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A nonlocal Landau-type free-energy functional of the spin density is developed to model the large variety of
magnetic states, which occur in the magnetic-field–temperature phase diagram of magnetoelectric CuFeO2.
Competition among long-range quadratic exchange, biquadratic antisymmetric exchange, and trigonal aniso-

tropy terms, consistent with the high-temperature rhombohedral R3̄m crystal symmetry, are shown to all play
important roles in stabilizing the unusual combination of commensurate and incommensurate spin structures in
this highly frustrated triangular antiferromagnet. It is argued that strong magnetoelastic coupling is largely
responsible for the nonlocal nature of the free energy. A key feature of the analysis is that an electric polar-
ization is induced by a canting of the noncollinear incommensurate spin structure. Application of the model to
ordered spin states in the triangular antiferromagnets MnBr2 and NaFeO2 is also discussed.
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I. INTRODUCTION

One of the more intriguing features of the magnetic-field–
temperature �H-T� phase diagram of the rhombohedrally
stacked triangular antiferromagnetic �AF� CuFeO2 is the oc-
currence of a field-induced noncollinear incommensurate
�IC� spin structure among a multitude of commensurate col-
linear magnetic ordered states.1–6 Usual Hund’s rules suggest
that the magnetic Fe3+ ions in this semiconductor do not
exhibit low-order spin-orbit coupling since L=0 �with S
=5 /2�. The origin of the observed c-axis magnetic aniso-
tropy is not precisely understood but it is generally agreed
that it should be very weak.7,8 The frustration inherent in
triangular antiferromagnets is known to give rise to period-3
�P3� elliptically or helically polarized �S� spin structures at
H=0. A field applied along the anisotropy �c� direction typi-
cally induces a spin-flop transition S�c in weak axial
antiferromagnets.9–12 In the case of CuFeO2, spin noncol-
linearity occurs only at moderate values of H, and high-field
spin states are linearly polarized with S �c. A key to the un-
derstanding of these unusual features is the very high degree
of frustration resulting from not only the triangular geometry
but also the long-range exchange interactions, magnetoelas-
tic coupling, and antisymmetric exchange leading to the
magnetoelectric effect. In our previous work �Ref. 13, here-
after referred to as I�, the observation of the field-induced
sequence of period-4 �P4�, IC, period-5 �P5�, and P3 basal-
plane modulated spin structures at T=0 was shown to be a
consequence of competition among these disparate interac-
tions. As the temperature is lowered in zero applied field,
CuFeO2 exhibits successive magnetic transitions at TN1
�14 K to a collinear IC state followed by a discontinuous
transition at TN2�11 K to a collinear P4 spin structure. A
similar sequence of transitions has also been reported in the
triangular antiferromagnets MnBr2 and NaFeO2.14,15

In the present work, a representation of these effects is
incorporated into a nonlocal Landau-type free-energy func-
tional of the spin density F�s�r�� that is constructed from
symmetry arguments in order to develop a model of the com-
plex H-T phase diagram.10 The formalism is essentially phe-

nomenological but contains the same type of T=0 interac-
tions that are considered in usual spin Hamiltonians. In the
case of CuFeO2, these include in-plane exchange interactions
up to third neighbor J1, J2, and J3 �Refs. 16–19� as well as
interplane exchange J�.7,19,20 These interactions lead to a
minimization of the wave-vector-dependent exchange inter-
action JQ near a multicritical point where multiple periodici-
ties are close in energy. In addition to various biquadratic
exchange interactions �symmetric and antisymmetric� and
usual axial anisotropy, the rhombohedral R3̄m crystal sym-
metry also allows for the existence of an unusual trigonal
interaction which was previously used to explain the mag-
netic structure anomalies in pure Ho.21 The importance of
this term in stabilizing canted structures is explored here.
This formalism also leads to umklapplike terms in the free
energy which are nonzero only if a multiple of the ordering
wave vector is equal to a crystal reciprocal-lattice vector G,
i.e., nQ=G with n having values of 3, 4, and 5 in the present
case. Within the Landau formalism, these types of terms are
then responsible for the stability of the commensurate phases
depending on the values of T and H. A Landau-type expan-
sion based on molecular-field theory applied to MnBr2 is
presented in Ref. 14, which contains features in common
with the present model. A more formal group-theoretic ap-
proach to understand spin structures in a variety of multifer-
roic compounds, with a discussion of CuFeO2, is given in
Ref. 22.

