Landau Theory of the Magnetic Phase Diagram of Magnetoelectric CuFeO$_2$

1. Magnetoelectrics and Multiferroics.
2. Landau theory of phase transitions and Symmetry.
4. Frustrated CuFeO$_2$: Phase diagram and magnetoelastic coupling.

Martin Plumer.
Department of Physics and Physical Oceanography, Memorial University.
Magnetoelectric Effect: The early days.

- applied uniform electric field \mathbf{E} induces a uniform magnetization \mathbf{M}
- applied uniform magnetic field \mathbf{H} induces a uniform electric polarization \mathbf{P}

Cr_2O_3 (a simple AF)

1960:

$\mathbf{M} \propto \alpha \mathbf{E}$

D.N. Astrov, *JETP* 11, 708 (1960)

1961:

$\mathbf{P} \propto \alpha^* \mathbf{H}$

V.J. Folen, *PRL* 6, 607 (1961)

Early measurements found only a very small effect: $\sim 10^{-3} \text{V/(cmOe)}$

$\sim 5/10^6$ of AF spins reverse.

$\alpha = \text{response function}$

\[
\begin{align*}
\mathbf{M}_i &= \chi_{ij}^m H_j + \frac{1}{\mu_0 c} \alpha_{ji} E_j \\
\mathbf{P}_i &= \varepsilon_0 \chi_{ij}^e E_j + \frac{1}{c} \alpha_{ij}^* H_j
\end{align*}
\]

Courtesy of M. Fiebig
Multiferroics: Everything’s related to everything else

Variables: P, M, ε

Fields: E, H, σ

Response functions: χ_E, d, χ_M, S, α

“Revival of the Magnetoelectric Effect”

Publications on "magnetoelectric"

![Graph showing the number of publications per year from 1985 to 2005.]

- Y-axis: Publications / year
- X-axis: Year
- Data points and trend line showing an increase in publications over time.
Modern Magnetoelectric Multiferroics

Courtesy of M. Fiebig

Composite materials
for device application

1: piezoelectric

- Permendur \(\text{Fe}_{0.49}\text{Co}_{0.49}\text{V}_{0.02}\)

2: magnetostrictive

\((\text{PbZr}_x\text{Ti}_{1-x}\text{O}_3, 0<x<1) \)

Intrinsic multiferroics
for basic research (and devices)

- Small absolute magnetoelectric coefficient but novel physics
- "Gigantic" ME effect if magnetic field sets ferroelectric properties:

\[\text{ME effect} = \frac{\text{electrical}}{\text{mechanical}} \times \frac{\text{mechanical}}{\text{magnetic}} \]

Effects up to 90 kV/cm·Oe (10^3...^5 \times single-phase effect)

Magnetic Phase Diagram of Cr$_2$O$_3$.

- Spin-Flop transition in an unfrustrated uniaxial AF.

Period-2 spin structure: $Q = \frac{1}{2}G$

Simple H-T phase diagram of an axial antiferromagnet.

Critical field is proportional to anisotropy strength $-D(S_z)^2$

- $D > 0$: axial
- $D < 0$: planar
CuFeO$_2$ and HoMnO$_3$: *Frustrated Triangular Antiferromagnets*

CuFeO$_2$: P *induced* by non-collinear spin state at $H\neq 0$ ($T_N=14K$).

HoMnO$_3$: P *coexists* with magnetic order: $P\neq 0$, $T_c=900K$. $S \neq 0$ $T_N=75K$. H modifies P.

Both have very complex H-T magnetic phase diagrams: *More later!*

N. Hur et al.

T. Kimura et al.
Microscopic Origins of Magnetoelectric Coupling.

Electric field induces magnetic ion displacements $r \Rightarrow$ modifies crystal field and overlapping wave functions.

Interaction between the lattice and magnetism is crucial (*magnetoelastic coupling*).

- Single-ion anisotropy $\sim r_i (S_i^z)^2$
- Symmetric exchange $\sim r_{ij} (S_i^\alpha S_j^\beta + S_j^\beta S_i^\alpha)$
- Antisymmetric exchange $\sim r_{ij} (S_i^\alpha S_j^\beta - S_j^\beta S_i^\alpha)$
- Dipolar interactions $\sim S_i \cdot S_j/r_{ij}^3 - 3(S_i \cdot r_{ij})(S_j \cdot r_{ij}).r_{ij}^5$
- Zeeman energy $\sim H^\alpha g(r_i)^{\alpha\beta} S^\beta$

Dzyaloshinski-Moriya Interaction

\[D(r_{ij}) \cdot (S_i \times S_j) \]
ME Coupling from Anti-symmetric Exchange: Spin Structures.

\[P \propto r_{ij} \times (S_i \times S_j) \]

Magnetoelectric effect by antisymmetric exchange

Figure 6
Schematic illustrations of types of magnetic structure with a long wavelength. (a) Sinusoidal, (b) screw, (c) cycloidal, and (d,e) conical structures. Geometric configurations of the unit vector connecting the neighboring magnetic moments at \(i \) and \(j \) sites \(\vec{r}_{ij} \) and the vector spin chirality \((\vec{S}_i \times \vec{S}_j)\) are also shown for the respective structures.

