PHYSICAL REVIEW B 103, 144401 (2021)

Anisotropic magnetic interactions in hexagonal A B-stacked kagome lattice structures: Application
to Mn;X (X = Ge, Sn, Ga) compounds

A. Zelenskiy ®,' T. L. Monchesky,! M. L. Plumer®,"? and B. W. Southern ®3
' Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5
2Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s,
Newfoundland, Canada A1B 3X7
3Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2

® (Received 2 January 2021; accepted 16 March 2021; published 1 April 2021)

Mn;X compounds in which the magnetic Mn atoms form AB-stacked kagome lattices have received a tremen-
dous amount of attention since the observation of the anomalous Hall effect in Mn;Ge and Mn3;Sn. Although
the magnetic ground state has been known for some time to be an inverse triangular structure with an induced
in-plane magnetic moment, there have been several controversies about the minimal magnetic Hamiltonian. We
present a general symmetry-based model for these compounds that includes a previously unreported interplane
Dzyaloshinskii-Moriya interaction, as well as anisotropic exchange interactions. The latter are shown to compete
with the single-ion anisotropy which strongly affects the ground state configurations and elementary spin-wave
excitations. Finally, we present the calculated elastic and inelastic neutron scattering intensities and point to
experimental assessment of the types of magnetic anisotropy in these compounds that may be important.
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I. INTRODUCTION

Kagome lattice antiferromagnets have been the center of
attention in many branches of condensed matter physics due
to their rich electronic and magnetic properties. In the quan-
tum limit these materials are believed to provide a promising
platform for experimental realisation of quantum spin liquids
and other unconventional phases [1-9]. On the other hand,
the interest in semiclassical noncollinear magnets on kagome
lattices has been renewed by recent studies of their interac-
tions with electric currents. In particular, very recently a few
hexagonal D09 compounds with general formula Mn3X (X =
Ge, Sn, Ga) were predicted and then experimentally shown
to display a large anomalous Hall effect (AHE) [10-13] and
topological Hall effect [14]. AHE in ferromagnetic materials
has been studied extensively over the years [15]. However,
more recently it was discovered that it depends not only on
the broken time-reversal symmetry but also on the particular
type of the magnetic order and the underlying magnetic inter-
actions. Thus, for example, it has been well established that
in compounds with collinear ferromagnetic order, spin-orbit
coupling is crucial for the AHE [16]. Unlike collinear anti-
ferromagnets, noncollinear antiferromagnetic structures have
been shown to induce AHE even without spin-orbit coupling.
However, little is known about the types of antiferromagnetic
order that can yield AHE and the majority of the existing
theories have been based on the previous studies of Mn3Sn
and Mn3Ge [10,17,18]. From a technological standpoint these
emergent transport properties of Mn3X compounds are very
attractive in the development of antiferromagnetic spintronics
and memory devices since the size of these materials is not
limited by the demagnetizing fields as in the case of ferro-
magnets.
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Novel techniques have recently been proposed for imaging
and writing of magnetic domains in Mn3Sn [19].

Consequently, there have been several experimental and
theoretical studies focused on determination of the mag-
netic ground state of Mn3X compounds. Yasukochi [20] and
Ohoyama [21] were the first to identify weak ferromagnetism
in Mn3Sn and Mn3Ge. Later, the first neutron diffraction
studies of these two compounds led to determination of the
noncollinear 120° structure [22]. Consecutive powder neu-
tron diffraction experiments on Mn3;Ga [23], Mn3;Ge [24],
and Mn3;Sn [25] also determined that the antiferromagnetic
order and the induced magnetic moment are restricted to the
plane perpendicular to the ¢ axis of the compound. More
recent studies revealed that of the possible triangular magnetic
structures, the ground state of these Mn3;X compounds is the
antichiral “inverse triangular” structure [26—29].

The main challenge in the modeling of the magnetic prop-
erties of these compounds is the abundance of magnetic
interactions, as evident from Fig. 1. The lattice structure,
which consists of corner-sharing equilateral triangles, es-
tablishes competing antiferromagnetic exchange interactions
leading to geometric frustration. The exchange couplings
originate predominantly from the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interactions which is characteristic of the
metallic magnetic materials with itinerant d electrons [30].
Unlike regular kagome lattices, the crystal structure of the
Mn3X family is referred to as breathing kagome as it con-
tains adjacent triangles of slightly different size. This results
in anisotropy in the exchange interactions between the spins
belonging to different triangles. From the values of the crystal-
lographic parameters [26,28,30-32], the differences in bond
lengths for the two types of triangles in Mn3;Ge, Mn3;Ga, and
Mn;Sn are approximately 0.008, 0.08, and 0.2 A, respectively.