The nonlocal formalism naturally leads to fourth-order
and higher contributions �in s�r�� to the free energy which
are dependent on Q and illustrates explicitly that terms
which are independently invariant �with respect to all sym-
metries� have independent coefficients.10,23 This contrasts
with the usual local form of the Landau energy which results
in all isotropic terms having the same coefficient at a given
power of s. From a phenomenological point of view, the
strong symmetry arguments are sufficient to assign different
values to each of the many coefficients. However, such non-
local effects can also be understood to have microscopic ori-
gins by considering interactions between magnetic and other
degrees of freedom, such as magnetoelastic coupling, which
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gives rise to nonlocal biquadratic exchange terms. Spin-
lattice coupling is known to be strong in CuFeO2,13,24–26

which provides further justification for the present approach.

II. NONLOCAL LANDAU FREE ENERGY

The development here of a nonlocal Landau-type free-
energy functional of the spin density F�s�r�� for CuFeO2
follows the description given in Ref. 10 for triangular anti-
ferromagnets and uses the symmetry arguments given in I.
Although the expansion is carried out to sixth order, a num-
ber of simplifications can be made for the purpose of under-
standing the phase diagram. It is convenient to write our
model for F as the sum of isotropic and anisotropic contri-
butions in the form

F = F2 + F4 + F6 + Fz + FCP + FK − m · H , �1�

where the first three terms are the isotropic contributions
relevant for all magnetic systems

F2 =
1

2V2� drdr�A�r − r��s�r� · s�r�� , �2�

F4 =
1

4V4� dr1dr2dr3dr4B�r1,r2,r3,r4��s�r1� · s�r2��

��s�r3� · s�r4�� , �3�

F6 =
1

6V6� dr1 ¯ dr6C�r1, . . . ,r6��s�r1� · s�r2���s�r3� · s�r4��

��s�r5� · s�r6�� . �4�

Temperature dependence enters in the usual Landau treat-
ment of the isotropic second-order term. Here it is general-
ized to be of the form

A�r� = akBT��r� + j2J�r� , �5�

where a depends on the total angular-momentum number j
and J�r� is the exchange interaction. Such a form can be
derived from a molecular-field treatment of the correspond-
ing Heisenberg Hamiltonian.14,27,28 This mean-field treatment
also yields local forms for the higher-order isotropic terms,
involving constants B and C, which also depend on j and are
proportional to kBT. The nonlocal form of spin interactions,
such as biquadratic exchange, can arise from a variety of
n-body interactions29 or indirectly from the coupling of s�r�
to other relevant degrees of freedom such as lattice or elec-
tronic �see the FCP term below�. Nonlocal fourth-order con-
tributions to the energy of the form given above that arise
from magnetoelastic coupling have been derived.28,30 In the
present model, we set kB�1 and j�1 and simply treat a and
the nonlocal fourth- and sixth-order coefficients as phenom-
enological parameters of undefined microscopic origin but
with the support for their existence in CuFeO2 from the
strong spin-lattice coupling and a nontrival spin-polarized
electronic structure.31

There are a large number of independent anisotropic con-

tributions invariant with respect to the R3̄m crystal rhombo-

hedral symmetry group generators 	S6 
000� and 	�v 
000�.32

Only the essential terms are considered here. Axial aniso-
tropy �ẑ � ĉ� is included only at second order in s;

Fz =
1

2V2 � drdr�Jz�r − r��sz�r�sz�r�� . �6�

Note that although this general form includes both single-ion
anisotropy D, where r=r�, as well as two-site anisotropic
exchange, the model used in I which includes only the latter
is adopted here. Since the anisotropy is small, such a distinc-
tion has little impact on the results presented below. Higher-
order terms such as �s ·s�sz