Landau Theory of Magnetic Phase Transitions.

- Description of long-range ordered spin configurations near a phase transition T_N:
 $S=0$, $T>T_N$ and $S\neq 0$, $T<T_N$.

- Express free energy as a Taylor expansion in powers of S near T_N.

- Variational principle. $F[S]$ is a minimum at the equilibrium spin configuration:

$$\frac{\delta F}{\delta S} = 0$$

Free energy must be invariant with respect to all symmetries, including crystal symmetry.

Only even powers of S

$$F = AS^2 + \frac{1}{2} BS^4 + \frac{1}{3} CS^6 + ...$$

A=a($T-T_N$), B=constant, C=constant,…

Minimization gives:

<table>
<thead>
<tr>
<th>$S^2 = 0$</th>
<th>$T>T_N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S^2 = (a/B)(T_N-T)$</td>
<td>$T<T_N$</td>
</tr>
</tbody>
</table>

E.g., time reversal symmetry $S\rightarrow-S$ and $H\rightarrow-H$.
Crystal Symmetry: Example Cubic

Free energy must be invariant w.r.t. the Generators of point group: \(C_{31}, C_{2m} \)

Point Group Symmetry operations:

- **\(C_{31} = 3\)-fold rotation about diagonal:** \(S_x \rightarrow S_y \rightarrow S_z \)
- **\(C_{2x} = 2\)-fold about x-axis:** \(S_x \rightarrow S_x, S_y \rightarrow -S_y, S_z \rightarrow -S_z \)

Example: General term at second order:

\[
F_2 = \sum_{\alpha\beta} A_{\alpha\beta} S_{\alpha} S_{\beta} = A_{xx} S_x S_x + A_{yy} S_y S_y + A_{zz} S_z S_z + A_{xy} S_x S_y + A_{xz} S_x S_z + A_{yz} S_y S_z
\]

\[
C_{31} \rightarrow A_{xx} S_y S_y + A_{yy} S_z S_z + A_{zz} S_x S_x + A_{xy} S_y S_z + A_{xz} S_y S_x + A_{yz} S_z S_x
\]

Thus: \(A_{xx} = A_{yy} = A_{zz} \equiv A, \quad A_{xy} = A_{xz} = A_{yz} \equiv A' \)
Cubic Crystal Symmetry

• C_{21} leads to $A'=0$, giving: $F_2 = A(S \cdot S) \Rightarrow$ Isotropic (like exchange)

• Demanding that the most general 4th-order term $\sum B_{\alpha\beta\gamma\delta} S_\alpha S_\beta S_\gamma S_\delta$ be invariant w.r.t. point-group generators leads to:

$$F_4 = \frac{1}{2} B (S \cdot S)^2 + E (S_x^4 + S_y^4 + S_z^4)$$

Cubic)

Anisotropy

$E>0$: $S || <111>$ (Ni)

$E<0$: $S || <100>$ (Fe)

• Crystals with cubic symmetry have moments in either $<111>$ or $<100>$ directions.
Impact of Symmetry

• If a term in the free energy is allowed by symmetry, it must exist (may be very small).

• All terms which are independently invariant have independent coefficients.
230 Space Groups and their Generators

Bradley and Cracknell:

Hexagonal Symmetry:

\[F_2 = A(S \cdot S) - D(S_z)^2 \]

\[F_4 = \frac{1}{2} B(S \cdot S)^2 + E_1 S_z^4 + E_2 S_z^2 (S_x^2 + S_y^2) \]

Anisotropy

\[S \parallel c \text{ or } S \perp c \]
Spin Density description of magnetic states

\[s(r) = \sum_q S_q e^{i q \cdot r} = m + S_c e^{i Q \cdot r} + S^*_c e^{-i Q \cdot r} + \ldots \]

Define real vectors \(S_1 \) and \(S_2 \):

\[S_Q = S_1 + iS_2 \]

\(s(r) = m + 2S_1 \cos(Q \cdot r) - 2S_2 \sin(Q \cdot r) + \ldots \)

Order parameters

Uniform magnetization ~ \(H \)

Triangular Lattice 120° spin structure:

Helical with \(S \) in plane of \(Q \):
\[Q = \pm (4\pi/3a)x = G/3 \]
\[S_1 = S_x, S_2 = S_y \]

Square lattice simple AF:
\[Q = (\pi/a)x + (\pi/a)y = G/2 \]
\[S_1 = S_y, S_2 = 0 \]

Helical with \(S \perp Q \):
\[Q = Qz \ [\text{incommensurate } Q = (n/m)G] \]
\[S_1 = S_x, S_2 = S_y \]

Frustrated Antiferromagnets

+ chirality + \(Q \)