©2021 American Physical Society


https://orcid.org/0000-0002-6585-6948
https://orcid.org/0000-0002-1616-8022
https://orcid.org/0000-0002-9653-153X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.144401&domain=pdf&date_stamp=2021-04-01
https://doi.org/10.1103/PhysRevB.103.144401

A.ZELENSKIY et al.

PHYSICAL REVIEW B 103, 144401 (2021)

]
5
-
—_

FIG. 1. Magnetic exchange pathways in the Mn3;X AB-stacked
kagome crystals. Here the circles represent the Mn atoms, and light
blue and dark red indicate atoms with z = % and z = %, respectively.
The numbers further label the six sublattices.

As a result, the breathing anisotropy is expected to be largest
in Mn3Sn and nearly negligible in the other two compounds.
In the present work, the effects of this type of anisotropy
will be omitted. All previous studies included both in-plane
(J2 and J3) and out-of-plane (J;) nearest-neighbor (NN) ex-
change interactions; however, some studies also indicate the
importance of the next-nearest-neighbor (NNN) exchange in-
teractions [28,30,33]. Most studies also included in-plane NN
Dzyaloshinskii-Moriya (DM) interactions, although the form
of the DM vector has been inconsistent in some of the recent
literature: In most cases the DM vector is chosen to be per-
pendicular to the kagome planes Dj; || Z. However, Ref. [34]
also includes a term with a DM vector along the in-plane bond
directions.

Lastly, there is an ongoing controversy about the role of
the magnetocrystalline anisotropy in these compounds. It is
widely known that due to geometric frustration, the ground
state of a 2D kagome antiferromagnet with NN interactions
only is a 120° structure with a macroscopic U (1) degener-
acy. Early inelastic neutron scattering experiments [33,35]
revealed that the excitation spectrum contains an anisotropy
gap that is associated with the in-plane spin fluctuations. In
order to produce this energy gap, some of the previous stud-
ies [27,30,33] included sixth order single-ion anisotropy since
the second and fourth order terms cannot break the continuous
manifold of the 120° ground state configuration [13,33,34,36].
Nevertheless, it has been reported that due to the deviations
from the 120° structure induced by weak ferromagnetism in
Mn3X compounds, the previous arguments no longer apply
and second order anisotropy is expected to be sufficient to
break the U (1) degeneracy [28]. This observation is relevant
to the present study.

In this paper we present a general magnetic Hamiltonian
model for the AB-stacked hexagonal family of compounds,
derived from symmetry considerations in hopes of resolv-
ing some of the existing controversies about the magnetic
interactions in these Mn3X compounds. This model is then
used to investigate the relative effects of the single-ion and
the exchange anisotropy on the magnetic structure of the

ground state spin configurations, and in particular on the
induced in-plane magnetic moment. Based on these results,
we provide calculations of the elastic neutron scattering
intensities for the systems with different types of mag-
netic anisotropy. The impact of these anisotropies on spin
waves and inelastic neutron scattering intensities is then
examined.

II. MODEL

A. Structural details

Hexagonal D0;9 compounds belong to P63 /mmc (No. 194)
space group. In the case of the Mn3X family, the six Mn
atoms are located at the 62 Wyckoff positions and form the
AB-stacked breathing kagome lattice planes, while the non-
magnetic X atoms sit in the centers of the Mn hexagons
(Wyckoff position 2¢). The atomic coordinates of the six Mn
atoms are (x, 2x, 1), (x, X, 1), (2%, %, 1), (¥, 2%, 2), (x,x, 3),
(2x, x, %) where x determines the breathing amplitude of
the lattice. When x = g, the structure simplifies to a perfect
kagome lattice.