2 and sz
4 are omitted here for sim-

plicity.
The stability of the field-induced noncollinear phase at

zero temperature was shown in I to be a result of including a
biquadratic antisymmetric exchange term of the form

FCP = −
1

8V2AP
�
�
� drdr�	C����̂��s�r� � s�r��� · ẑ�2,

�7�

where �=r−r� and �=x ,y. Such a term is invariant with
respect to all relevant symmetries and therefore must exist in
the energy. Contributions to it can also arise as a result of
coupling between the electric polarization and lattice and
spin vectors in the form3

FC =
1

2V2� drdr�C����P��� � �̂� · �s�r� � s�r���z �8�

in combination with the lowest-order contribution to F in P
given by33,34 FP= 1

2V2 APdrdr�P���2. Such cross product in-
teractions are known to stabilize helically polarized spin
structures.35 Further analysis of the dependence of P on s�r�
is given in Sec. III.

Systems with trigonal symmetry also support an unusual
anisotropy term which couples in-plane and out-of-plane
components of the spin vector.21 For simplicity we use the
local single-site expression of this effect with a coefficient K,

FK =
K

2V
� drsz�r�sy�r��3sx

2�r� − sy
2�r�� . �9�

This interaction favors linear spin configurations, which are
canted, having both z and basal-plane components. The com-
bination of FCP and FK contributions to the free energy thus
favor a canted elliptically polarized state which induces an
electric polarization P in the basal plane.

Trigonal anisotropy terms of this type have been linked to
weak ferromagnetism in general and have provided a crucial
mechanism for the understanding of the distortion of helical
spin structures and wave vector lock-in phenomena in hex-
agonal rare-earth antiferromagnets.21 In these cases, it has
been speculated that such an interaction could arise from
spin-orbit coupling of band electrons. Although there has
been some electronic structure calculations of the spin states
in the present 3d5 semiconductor,31 a microscopic theory of a
spin Hamiltonian appropriate for CuFeO2 has not yet been
developed.36
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III. WAVE-VECTOR REPRESENTATION

Positions within the rhombohedral lattice of the Fe3+ mag-
netic ions are described here through an equivalent simple
hexagonal unit cell with three triangular layers A, B, and C
using basis vectors wA=0, wB= 1

2ax̂+ 1
3bŷ+ 1

3cẑ, and wC

= 1
2ax̂− 1

3bŷ− 1
3cẑ with a and c being the lattice constants; b

= ��3 /2�a and x̂� ŷ� ẑ. As discussed previously,10,14,28 long-
range magnetic order is characterized by the function ��r�
through the spin density written as

s�r� =
V

N
�
Rl

�
j

� j�r���r − R� , �10�

where R=Rl+w j; Rl= �n+ 1
2m�ax̂+mbŷ �with n and m being

integers� specifies hexagonal Bravais lattice sites; j=A ,B ,C;
and N=3Nl is the number of magnetic ions. The variety of
spin structures in the magnetic phase diagram of CuFeO3 can
be adequately distinguished with � expressed as a Fourier
expansion with a small number of terms in the form

� j�r� = m + S je
iQ·r + S j

�e−iQ·r, �11�

where m is the uniform magnetization induced by an applied
field along the ẑ axis, S is the spin-polarization vector, and Q
is the primary wave vector. A full description of some of the
ordered states requires additional Fourier components as dis-
cussed below.