- chirality - \(Q \)
Non-Local Formulation of the Free Energy

Consider a general expression of the free energy:

\[
F[s(r)] = \int drdr' A_{\alpha\beta}(r-r')s_\alpha(r)s_\beta(r') + \int dr_1dr_2dr_3dr_4 B_{\alpha\beta\gamma\delta}(r_1,r_2;r_3,r_4) s_\alpha(r_1)s_\beta(r_2)s_\gamma(r_3)s_\delta(r_4) + \ldots
\]

Apply symmetry requirements for system of interest:

\[
F = F_{\text{isotropic}} + F_{\text{anisotropic}}
\]

\[
F_{\text{iso}}[s(r)] = \int drdr' A(r-r')s(r) \cdot s(r') + \int dr_1dr_2dr_3dr_4 B(r_1,r_2;r_3,r_4) s(r_1) \cdot s(r_2) s(r_3) \cdot s(r_4) + \ldots
\]

Isotropic terms to 4th order

\[A(r) = aT\delta(r) + J(r)\]

temperature

Usual spin-spin \textit{Exchange} integral
Second-order isotropic terms

\[s(r) = \sum_q S_q e^{i\mathbf{q} \cdot \mathbf{r}} = m + S_q e^{i\mathbf{Q} \cdot \mathbf{r}} + S_q^* e^{-i\mathbf{Q} \cdot \mathbf{r}} + \ldots \]

\[F = F(\mathbf{Q}, m, S) \]

\[F_2 = A_0 m^2 + A_Q S^2 \]

\[A_Q = aT + J_Q \]

\[A_0 = aT + J_0 \]

\[J_Q = \frac{1}{N} \sum \mathbf{r} \cdot \mathbf{J}(\mathbf{r}) e^{i\mathbf{Q} \cdot \mathbf{r}} \]

\[\mathbf{R} = \text{lattice vector} \]

First order state as \(T \) is lowered has wave vector \(\mathbf{Q} \) which maximizes \(T_N = -\frac{J_Q}{a} \).

Example: near-neighbor sites on a simple hexagonal lattice

\[\mathbf{R} = \pm c \mathbf{z} \pm a \mathbf{x} \pm (a \mathbf{x} \pm \sqrt{3} a \mathbf{y}) \]

\[J_Q = 2J_0 \cos(q_z) + 2J_1 f_1 \]

\[f_1 = \cos(q_x) + 2 \cos(q_x/2) \cos(q_y) \]

\[q_x = aQ_x, q_y = (\sqrt{3}/2)aQ_y, q_z = cQ_z \]

For \(J_1 \) antiferromagnetic, \(J_Q \) is maximized by

\[q_x = 4\pi/3, q_y = 0: 120^\circ \text{ spin structure.} \]
Fourth-order isotropic terms

\[F_4^{(4)} = B_1 (\mathbf{S} \cdot \mathbf{S})^2 + \frac{1}{2} B_2 |\mathbf{S} \cdot \mathbf{S}|^2 + \frac{1}{4} B_3 [(\mathbf{S} \cdot \mathbf{S})^2 + (\mathbf{S}^* \cdot \mathbf{S}^*)^2] \Delta_{4Q, G_1} + B_4 (\mathbf{S} \cdot \mathbf{S}^*)[\mathbf{S} \cdot \mathbf{S} + \mathbf{S}^* \cdot \mathbf{S}^*] \Delta_{2Q, G_1} \]

Umklapp terms

\[\frac{1}{N} \sum_{\mathbf{R}} e^{i\mathbf{Q} \cdot \mathbf{R}} = \Delta_{Q, G} \]

\(\mathbf{R} = \) lattice vector
\(\mathbf{G} = \) reciprocal lattice vector

- Four independent 4\(^{th}\)-order coefficients of isotropic terms.
- Usually taken to be independent constants.

\[B_1 = B_{Q, -Q, -Q, -Q}, \quad B_2 = B_{Q, Q, -Q, -Q}, \quad B_3 = B_{Q, Q, Q, Q}, \quad B_4 = B \sum_{Q, Q, Q} \]

\[B_{q_1, q_2, q_3, q_4} = \Delta_{q_1 + q_2 + q_3 + q_4, G} \left(\frac{V}{N} \right)^3 \sum_{R_1 R_2 R_3} B(R_1, R_2, R_3) e^{i(q_1 \cdot R_1 + q_2 \cdot R_2 + q_3 \cdot R_3)} \]

\[\mathbf{S} = \mathbf{S}_1 + i\mathbf{S}_2 \]

Example: \(B_2 |\mathbf{S} \cdot \mathbf{S}|^2 = B_2 \{(\mathbf{S}_1^2 - \mathbf{S}_2^2)^2 + 4(\mathbf{S}_1 \cdot \mathbf{S}_2)^2\} \) is minimized by

for \(B_2 > 0 \), \(\mathbf{S}_1^2 = \mathbf{S}_2^2 \) and \(\mathbf{S}_1 \perp \mathbf{S}_2 \): *Helical* spin polarization.

for \(B_2 < 0 \), \(\mathbf{S}_1 \parallel \mathbf{S}_2 \): *Linear* spin polarization.
Molecular Field Theory Derivation of the Landau Free Energy

Use Mean-Field Theory:
\[H_{MF} = - \sum_{i,\alpha} h_i^\alpha \langle S_i^\alpha \rangle \]
with
\[h_i^\alpha = \sum_{\beta} J_{ij}^{\alpha\beta} \langle S_j^\beta \rangle \]

\[\langle S_i^\alpha \rangle = \frac{h_i^\alpha}{\sum_{\alpha} m e^{h_i^{\alpha m}/k_B T}} \]
where \(m = -J, -J+1, \ldots, J-1, J \) and \(J \) is the total angular momentum.