B. Magnetic Hamiltonian

Since the overall spin energy must be invariant under all
symmetry transformations of the space group of the crystal
system, the magnetic model is constructed by identifying all
of the spin invariants. For the purpose of this paper, only
terms quadratic in spin components were considered. The
full derivation of the model is provided in the Supplemental
Material [37]. The corresponding spin Hamiltonian is given
by

H=Hx+H,;+Hp+ Ha,
Hi =) D ) Kalfie - Si(r)P,

Hy=) D Jijc —1)Si(r) - S;(x),

' ij

Hp =3 Dy(r — )2 [Si(r) x ()],
. ij

Ha= Z Z ZAija(l' — 1)y, - Si(0)][myq - S;(r)],
r ij o

ey

where Hg is the second order single-ion anisotropy, H;
is the isotropic Heisenberg exchange, Hp is the DM in-
teraction, and H, is the symmetric, anisotropic exchange
interaction. The latter interactions have also been derived for
two-dimensional kagome planes [38]. However, the interplane
exchange anisotropies have not been reported before. Sum in-
dices r, r’ label unit cells, i, j € {1, ..., 6} label atoms in each
unit cell, and @ € {x, y, z} labels the spin vector components.
Vectors n;, represent local anisotropy axes and are shown in
Fig. 2.

In total, we identify three second order single-ion
anisotropy terms with anisotropy constants K., K, and K, five
isotropic exchange interactions with coupling constants J;—Js,
three DM interaction terms with DM vectors Dy, D,, and D3,
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FIG. 2. Local anisotropy axes for the six sublattices of Mn3;X.
The local z axes have the same direction (out of the page). The full
vector expressions are given in the Supplemental Material [37].

and ten anisotropic exchange interactions with coupling con-
stants A; = A;y = —Aj, A;; withi € 1,...,5. Note that in the
case of single-ion anisotropy, there are only two independent
coupling constants since the magnitude of the spins is taken
to be fixed. The notation used throughout this paper is chosen
based on the distance between the magnetic ions: index 1
labels out-of-plane NN interactions, 2 and 3 label in-plane NN
interactions, and 4 and 5 label NNN interactions. Note also

J

that the symmetry of the lattice restricts all of the DM vectors
to point perpendicular to the kagome planes. As mentioned
in the Introduction, the in-plane DM interactions have already
been implemented in some of the previous studies, however,
to our knowledge, the out-of-plane DM interaction has not
been considered before. Similarly, the exchange anisotropy
has not been used in any of the previous studies of Mn3X
systems.

The exchange anisotropy, also called bond-dependent
anisotropy, typically originates from the strong spin-orbit cou-
pling [39]. However, unlike DM interactions, the existence
of exchange anisotropy does not depend on the inversion
symmetry of a crystal. In magnetic insulators, similar terms
have been considered, such as the compass and Kitaev inter-
actions [40-42]. In triangular lattices, these interactions have
been shown to stabilize spiral and multi-Q spin configura-
tions [43].

III. MAGNETIC GROUND STATE
A. Single layer

Previous studies have established that the inverse-
triangular ground state in two-dimensional kagome systems
is stabilized by in-plane DM interaction with a negative DM
constant [27,28]. More generally, we find that this state is sta-
ble whenever J, > 0, J3 > 0, and D, < 0, D3 < 0. Therefore,
throughout the paper we focus on Mn3Ge as a prototype for
hexagonal AB-stacked Mn3;X compounds, in which case it is
reasonable to set J3 = J,, D3 = D;, and A3 = A,. The spin
Hamiltonian for a single kagome plane simplifies to

Hp =K Y [y - Si0)F + [fioe - $2(0) + [z - 30T+ 2 Y _[S1(r) - S2(r') + 8 (r) - S3(r') + Sa(r) - S3(r')]

(rr’)

+D; Zi A[S1(r) x So(r') — Si(r) x S3(r') + Sy (r) x S3(r')]

(rr’)

+A2 Y [y, - Si(0)ng, - Sy(8)] + [y - Sy (0)]1[M; - S3(1)] + [mgy - So(r)][ma, - S3(r)]]

(rr')

— A2 Y [y - Sy(0)]mgy - So ()] + [myy - 81 (0)][m3,, - S3(r')] + [, - So(r)][msy - S3(x)]], 2

(rr’)

where (- - - ) represents sums over nearest neighbors.

