of N corresponds to a 2N -pole, that is a vortex
pattern with N = 1 is a dipole, with N = 2 is a quadrupole, etc. Also, waves
with small m correspond to nearly sinusoidal A(φ), the case m = 0 is indeed
exactly sinusoidal. Vortex patterns are only marginally asymmetric for small
m, the case m = 0 corresponds to the exact symmetry. As m increases, the
wave tends to be more asymmetric which leads to the fact that one vortex (in a
dipolar solution) has larger angular extent compared to another vortex. As m
approaches 1, the whole vortex pattern becomes strongly asymmetrical. The
limiting case m = 1 corresponds to a solitary wave solution for A(φ); it is clear
that the case m = 1 cannot be reached as A(φ) has the finite period of 2π .

Here, we present our calculations for the special case of a vortical
pattern rotating around the Antarctic aimed at explaining some features of
the ACW. Our physical assumption is that the Subantarctic front (SAF) and
the Polar Front (PF), which are reasonably well-defined narrow jets (about
40 km wide) create a wave guide for a Rossby wave. Gille [16] analyzed
GEOSAT altimeter data and presented the mean paths of the SAF and PF
jets. Although topography affects these paths, they stay quite close together
around the Antarctic continent. According to figure 9 from [16] we estimate
that the distance between SAF and PF is about 250–300 km. We model SAF
and PF paths as two circumferences, which act as rigid boundaries for the
Rossby wave thus creating a circular channel. We choose these internal and
external circumferences at which the radial velocity is zero to be located at
3500 km and 3760 km from the South pole, respectively. We set the typical
length scale to be L = 260 km. This means that the positions of the internal
and external circumferences (in the dimensionless radial coordinate ξ ) are
R1 = 13.462 and R2 = 14.462. It can be readily checked that for the chosen
length scale the condition (5) for the rigid lid approximation is justified. We
set δ = σ = 0.3, these parameters affect the magnitude of the velocity field in
the wave for given s1. We will show below that this choice of parameters
leads to a reasonable agreement with observations . The period of rotation of
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Figure 1. The graph of s1 versus m for mode numbers N = 1, 2, 3.

the vortical pattern (Rossby wave) is, however, independent of the specific
coefficient σ in the streamfunction–vorticity relation (7).

Using the chosen scales, and with the help of (15), (22), (24), and (26) we
now can calculate λ, I01, I02, I10, I11, and I2. The dimensional angular velocity
of rotation of the vortical pattern can be calculated using (16),

cs,dim = − L2

R2
E

2�

λ
. (41)

Using (41) we predict that the period of rotation of the whole structure
(time to circumferent the globe) to be Trotation = 8.191 years, which is close to
the observed values reported in [3] and [17] who suggested a value of 8 − 9
years during 1985–1994.

Once the circumferences R1 and R2 (at which the radial velocities are zero)
are prescribed, it is straightforward to analytically determine possible values of
s1 for which stationary rotating vortex patterns exist as a function of m using
the quadratic Equation (37). Only one root of the solution leads to the negative
values of cs , as only negative cs are consistent with (16), (18). The graph of
s1 versus m (Figure 1) shows that there is a threshold for s1∗ at each mode
number N , which again can be analytically determined using (37),

s1∗ = N 2

σ 2

I02

I01 I11 − I10 I02
. (42)
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Figure 2. Maximum and minimum dimensional circumferential velocities at the outer
circumference versus s1 for mode numbers N = 1, 2, 3.

Figure 3. Maximum and minimum dimensional radial velocities at the outer circumference
versus s1 for mode numbers N = 1, 2, 3.

The threshold values of s1∗ = s1(m = 0)correspond to a sinusoidal (and
perfectly symmetric ) pattern. In our case s1∗ = 0.0572N 2 . Actually the pattern
with m = 0 does not exist as its amplitude is exactly zero, and consequently
the corresponding velocity field is then zero everywhere. In Figures 2 and 3
we present the maximum and the minimum of the dimensional circumferential
(at the outer circumference) and radial velocities versus s1 for various mode
numbers N = 1, 2, 3.
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Figure 4. Maximum and minimum of the circumferential velocity as a function of cnoidal
wave index m.

Geometry and all other parameters are the same as in Figure 1. These
maximum velocities can be found using the expressions (13), (16), and (40)
along with (2). It can be shown that maximum radial velocity occurs at
Rmax,rad = 13.951 (3627 km in the dimensional form) and when the value
of |d A/dφ| has the maximum. Maximum and minimum radial velocities are
of the same magnitude. The maximum and minimum of the circumferential
velocity at R = R2 occur at A = A0 and A = A1. It is interesting to note that
maximum and minimum of the circumferential velocity as a function of cnoidal
wave index m are both independent on the mode number N (see Figure 4).

Again, we recall that the leading order streamfunction patterns can be found
from (13), (16), and (40). These patterns are shown in Figures 5 and 6 for the
cases of dipole (N = 1) and quadrupole (N = 2); s1 = 0.23 for both cases.