- Formulate free energy from variational principle:

\[F \leq F_0 + \langle H - H_{MF} \rangle \quad \text{and} \quad F_0 = \text{tr}[w_{MF} H_{MF}] + (k_B T) \text{tr}[w_{MF} \text{Ln}(w_{MF})] \]

\[w_{MF} = \frac{e^{-H_{MF}/k_B T}}{\text{tr}(e^{-H_{MF}/k_B T})} \]

- Expand in powers of \(\langle S_i \rangle \):

\[F = E - TS \]

\[F = \sum_{i} J_{ij}^{\alpha\beta} \langle S_i^\alpha \rangle \langle S_j^\beta \rangle + T \left\{ a \sum \langle S_i^\alpha \rangle^2 + b \sum \langle S_i^\alpha \rangle^2 \langle S_j^\beta \rangle^2 \right\} + \ldots \]

\(\text{All isotropic} \)

⇒ As Non-local Landau Free Energy, but with \(B_1 = B_2 = B_3 = \ldots = bT \) (\(\cong bT_N = \text{constant} \))

\[a = \frac{3J}{J+1} \]
\[b = \frac{1}{45} \frac{(2J+1)^4 - 1}{(2J)^4} \]

Magneetoelastic Coupling

• Consider dependence of exchange integral on inter-ion separation:

\[J(r' - r) = J(r'_0 - r_0) + [u(r'_0) - u(r_0)] \cdot \nabla J(r_0) + \cdots \]

• Define \(\tau = r - r' \) and introduce strain tensor \(e_{\alpha\beta} = e_i \) (i=1-6, Voigt notation)

\[J(\tau) \equiv J(\tau_0) + e_i K_i(\tau) \]

\[K_{\alpha\beta}(\tau_0) = \frac{1}{2} \left[\frac{\partial J}{\partial \tau_\alpha} \tau_\beta + \frac{\partial J}{\partial \tau_\beta} \tau_\alpha \right]_0 \]

• Add elastic energy to this exchange-striction term:

\[F_e = \left(\frac{1}{2} j^2 / V^2 \right) \int dr \int dr' K_i(\tau) e_i s(r) \cdot s(r') + \frac{1}{2} \nu C_{ij} e_i e_j \]

quadratic in \(s(r) \)

Elastic constants

• \(\delta F[s(r), e_i]/\delta e_i = 0 \) yields impact of magnetic phase changes on elastic properties:

\[e_i = \left(- \frac{1}{2} j^2 / \nu V^2 \right) \int dr \int dr' s_{ij} K_j(\tau) s(r) \cdot s(r') \]

\[s_{ij} = \left[C^{-1} \right]_{ij} \text{ compliance matrix} \]
Biquadratic Exchange (Symmetric)

• Insert this e_i back into $F[s(r),e_i]$ to get $F[s(r)]$:

$$F_K = (-\frac{1}{8} j^4/\alpha V^4) \int d\mathbf{r}_1 \int d\mathbf{r}_2 \int d\mathbf{r}_3 \int d\mathbf{r}_4 K_i(r_1 - r_2) s_{ij} K_j(r_3 - r_4)[s(r_1) \cdot s(r_2)][s(r_3) \cdot s(r_4)]$$

Biquadratic exchange from magnetoelastic coupling

• Magnetoelastic coupling is one mechanism for $B_1 \neq B_2 \neq B_3 \neq \ldots$

• Also from higher-order (usual) exchange and overlap of atomic wave functions.

• Typically favors collinear $S_i \parallel S_j$ and $Q = G/4$ (period-4) spin configurations.

Holmium: IC wavevector due to competition between NN and NNN exchange

$$\cos Q = -J_1/(4J_2)$$
Phase Diagram of a Simple AF: Spin-Flop

Example: rhombohedral symmetry giving axial anisotropy along z (Cr₂O₃).

- Applied magnetic field $H\parallel z$ induces $m\parallel z\parallel c$.
- NN AF exchange interactions along z give $Q=\frac{1}{2}G$.

$$F(Q, m, S) = \frac{1}{2}A_0 m^2 + A_Q S^2 - D |S_z|^2 + B_1 S^4$$

$$+ \frac{1}{2}B_2 |S\cdot S|^2 + \frac{1}{4}B_3 m^4 + B_4 |m\cdot S|^2 + \frac{1}{2}B_5 m^2 S^2 - m\cdot H$$

- *Competition* between crystal-field and magnetic-field induced anisotropy: $(B_4 m^2 - D)S_z^2$

- Phase diagram is determined by minimizing $F(Q, m, S)$

First-order *spin-flop* transition when $B_4 m^2 = D$.