The magnetic ground states can be calculated by mini-
mizing the target Hamiltonian using Monte Carlo simulated
annealing [44]. The simulations were performed on a system
with 63 unit cells with runs at a given temperature consist-
ing of 10* Monte Carlo steps. In the case of a continuous
ordering phase transition, the ordered phase must transform
as one of the irreducible representations of the underlying
symmetry group. The magnetic moments on the magnetic Mn
sites were previously shown to form an 18-dimensional rep-
resentation [27,45]. However, since the experimental results
indicate that the ground state spin configurations are planar,
and that the spins in the z = i sublattice are parallel to their
inversion-related partners in the z = % sublattice, the repre-
sentation of the spins can be expressed in a six-dimensional

(

form. As outlined in the Supplemental Material of Ref. [27],
this six-dimensional representation can be decomposed into a
combination of three irreducible representations: Bj, ® B, ®
2E\,, where Bi, and B;, are one dimensional, and Ej, is a
two-dimensional irreducible representation of the point group
Dgp,. When the anisotropic terms in the Hamiltonian are zero
(Ky = 0,A; = 0), the ground state spin configuration is the in-
verse triangular structure, shown labeled as a two-dimensional
vector A in Fig. 3. An important feature of the hexagonal
Mn3;X compounds is that both the in-plane magnetization M
and the order parameter A transform according to the E,g ir-
reducible representation. This results in an invariant coupling
of the order parameter to the magnetization, which has been
previously shown to be o< A - M [27]. As a result, the spin
configuration shown in Fig. 3 may be distorted by acquiring
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FIG. 3. Inverse-triangular 120° structure. The two magnetic con-
figurations shown here are orthogonal and form a two-dimensional
order parameter A = A(¢) which transforms according to Ej, irre-
ducible representation of the point group Dgy,.

an in-plane magnetic moment without changing the symmetry
of the ground state. The consequences of the induced mag-
netic moment are far reaching. When the ground state spin
configuration corresponds to order parameter A, the constraint
that the spin vectors have fixed magnitudes implies that one
can write A = A(¢) as a function of a single parameter ¢, the
angle of the global in-plane spin rotation.

When this spin configuration is inserted into (2), one finds
that the energy per spin is

K,
EAI«/gDz—Jz-i-?, 3)

which is independent of ¢ and A,. Now, when the 120° con-
figuration is distorted, two spins in the unit cell rotate towards
(or away from) each other by a small angle 6, inducing an
in-plane magnetic moment. The magnetic energy can then be
written as

Exim = Ei1(J2, Dy, 0) + Ex(Kx, Az, ¢, 0). “)

Assuming that the value of the distortion angle is small, these
terms can be written as

Ei(J2, Dy, 0) = (J, — /3D,)6°, Q)

Ex(K,.As. ¢.0) 2¢[K)‘_2A29+A2+K‘92
28y, A2, P, ~ COoS .
V3 3

(6)

As aresult, the energy has a ¢-dependent term which depends
on the strength of the anisotropic interactions K, and A,. The
minima of Ep4ym are determined by the signs and relative
magnitudes of the anisotropic coupling constants as presented
in Fig. 4. Moreover, it can be shown that 6 = 0 only when both
K, and A, are zero. The explicit forms of expressions in (4) are
presented in the Supplemental Material [37]. The important
result is that the inclusion of anisotropic interactions sets a
competition with the in-plane DM interaction that favors the
inverse triangular structure. This, in turn, induces an in-plane
magnetic moment, which removes the continuous degeneracy
of the A(¢) configuration associated with the U (1) symmetry.
This is confirmed by the numerical calculations that were also
used to determine the magnitude of the induced moment per
spin m = 'TMl as a function of the anisotropy parameters K,
and A,, where N represents the number of spins. Figure 5

(d)

FIG. 4. Distorted inverse-triangular structure A + M, which re-
sults from nonzero single-ion and exchange anisotropy interactions.
(a) K, <0,A,=0, (b) K, >0, A, =0, (c) K, =0, A, <0, and
(d) K, =0, A, > 0. The blue arrow indicates the direction of the
induced magnetic moment.

shows the results for a system with J, =1 and D, = —0.2.
In the high-anisotropy limit (|K;| > 2 or |A;| > 0.35), the
ground state configuration changes to a perfect 120° structure
with spins pointing along the corresponding local anisotropy
axes. In both cases, the relationship between the anisotropic
parameters and the magnitude of the magnetic moment is
approximately linear, with the slope of the m vs A, line ap-
proximately twice as large as that of the m vs K, line that is as
expected from (6).
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FIG. 5. The magnitude of the induced in-plane magnetic moment
per spin as function of one of the anisotropy parameters K, (black
dots) or A, (red dots), while keeping the other parameter zero.
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B. AB-stacked layers

When the kagome planes are coupled to each other via the out-of-plane interactions, the Hamiltonian becomes

H =3 [Hp+ Hpl + 51 D IS1() - S5()+ S1(r) - So(r') + S2(r) - S4(r) + S2(r) - Se(t') + Sa(r) - S4(r') + S3(r) - S5(r')]