For the case where N = 2, the maximum and the minimum of the
circumferential velocity at R = R2 are 0.189 m/s and −0.183 m/s, respectively.
The magnitudes of the circumferential velocity at R = R1 are similar. Magnitude
of the radial velocity (N = 2) is 0.009 m/s. As can be seen from Figures 2 and
3, mode N = 1 vortical structure (dipole) has significantly greater velocities
for the case s1 = 0.23, circumferential velocity reaches 4.98 m/s, and radial
velocity reaches 0.132 m/s. That is for the examined vorticity–streamfunction
relation, the only mode 2 structure is realizable.

Cnoidal wave indexes corresponding to the vortex patterns with N = 1, 2, 3
decrease as N increases: m(N = 1) = 0.97453; m(N = 2) = 0.10884; N = 3
mode does not exist at s1 = 0.23. For N = 1 the pattern is asymmetric (angular
extent of the smaller vortex is 133.1 degrees compared to 226.9 degrees for the
larger vortex); for N = 2 pattern is only slightly asymmetric (angular extent of
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Figure 5. Streamline pattern for the case of dipole (N = 1); s1 = 0.23.

the smaller pair of vortices is 89.17 degrees compared to 90.83 degrees for the
larger pair). The angular extent (in radians) of the smaller vortex for the case
N = 1 is shown in Figure 7. To re-calculate for a different mode number N ,
the result for N = 1 should be divided by N .

Here, we modeled the ACW as a nonlinear Rossby wave with zero circulation.
The ACW is observed to propagate against the ACC. Our theory is also capable
to predict the existence of such “counter-rotating” current. Let us consider
solutions of the first-order Equation (18); they consist of a general solution and
particular solutions. Important observation is that the general solution and the
part of the particular solution proportional to A or A�� describe a correction to
the Rossby wave with zero circulation. Another part of the particular solution
ψ

(1)
C describes a current. That part obeys the following equation:

1

ξ

∂

∂ξ

(
ξ
∂ψ

(1)
C

∂ξ

)
+ λψ

(1)
C = −s1cs

ξ 2

2
+ s2c2

s

ξ 4

4
+ s2 A2(�)W 2(ξ ). (43)
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Figure 6. Streamline pattern for the case of quadrupole (N = 2); s1 = 0.23.

The last term in the right-hand side of (43) is small compared to the first
and second terms because of the large values of ξ , so for the ACW conditions
the current is not much affected by the ACW and variation of the ACC
with time is weak. The magnitude and spatial variation of the current depends
on the boundary conditions. Extensive examination of these features is beyond
the scope of the present paper, although we noticed that the direction of the
current is always opposite to the sense of rotation of the Rossby wave if that
eastward current direction takes place at least at one of the boundaries of the
circular channel.

4. Conclusion

In this paper, we have presented a model for polar eddies in a circular domain.
The case of a ring-like strip is considered in detail. The structures examined are
actually Rossby waves of finite amplitude. Here, we do not impose the small
amplitude approximation at all. Small amplitude Rossby waves can rotate at
any angular velocity while finite amplitude ones (in order to be trapped near
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Figure 7. The angular extent, in radians, of the smaller vortex for the case N = 1.

the pole or trapped between the prescribed circumferences) need to rotate at
some specific rate cs , which is specified in our theory. The gamma effect is of
crucial importance for the wave patterns presented in this work. To keep our
finite amplitude patterns trapped they should rotate at a particular angular
velocity which is defined by the gamma effect to eliminate a nonvanishing
monopole component. Further, once the vorticity–streamfunction relation is
prescribed, there is a unique nonlinear vortex pattern for each mode number N
that satisfies the angular symmetry (2π/N angular periodicity) of the problem.
For a quadratic relation between vorticity and streamfunction, the vortex pattern
has a separate dependence in the radial and the angular coordinates. We assume
that the angular coordinate is a “slow” variable compared to the “fast” radial
coordinate. If the length scale L , and any two circumferences at which the radial
velocity is zero are prescribed, the period of rotation (time to circumferent the
globe) of the whole vortical structure can be calculated using (41). The period
of time required to repeat the relative position of vortices within the structure,
Tobser, is the period of rotation divided by N , i.e., Tobser = Trotation/N . Once
the particular form of the vorticity–streamfunction relation (20) is specified,
the wave index m determining the spatial structure of the vortices can be
calculated using (37). For a given wave number N , there is only one nonlinear
and asymmetric wave pattern which satisfies the formulation of the problem.
If we take the size of the inner and outer circles to be 3500 and 3760 km
(scales that correspond to the Subantarctic front (SAF) and the Polar Front
(PF) in the Antarctic), so the maximum velocity within the pattern is about
0.2 m/s if we choose s1 = 0.23. The predicted mode 2 wave (quadrupole) is
slightly asymmetric. We calculated that cs,dim = −3.345 × 10−4� corresponds
to a period of propagation around the globe of about 8 years. The minus
sign indicates that the vortex rotates anticyclonically. For these parameters,
the maximum circumferential velocity will be 0.2 m/s. Sarukhanyan [18]
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observed similar velocities in the ACC. There is therefore reasonable agreement
with observed features of the Antarcic Circumpolar Wave in spite of our
highly idealized approach. A more detailed examination of importance of the
bathymetry and coastal configuration features would require a spatially explicit
numerical model, which is beyond the scope of the present study.
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