Graphical Elements

- Axis labels and phase boundaries indicate the transition regions and magnetic states.
- Arrows indicate the direction of magnetic field and spin orientation changes.
Phase Diagram of a Geometrically Frustrated AF: CsNiCl$_3$

- Ni$^{2+}$ (S=1, L=3) on simple hexagonal lattice with NN AF interactions J_0 and J_1:

\[Q = \frac{G}{2} + \frac{G'}{3} \]

\[S_2 \sin(Q \cdot r) \neq 0 \]

- Anisotropy is weakly axial.

\[s(r) = m + 2S_1 \cos(Q \cdot r) - 2S_2 \sin(Q \cdot r) \]

Free energy is the same as with simple AF

\[F(Q, m, S) = \frac{1}{2}A_0 m^2 + A_Q S^2 + -D|S_z|^2 + B_1 S^4 + \frac{1}{2}B_2 |S \cdot S|^2 + \frac{1}{4}B_3 m^4 + B_4 |m \cdot S|^2 + \frac{1}{2}B_5 m^2 S^2 - m \cdot H \]

Transition at T_{N2} due to competition between D-term (collinear) and B_2-term (non-collinear).

Points = Experimental Data
Lines = Fitted Landau Theory.

120$^\circ$ $S \perp c$

Spin-Flop Transition

Elliptical S

Linear $S \parallel c$
CuFeO$_2$

Cu$^+$ → nonmagnetic
Fe$^{3+}$ (6S state) → $S = 5/2$

Space Group R$\bar{3}$m

3-fold rotation c-axis. rhombohedral

$\text{ABC stacked triangular layers.}$

$a = 3.03$ Å $c = 17.09$ Å

$L = 0$. No spin-orbit coupling.
Usual source of anisotropy is absent.

If anisotropy is weak, why no spin-flop?

Phase diagram exhibits spin states:

• IC collinear (H=0 and H≠0)
• P4 collinear (H=0 and H≠0)
• IC non-collinear (H≠0)
• P5 collinear (H≠0)
• P3 collinear (H≠0),...
CuFeO$_2$: Super Frustration

- Early Ising model with up to 3rd neighbor exchange interactions (J$_1$, J$_2$, J$_3$) on a 2D triangular lattice reveals a multitude of commensurate phases (P2, P3, P4, P8).

![Magnetic phase diagram of Ising spin triangular lattice antiferromagnet at 0 K.](image)

- More recent models include inter-layer interactions (weak) as well as biquadratic exchange (Wang and Vishwanath, PRL (2008)).

- None of these predict the noncollinear (field-induced) phase that yields spin-induced $P \neq 0$.
CuFeO$_2$: Magnetoelectricity and Noncollinearity

Why does noncollinear state exist and why is $P \neq 0$ only in that phase?

- Consider coupling between spin, electric polarization and position vectors: S, P, r.

- Inversion symmetry $r \rightarrow -r$, $r \leftrightarrow r'$, $P \rightarrow -P$ and other $R3m$ crystal symmetry requirements (space group generators $\{S_{6}^{+}|000\}$, $\{\sigma_{d1}|000\}$) leads to:

$$F_C = \frac{1}{2V^2} \int dr dr' C(\tau) [P(\tau) \times \hat{\tau}] \cdot [s(r) \times s(r')]_z$$

- Add polarization energy $\sim P^2$:

$$F_P = \frac{A_p}{2V^2} \int dr dr' P^2(\tau)$$

- Integrate out P (minimize wrt P):

$$F_{CP} = -\frac{1}{8V^2A_p} \sum_{\alpha} \int dr dr' \{C(\tau) \hat{\tau}^\alpha [s(r) \times s(r')] \cdot \hat{z}\}^2 ,$$

Biquadratic anti-symmetric exchange.
Non-local Landau Free Energy for CuFeO$_2$

$$ F = F_2 + F_4 + F_6 + F_z + F_{CP} + F_K - m \cdot H $$

Isotropic (includes biquadratic symmetric exchange).

Biquadratic anti-symmetric exchange

Trigonal anisotropy (3-fold rotation axis)

Axial exchange anisotropy:

$$ F_z = \frac{1}{2V^2} \int d\mathbf{r} d\mathbf{r}' J_z(\mathbf{r} - \mathbf{r}') s_z(\mathbf{r}) s_z(\mathbf{r}') $$

Favors canted spin structures

- Insert spin density and evaluate.
 $$ s(\mathbf{r}) = \sum_{j, q} S_j q^{iQ \cdot \mathbf{r}} = m + S_j e^{iQ \cdot r} + S_j^* e^{-iQ \cdot r} + ... $$

- Three triangular layers: $j = A, B, C.$

$$ \mathbf{r} = R + \mathbf{w}_j $$

$w_A = 0, w_B = \frac{1}{3} ax + \frac{1}{3} by + \frac{1}{3} cz, w_C = \frac{1}{3} ax - \frac{1}{3} by - \frac{1}{3} cz$

Ansatz: phase difference only.

$$ S_A = S e^{i\gamma}, \quad S_B = S e^{i(\gamma - \phi)}, \quad S_C = S e^{i(\gamma + \phi)} $$

$\mathbf{s} = \mathbf{s}_1 + i \mathbf{s}_2$
Second-order Isotropic Terms

\[F_2 = \frac{1}{2} A_0 m^2 + A_Q S^2 \]

\[S^2 = S \cdot S^*, \quad A_Q = a T + J_Q \]

Wave vector is determined by minimizing \(J_Q \) and Umklapp terms (later).