P1,p2 (rr’)

+D1 Y 2 [=S1(r) x Ss(r') + S1(r) x Se(r') + 82(r) x 84(r') — S2(r) x Se(r') — S3(r) x Sa(r') + S3(r) x Ss(r)]

(rr')

+J4 Y [S1(r) - Sa(r') + 8y(r) - S5(r') + S3(r) - Se(r)],

(rr’)

where p; and p, correspond to planes with spins S, S,, S; and
S4, Ss, Sg, respectively. As in the previous section, we have
assumed perfect kagome planes, which corresponds to setting
J4 = Js5. The out-of-plane exchange anisotropy (A, A4) was
ignored for simplicity. First, we investigate the effects of the
interplane exchange J; and DM interaction D; on the magni-
tude of the induced magnetic moment. As shown in Fig. 6, the
antiferromagnetic (J; > 0) NN interplane coupling reduces
the value of m, until at J; ~ 1.7 the ground state changes from
A + M configuration to a structure with magnetic wave vector
Q=(35.30).

Similarly, for D; > 0 and J; = 0.5, the magnitude of the
magnetic moment slowly decreases. In the absence of the
anisotropic interactions, D; > 0 stabilizes the A configura-
tion, and so we find that even when D; = 10J;, the magnitude
of the magnetic moment is small but nonzero. When the
interplane coupling is ferromagnetic (J; < 0), the in-plane
magnetic moments align antiparallel along the ¢ axis such that
the total magnetization is zero (Fig. 7)
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FIG. 6. Magnitude of the induced magnetic moment as function
of the NN interplane exchange and DM coupling constants. The
values of K, and A, were chosen to give similar values of m in the
decoupled system. When J; = 0, the directions of the magnetic mo-
ments in different planes are uncorrelated and the net magnetization
is zero on average.

@)

For D; <0 the orientation of the spins changes to
point along the local anisotropy axes. Note that the ferro-
magnetic NNN interactions (J4 < 0), suggested in previous
studies [28,30,33], do not introduce any additional energetic
competitions and hence do not change the spin structure pre-
sented above.

C. Elastic neutron scattering

The effects of the anisotropic interactions on the magnetic
ground states can be studied with elastic neutron scattering.
In the following we ignore the effects of the temperature and
consider the case of a single magnetic domain.

FIG. 7. Magnetic ground states for AB-stacked kagome planes
coupled via NN out-of-plane exchange interactions (J;). (a) K, > 0,
A, =0,J; >0,(b)K, > 0,4, =0,J; <0,(c)K, =0,4, > 0,J; >
0,(d) K, =0,A, > 0,J; < 0.For all cases, two spins in each triangle
rotate towards or away from each other, inducing magnetic moment.
Note, however, that the induced in-plane moments cancel in (b)
and (d).
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FIG. 8. (a) Magnetic elastic neutron scattering intensity without
anisotropic interactions. (b) Effects of the single-ion and exchange
anisotropy on the intensity. The intensity difference Al(k) is cal-
culated by subtracting the intensity of the magnetic system without
anisotropic interactions. For both panels, J, = 0.5 and D, = 0 were
used.

The elastic scattering differential cross section is propor-
tional to the quantity [46,47]

1) = [F(OP Y Sup(k)(Sup — Raktp). @®)
ap

where « is the scattering vector, F (k) is the magnetic form
factor, obtained from the dipolar approximation [46,47], and
Sup (k) is the static magnetic structure factor:

Sup(l) =Y (SiaSjp)e™ T, ©)
ij

This expression is calculated assuming that the induced
magnetic moment points along fiy, [same as in Figs. 7(c)
and 7(d)]. Figure 8 shows the effects of the anisotropic interac-
tions on the elastic scattering intensity. The peaks correspond
to a summation over the multiplicity for a given set of A,
k, and [ values and therefore would be appropriate for a
powder sample. In the absence of anisotropic interactions, the
spectrum displays six peaks dictated by the Bragg reflection
conditions. When the anisotropic terms are included and an

in-plane magnetic moment is induced, three additional peaks
appear at {2020}, {2240}, and {2242}. Note that the intensity

of these new peaks is much smaller than the principal peaks.
Nevertheless, it could potentially be enhanced with an applied
magnetic field. Comparing the relative intensity ratios of the
principal peaks might allow one to differentiate between the
types of magnetic anisotropy in a given material; however,
inelastic neutron scattering may give better qualitative signa-
tures of the two types of the anisotropy, as discussed below.

IV. SPIN-WAVE EXCITATIONS

We study the impact of the single ion and exchange
anisotropies on the spin-wave fluctuations about the ground
state configurations by considering the plane-wave solutions
of the linearized spin torque equations.

In order to perform the spin-wave analysis, it is convenient
to introduce a local coordinate system on each sublattice site
such that the equilibrium directions of the spins coincide
with the z components of the local coordinates [48]. This is
done with the use of six transformation matrices U;, which
allow one to transform the local spin coordinates into the
global ones: S;(r,t) = U;S;(r, 1). Here the local coordinates
are indicated by the tildes. The collective spin-wave modes
are then described with the use of the Fourier transform of the
spin density: S;(r, ) = JLN > Si(q)e’d™ ! The linearized
equations of motion simplify to

—iwSui(q) = TapiiSpi(q), (10)

where Einstein summation is implied. Combining the spin
component and sublattice indices, (10) becomes an eigenvalue
problem, which in general must be solved numerically. In
all of the following calculations, the ground state magnetic
structures are assumed to have an induced magnetic moment
in the fi4, direction.

A. Single layer

First, we consider the effects of single-ion and exchange
anisotropies in a single kagome plane where the magnetic
structure is determined by minimizing (2). The solutions of
the linearized equations of motion (10) correspond to three
spin-wave modes. When only isotropic exchange interaction
are present in the system, all three modes are gapless with
a single dispersionless mode, which reflects the macroscopic
degeneracy of the 120° ground state [48—50]. Intraplanar NN
DM coupling (D) lifts the energies of two of the modes
resulting in one acoustic and two optical modes [50]. The
corresponding frequencies are

W2 5 =3(h — /3Dy — a2 — V3D2)f (@)

+ Dy(J, — V3D2)V/9 + 6f(q), (11)
w2 = 6D,(3D, — V/3J,), (12)

where

£(@) = cos(24,) + cos(gx + v/3qy) + cos(gx — v/3¢qy),
(13)
where g, and g, lie within the first Brillouin zone and the NN
lattice parameter a was set to 1. Note that the DM interactions
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FIG. 9. Effects of anisotropic interactions on the spin-wave ex-
citations for a single kagome plane. (a) and (b) Systems with weak
single type of anisotropy. (c) and (d) Systems with strong single type
of anisotropy. (e) and (f) Systems with mixed types of anisotropy
(one dominating over another). The dashed blue lines correspond to
K. =0, A, = 0, and the solid red lines correspond to the dispersion
with anisotropic interactions.

lift the dispersionless mode to a finite frequency. Near the I'
point, q = 0, the expressions for the frequencies become

01 ~\(h — VAD)Gh —VADlgl.  (14)

2~ \J6D23Ds — 31+ (s — v/3D) B+ V3Dl .
(15)

w; = \/6D2(3D2 —3D). (16)

Thus, D, < 0 enhances the velocity of w; and w, at the T’
point. The spin-wave modes with and without anisotropy are
presented in Fig. 9. When D, is zero, these expressions sim-
plify to w12 = «/§Jz|q| and w3 = 0, which is consistent with
Eq. (69) in Ref. [51]. The inclusion of anisotropic interactions
breaks the degeneracy of the doublet and introduces a gap

in the dispersion of the acoustic mode. Here K; = (%, %, 0),
K= (21,0, M =(1,0,0, M, = (1, 1,0). The different

FIG. 10. Spin-wave modes in AB-stacked kagome antiferromag-

net. Here A = (0, 0, %). In (a), (c), and (e) the anisotropy parameters
are set to K, = 0.5, A, = 0.05, and in (b), (d), and (f) they are K, =
0.1, A, = 0.25. (a) and (b) The dispersion of a system of kagome
planes coupled via NN exchange (J; = 0.2) only, (c) and (d) include
also the NNN interplanar exchange coupling (J; = —0.5), and fi-
nally, (e) and (f) also have interplane DM interaction (D; = 0.1).
The dashed blue lines correspond to K, = 0, A, = 0, and the solid
red lines correspond to the dispersion with anisotropic interactions.