1st, 2nd, 3rd neighbor in-plane exchange coupling \(J_1, J_2, J_3 \) plus inter-plane exchange \(J' \). \(J_Q = 2f(q, \phi) \)

\[
f(q, \phi) = J_1 f_1(q) + J_2 f_2(q) + J_3 f_3(q) + \frac{1}{3} J' f'(q)(1 + 2 \cos \phi), \quad (20)
\]

where

\[
J_1 = \cos q_x + 2 \cos \frac{1}{2} q_x \cos q_y, \quad (21)
\]

\[
f_2 = \cos 2q_y + 2 \cos \frac{3}{2} q_x \cos q_y, \quad (21)
\]

\[
f_3 = \cos 2q_x + 2 \cos q_x \cos 2q_y, \quad (21)
\]

\[
f' = \cos \left(\frac{2}{3} q_x - \frac{1}{3} q_z \right) + 2 \cos \frac{1}{2} q_x \cos \left(\frac{1}{3} q_y + \frac{1}{3} q_z \right), \quad (21)
\]

\(q_x = a Q_x, q_y = b Q_y, q_z = c Q_z, \)

\(b = (\sqrt{3}/2) a \)

FIG. 1. Sketch of the \(J_2-J_3 \) phase diagram based on minimization of the exchange integral \(J_q \) with \(J_1 = 1 \). Broken curves correspond to the case \(J' = 0 \) and solid curves to \(J' = 0.4 \). Solid circle indicates values used in the present model; \(J_2 = J_3 = 0.3 \) and \(J' = 0.4 \).

CuFeO\(_2\)

\(J_2 \sim 0.3/J_1 \)

\(J_3 \sim 0.3/J_1 \)

BIG!
Fourth- and Sixth-order Isotropic Terms

Fourth Order

\[F_{4,2} = B_1 S^4 + \frac{1}{2} B_2 |S \cdot S|^2 + \frac{1}{4} B_3 m^4 + 2 B_4 |m \cdot S|^2 + B_5 m^2 S^2 , \]

\[F_{4,3} = B_{4,3}[(m \cdot S)(S \cdot S)e^{3i\gamma} + \text{c.c.}] \Delta_{3Q, G} , \]

\[F_{4,4} = \frac{1}{4} B_{4,4} [(S \cdot S)^2 e^{4i\gamma} + \text{c.c.}] \Delta_{4Q, G} . \]

\[Q = \frac{1}{3} G \]

- **Field-induced Umklapp term:** Stabilizes P3 structures.
- **Zero field Umklapp term:** Stabilizes P4 structures

- *Umklapp terms favor collinear structures (e.g., \(S \parallel H \)).*
- *Odd-order Umklapp terms are generated by an applied field and favor \(S \parallel H \).*

Sixth Order

- *more Regular and Umklapp terms (3Q=G, 4Q=G, 5Q=G, 6Q=G)*

\[Q = \frac{1}{4} G \]
Magnetoelectric Coupling

\[F_C = i(C_x P_x + C_y P_y) \hat{z} \cdot (\mathbf{S} \times \mathbf{S}^*), \]

\[F_P = \frac{1}{2} A_p P^2 \]

- **Wave-vector dependent coefficients**
 - \(C_x \) and \(C_y \) favor IC structures

\[C_x = -\frac{4}{3} b \left\{ C_1 \cos \frac{1}{2} q_z \sin q_y - \frac{1}{3} C' \left[\sin \left(\frac{1}{3} q_z - \frac{2}{3} q_y \right) \right. \right. \]
\[\left. \left. - \sin \left(\frac{1}{3} q_z + \frac{1}{3} q_y \right) \cos \frac{1}{2} q_z \right] (1 + 2 \cos \phi) \right\}, \]

\[C_y = \frac{2}{3} a \left\{ C_1 \left[\sin q_z + \sin \frac{1}{2} q_z \cos q_y \right] \right. \]
\[\left. + C' \sin \frac{1}{2} q_z \cos \left(\frac{1}{3} q_z + \frac{1}{3} q_y \right) (1 + 2 \cos \phi) \right\}. \]

\[P_x = -(i / A_p) C_x (\mathbf{S} \times \mathbf{S}^*)_z \]
\[P_y = -(i / A_p) C_y (\mathbf{S} \times \mathbf{S}^*)_z \]

\(~ (S_1 x S_2)_z \sim (S_{1x} S_{2y} - S_{1y} S_{2x})\)

\[P \propto r_i \times (S_i \times S_j) \]

\[P = 0 \text{ for proper helix} \]
\[P \neq 0 \text{ for canted helix} \]

\[F_K = K \left\{ [3(S_x^*)^2 S_y S_z - S_z S_y (S_y^*)^2] + 2S_z S_x^* (3|S_x|^2 - |S_y|^2) \right\} + \text{c.c.} \]
Magnetic Phase Diagram of CuFeO$_2$

- Numerical minimization of Free Energy $F=F(m,S,Q)$.
- Lots of fitting parameters: $J_1, J_2, J_3, J', B_1, B_2, \ldots C_1, C_2, \ldots$ Not a simple model

Qualitative and quantitative features of the phase diagram are reproduced.