symmetry points were chosen to be at 60 deg to each other.
An important feature that can be observed throughout these
results is that these modes break the sixfold rotational sym-
metry of the material, which can be seen by comparing the
dispersion in the I'K; and I'K, regions. The reason for this
symmetry breaking is the fact that the induced magnetic mo-
ment pins the ground state configuration with only one of the
sublattices oriented parallel to its respective local axis, deter-
mined by the anisotropic interactions. The results in Fig. 9
are presented in such a way as to compare the dispersion
for both weak and strong single type (either single ion or
exchange) anisotropy as well as the modes corresponding to
the systems with mixed anisotropic interactions. It is clear
that the qualitative features of the spin-wave dispersion (such
as energy gaps) depend strongly on the anisotropic terms
even when the corresponding coupling constants are small.
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FIG. 11. Relative magnitude of the inelastic scattering function S(q, ) (color bar scale) near the I" point, q = [1110], assuming that the
induced magnetic moment is parallel to fiy,. (a), (¢) and (c), (g) correspond to single kind of anisotropy (single-ion and exchange respectively),
(b), (f) and (d), (h) have both kinds of anisotropy. We have set J; = 0.2, J, = —0.5, and D; = 0.

The calculations of the analytical expressions for the energy
gaps at the I' point are given in the Supplemental Mate-
rial [37].

B. AB-stacked layers planes

When the AB-stacked kagome planes become coupled, the
equations of motion produce six independent modes, three of
which are acoustic and three are optical. When both D; and D,
are zero, the acoustic modes are gapless, and the optic modes
form a singlet and a doublet. The velocities of these modes at
the I" point depend on the relative strengths of the interplanar
coupling constants. The velocity of the lowest energy mode is
given by

Ty 3(, —4J) (1 + )3y + 20y — 124y)
v =a , "N
30y +Jy — 1204
vi = /61 + 1)y — 3J4). (18)

Note that the velocities of the spin-wave modes have been
previously calculated in Refs. [28,51], however these refer-
ences used different notation for the NNN coupling constants:
J4 and Js constants in the present work were labeled as J;
and J4, respectively. Furthermore, the references mentioned
above set J; = 0 (J3 = 0 in the alternative notation), whereas,
as mentioned previously, we have set J; = Js5 throughout the
paper. As a result, the expression for the out-of-plane velocity
(vIZ)) presented here is equivalent to the previously reported

expressions (Eq. (7) in Ref. [28] and Eq. (73) in Ref. [51]),
within the assumptions made in regards to the NNN coupling
constants. However, the expression for the in-plane veloc-
ity (vixy )) is very different from those presented previously,
although it yields similar numerical values. The origins of
this discrepancy are unclear. The velocities for the remaining
modes are given in the Supplemental Material [37]. DM in-
teractions lift the energy of two of the acoustic modes leading
to a gapless singlet and a gapped doublet. The corresponding
squared frequencies are

wi =0, (19)

@33 = 6v/3(J; + L)(Di — Dy) + 18(D1 — D2)*,  (20)

] 5 = 6D} — 24D D, + 6+/3D1J; + 673D + 1447}
—367/3D,Js + 18D3 — 14v/3DyJ, — 6+/3D2);

+ 60+/3D2Jy + 4J% + 1210y — 6014 — 36J2J4,
(21

w¢ = 24D} — 24D\ D; + 24v/3D1J, — 72+/3D1Js
— 8v/3DyJ; + 24/3DyJs — 8J7 + 24010, — 24J1J,
— 720204 + 14473 (22)

Frequencies w;_3 correspond to acoustic modes and w4 ¢ to
optical modes. Note that the NNN exchange interactions (J4)
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FIG. 12. Relative magnitude of dynamic structure factor S(q, ) (color bar scale) near q = [1110] where we have setJ;, = 0.2, J, = —0.5,

and D; =0.1.

only enter the expressions 19-22 for the optic modes. The
dispersion of the spin-wave modes for AB-staked kagome
planes are presented in Fig. 10. We choose the values of the
interplane coupling based on the previous estimates of the
exchange parameters for Mn3Ge [28,30,33]. Thus, we choose
J4 to be large (and negative), and J; to be small (and positive).
The value of D; was chosen to be half that of J;. The two
cases considered here correspond to one type of anisotropy
dominating over another with the values of K, and A, chosen
to give similar magnitudes of induced magnetic moment. In
both cases, the strong ferromagnetic NNN exchange (J;) in-
teractions lead to a large energy gap between the three lowest
and three highest energy modes. In an actual experiment, the
latter typically appear at very high energies and are often
unobservable [28,33,35,52]. The main qualitative differences
between the two anisotropy regimes correspond to the branch
crossings between the three lowest energy modes. The small
interplanar DM interaction (D)) moves the second and third
lowest energy modes higher in energy and closer together,
eventually making them nearly degenerate.