- Solid lines = 1st order.
- Broken lines = 2nd order.

Canted phase not verified experimentally

- Multitude of phases very close in energy due to many competing interactions.
- Small changes in T or H can induce phase changes.
Magnetoelastic Coupling in CuFeO$_2$ (H=0)

- Very strong in this compound.

$T_{N1} \Rightarrow$ Para – IC

$T_{N2} \Rightarrow$ IC – P4

- Simultaneous magnetic and structural transitions at $T_{N1}=14K$.

- Landau free energy including magnetoelastic coupling (red) gives better fit to ultrasound data, especially C_{33}.

$S \parallel z$ at H=0

\[
F_{Se} = \beta_1 S_z^2 (e_1 + e_2) + \beta_3 S_z e_3 + \gamma_1 (2e_1^2 + 2e_2^2 + e_6^2) S_z^2 + \gamma_2 (4e_1 e_2 - e_6^2) S_z^2 \\
+ \gamma_3 e_3^2 S_z^2 + \gamma_4 (e_4^2 + e_5^2) S_z^2 + \gamma_5 ((e_1 - e_2)e_4 + e_5 e_6) S_z^2 ,
\]
HoMnO$_3$ with Stephen Condran (MSc 2009)

- **Mn** form P3 120° in-plane spin structure.
 \[S_{\text{Mn}} \perp c. \]

- Mn AB stacking of triangular layers.

- **Ho(1) and Ho(2)** AA stacking of triangular layers.

- Ho ions can also order: \(S_{\text{Ho}} \parallel c \) at low T

Ferro interplane

- \(S_{\text{Mn-A}} \parallel S_{\text{Mn-B}} \perp a \)

- \(S_{\text{Mn-A}} \parallel S_{\text{Mn-B}} \parallel a \)

Anti-Ferro interplane

- \(S_{\text{Mn-A}} \parallel -S_{\text{Mn-B}} \parallel a \)

- \(S_{\text{Mn-A}} \parallel -S_{\text{Mn-B}} \perp a \)

\[\mathcal{H} = \sum_{\langle ij \rangle} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j - D \sum_i (S_i^z)^2 + E \sum_i [(S_i^x + iS_i^y)^6 + (S_i^x - iS_i^y)^6] + \cdots \]

Hexagonal symmetry

- \(J = \) NN AF exchange in triangular planes.
- \(J' = \) NN AF (or F) exchange between triangular planes (Mn\(_A\)-Mn\(_B\))
- \(E > 0, \phi = (2n+1)\frac{\pi}{6} \) (\(S_{Mn} \perp \hat{a} \))
- \(E < 0, \phi = \frac{n\pi}{3} \) (\(S_{Mn} \parallel \hat{a} \))

Determine equilibrium spin structures using the Landau Lifshitz Gilbert equation:

\[
\frac{d\mathbf{S}(t)}{dt} = -\gamma \left(\frac{\mathbf{S} \times \mathbf{H}_{\text{eff}}}{1 + \alpha^2} - \frac{\alpha \gamma}{1 + \alpha^2} \left(\mathbf{S} \times (\mathbf{S} \times \mathbf{H}_{\text{eff}}) \right) \right)
\]

\[\mathbf{H}_{\text{eff}} = -\frac{\partial E}{\partial \mathbf{S}} \]

Model Hamiltonian yields all four Mn spin configurations, depending on signs of \(J' \) and \(E \).

Ferromagnetic between planes and \(\mathbf{S} \parallel \mathbf{a} \)
Ho-Mn Trigonal Coupling

- *Transitions* between the four Mn spin states do not occur without coupling to S_{Ho}.

- Usual exchange interaction $S_i \cdot S_j = 0$ since $S_{Mn} \perp S_{Ho}$

- **Consider Trigonal anisotropy**

\[
K \sum S^z_{Ho} S^y_{Mn} \left[3 S^x_{Mn} - S^y_{Mn} \right] = 2K S^z_{Ho} S^3_{Mn} \sin 3\phi \\
K > 0, \quad \phi = (2n + 1) \frac{\pi}{3} \\
K < 0, \quad \phi = n \frac{2\pi}{3} \\
S^x_{Mn} = S \cos \phi
\]

- P6$_3$mc symmetry allows for this interaction if either (but not both) Mn or Ho have an AF interlayer configuration (screw axis \{C$_6^+$|00½\}).

- **Provides a competition with $E \cos 6\phi$ to drive re-orientation transitions involving ϕ - with simultaneous coupling to Holmium ions.**
A Simple Landau Model with Ho-Mn Coupling: H=0

\[F = A S^2 + A_0 S_0^2 + \frac{1}{2} B S^4 + \frac{1}{2} B_0 S_0^4 + B_1 S^2 S_0^2 + \frac{1}{3} C S^6 + K S_0 S^3 \cos 3\phi + E S^6 \cos 6\phi \]

- \(A_0 = a(T-T_0) \)
- \(A = a(T-T_N) \)

\[S=S_{Mn}, \quad S_0=S_{Ho} \]

\[S_0 \sim S^3 \cos 3\phi \]

Ho order is incipient to Mn order. This is observed experimentally.

Canted Phase:
- \(S_{Mn} \) oriented between x and y

Phase transition: Simultaneous Mn-moment reorientation and Ho-moment long range ordering.

Table:

<table>
<thead>
<tr>
<th>(T)</th>
<th>0.00</th>
<th>0.45</th>
<th>0.65</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_0 \neq 0)</td>
<td>(S_0 \neq 0)</td>
<td>(S_0 = 0)</td>
<td>(S_0 = 0)</td>
<td></td>
</tr>
<tr>
<td>(0 < \phi < \pi/2)</td>
<td>(\phi = 0)</td>
<td>(\phi = \pi/2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- P6'₃
- HT2
- HT1
- Disorder

\(H=0 \) only (so far).
HoMnO$_3$: Experimental evidence for new canted phase

Conclusions

- **CuFeO$_2$** magnetic phase diagram: *ABC stacked triangular layers*
 - biquadratic *symmetric* exchange (magnetoelastic coupling) stabilizes collinear states
 - biquadratic *antisymmetric* exchange (magnetoelastic coupling) stabilizes non-collinear state
 - trigonal anisotropy leads to canting and $P \neq 0$

- **HoMnO$_3$** magnetic phase diagram: *AB stacked triangular layers*
 - only commensurate P3 phases
 - four main Mn states determined by 6th-order anisotropy and inter-layer coupling
 - trigonal anisotropy gives interaction between Mn and Ho and drives a series of transitions

Understanding the complex spin ordering in magnetoelectric antiferromagnetics is key to revealing the relationship between spin and electric degrees of freedom.

Non-local Landau-type free energy constructed from rigorous symmetry requirements provides a useful foundation for the marriage of microscopic and phenomenological descriptions of multi-phase systems resulting from lots of frustration.
Collaborators:
Guy Quirion, Oleg Petrenko, Mariathas Tagore, Stephen Condran.

http://www.mun.ca/physics/
BACK-UP SLIDES
Add stochastic field term via Langevin dynamics.

\[
\ddot{S}(t + \Delta t) = \ddot{S}(t) - \frac{\Delta t \gamma}{1 + \alpha^2} \left[\dot{\ddot{S}} \times \dddot{H}_{\text{eff}} + \alpha \dot{S} \times (\dot{S} \times \dddot{H}_{\text{eff}}) \right] - \sqrt{\Delta t} \dddot{S} \times \dddot{\eta}
\]

Euler algorithm

\[
\eta = \sqrt{4 \beta k_B T}
\]

\[
\beta = \frac{\alpha \gamma}{1 + \alpha^2}
\]
Magnetoelectric and Multiferroic Device Applications

- Magnetic vector field sensor using magnetoelectric thin-film composites,

- Magnetoelectric switching of exchange bias,

- Room temperature exchange bias and spin valves based on BiFeO_3/SrRuO_3/SrTiO_3/Si (001) heterostructures,
 L.W. Martin et al. APL 91, 172513 (2007).

- Spintronics with multiferroics,
 H. Bea et al., JPCM 20, 434221 (2008).

- Demonstration of magnetoelectric read head of multiferroic heterojunctions,
 Y. Zhang et al. APL 92, 152510 (2008).

- Multiferroics and magnetoelectrics: thin films and nanostructures,

“Revival of the Magnetoelectric Effect”

1894 — First discussion of an intrinsic correlation between magnetic and electric properties
P. Curie, J. de Physique (3rd Series) 3, 393 (1894)
"Les conditions de symétrie nous permettons d’imaginer qu’un corps à molécule dissymétrique se polarise peut-être magnétiquement lorsqu’on le place dans un champ électrique.

1926 — Introduction of the term "magnetoelectric" for these correlations
P. Debye, Z. Phys. 36, 300 (1926)
Title: Bemerkung zu einigen neuen Versuchen über einen magneto-elektrischen Richteffekt

1957 — Magnetoelectric effect only in time-asymmetric (i.e. magnetically ordered) media!
"The magnetoelectric effect is odd with respect to time reversal and vanishes in materials without magnetic structure"

1959 — Magnetoelectric effect predicted for antiferromagnetic Cr₂O₃
"We should like to show here that among the well known antiferromagnetic substances there is one, namely Cr₂O₃, where the magnetoelectric effect should occur from symmetry considerations."

1960/61 — First observation in Cr₂O₃