V. INELASTIC NEUTRON SCATTERING
The inelastic scattering cross section can be written as

d*o
dQdE’

'}/62 2k/
- (m cz) % > Gup — 4udp)Sep(@. @), (23)
e aﬂ

where
o0 .
Sap(q, @) = 2 ) dte” " (T,(q, )Tp(—q, 1))  (24)
is the dynamic structure factor, and
(25)

T(Q, 1) =F(q)) Y Y e U Su(r, ).
r i a

The dynamic structure factor can be calculated using
standard Green’s function methods [46-48]. As men-
tioned earlier, previous inelastic scattering experiments for
Mn;Ge [28,33,35,52] and Mn3Sn [30] indicated that the high
energy modes are found at E ~ 100 meV and are often hard to
resolve. Therefore, we focus on the qualitative features of the
lower energy branches. Figure 11 shows S(q, w) calculated
assuming that the induced magnetic moment is oriented along
the fiy, direction withJ, =1,D, = —-0.2,J; =0.2,D; = 0.1,
and Jy = —0.5. The intensity is largest for q vectors which
give the elastic peaks, but for smaller wave vectors it drops
rapidly; however, the lower energy modes should be distin-
guishable in an experiment. Importantly, the characteristic
features of the dispersion curves in Fig. 10 are clearly seen
and can be used to deduce the types of anisotropic interactions
in the Mn3X compounds. First of all, the dominant anisotropic
interactions can be deduced from the separation of spin-wave
branches and the asymmetry of the modes around the I" point.
From there, the possibility of mixed types of anisotropic inter-
actions can be investigated by comparing the relative energy
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gaps and the velocities of the spin-wave modes, as well as,
where possible, the qualitative features like the branch cross-
ings.

Figure 12 shows the effects of the interplane DM inter-
action on the relative intensities of the dynamic structure
factor. As stated in the previous section, the second and third
lowest energy modes are pushed closer to each other, and
could potentially appear as a single line in an experiment.
This situation could be the case for the spin-wave spectra for
Mn;Ge [28,52], although further experimental studies might
be illuminating.

VI. CONCLUSIONS

In summary, we have used symmetry considerations in
order to construct a general magnetic Hamiltonian for AB-
stacked magnetic kagome planes with hexagonal symmetry,
with a focus on Mn3X compounds. In addition to the
previously known interactions, we have also derived from
symmetry an additional NN interplanar DM coupling, as well
as symmetric anisotropic exchange interactions. The mag-
netic ground state of the Mn3;X systems, which corresponds
to the distorted inverse triangular structure, was shown to
depend strongly on the anisotropic terms in the model. In
particular, the magnitude and direction of the in-plane mag-
netic moment, induced by the distortion of the 120° state,
is determined by the relative strengths of the single-ion and
exchange anisotropies. In either case, the anisotropy pins the
ground state removing the continuous degeneracy of the 120°
configuration.

Bond-dependent anisotropic exchange interactions in bulk
magnetic systems have been, for the most part, neglected

in the literature, despite having similar physical origin as
the DM interaction. Nevertheless, as some recent studies
indicate, this type of interaction can be crucial for un-
derstanding the magnetic properties of some materials. In
particular, Kitaev-type interactions in honeycomb Na,IrO;
have been shown to dominant over isotropic antiferromagnetic
exchange [53,54]. Another example is the recently synthe-
sized compound YbMgGaO, with triangular lattice structure
where the exchange anisotropy was argued to stabilize the
quantum spin liquid ground state [55,56].

The two types of the anisotropic interactions have opposing
effects on the elastic scattering intensity; however distinguish-
ing between the different kinds of anisotropic interactions
from the elastic scattering experiments only may be challeng-
ing. On the contrary, the spin-wave excitations were shown
to be very sensitive to even small changes in anisotropic cou-
pling constants which makes the inelastic neutron scattering
a better candidate for studying the anisotropic effects in these
compounds. Both kinds of anisotropy break the degeneracy of
the optical modes and introduce a gap in the acoustic mode.
The dispersion was also shown to break the sixfold rotational
symmetry, reflecting the “pinning” of the ground state. Most
importantly, we have shown that the characteristic features of
the excitation spectra for systems with one or two kinds of
magnetic anisotropy should be accessible in an experimental
setting.
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