With only near-neighbor coupling J� between planes, a
reasonable ansatz is to assume that the complex spin-
polarization vectors S j on adjacent layers differ only by a
simple phase factor � with each layer having an overall
phase factor � in the form28

SA = Sei�, SB = SC = Sei��−��. �12�

The primary description of the spin polarization of each state
is further characterized by writing9

S = S1 + iS2, �13�

where S1 and S2 are real vectors. Previous analysis of
Landau-type models to describe the magnetic states of frus-
trated triangular antiferromagnets9–12 has demonstrated that
sufficient flexibility can be achieved by assuming that S1 and
S2 are characterized by writing

S1 = S cos 	�sin 
�̂1 + cos 
ẑ�, S2 = S sin 	�̂2, �14�

where �̂1� �̂2� ẑ, i.e., �̂1 and �̂2 are in the hexagonal basal
plane. The Qth component of the spin density on layer A is
then given by

sA�r� = 2S1 cos�Q · r + �� − 2S2 sin�Q · r + �� . �15�

Linearly polarized states are described with S2=0, proper
helically polarized spin configurations are realized by
S1�S2�Q with S1=S2 �	=� /4�, and elliptically polarized
states have S1�S2�0. It is also convenient to define dimen-
sionless wave vectors in units of the lattice constants

qx = aQx, qy = bQy, qz = cQz. �16�

The zero-field ↑↑ ↓ ↓P4 phase described in Fig. 11 of Ref. 16
for a single layer is characterized by the above relations with

qx=� and qy =0 or equivalently qx=� /2 and qy =3� /4 due
to the triangular symmetry, along with 	=0, 
=0, and �
=� /4 �also, see Ref. 14�. In terms of triangular lattice basis
vectors a=ax̂ and b= 1

2ax̂+bŷ, the relations are qa=qx and
qb= 1

2qx+qy. Thus, for example, the above degenerate modu-
lations are also described by qa=� and qb=� /2, and by qa
=� /2 and qb=�.

A. Second-order isotropic terms

The free-energy density as a function of m, S, and Q is
developed by using the spin density given by Eqs. �10� and
�11� in expressions �1�–�9�. As shown previously,10,28 this
analysis naturally leads to umklapp terms arising from the
condition for periodic lattices

1

Nl
�
Rl

einQ·Rl = �nQ,G, �17�

where G is a hexagonal reciprocal-lattice vector. Second-
order isotropic contributions reduce to

F2 =
1

2
A0m2 + AQS2, �18�

where S2=S ·S�, AQ=aT+JQ, and

JQ =
1

N
�
R

J�R�eiQ·R. �19�

Within the present model, this leads to the following wave-
vector dependence of the exchange integral JQ=2f�q ,��
with

f�q,�� = J1f1�q� + J2f2�q� + J3f3�q� +
1

3
J�f��q��1 + 2 cos �� ,

�20�

where37

f1 = cos qx + 2 cos
1

2
qx cos qy ,

f2 = cos 2qy + 2 cos
3

2
qx cos qy ,

f3 = cos 2qx + 2 cos qx cos 2qy ,

f� = cos�2

3
qx −

1

3
qz� + 2 cos

1

2
qx cos�1

3
qy +

1

3
qz� , �21�

and J1=J�ax̂�, J2=J�2bŷ�, J3=J�2ax̂�, and J�=J�w�. Note
that Ji0 represents antiferromagnetic coupling. Using these
results, the coefficient of m2 can be expressed as A0=aT
+2f�0,0�.

Within this mean-field theory, the wave vector character-
izing the first ordered phase, to appear as the temperature is
lowered from the paramagnetic state �S=0�, is determined by
the extrema of JQ �the effects of anisotropic exchange are
discussed below�. Results of a numerical algorithm sketching
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the J2−J3 phase diagram are shown in Fig. 1 �also, see Ref.
37�. Here, we set J1�1 for convenience and consider two
values of interlayer coupling, J�=0 and 0.4, as in I. In the
case of J�=0 �broken lines�, the usual P3 modulation found
in the frustrated triangular antiferromagnet �associated with,
for example, 120° spin structures� occurs in the upper left
part of the diagram. At more positive values of J2, further
frustration stabilizes an IC modulation. Simple antiferroma-
gentic structures16 �P2� are found in the lower right region.
Note that due to the triangular symmetry, there are a number
of equivalent wave-vector descriptions for the same basic
structure. For example, 120° spin configurations with
�4� /3,0� and �2� /3,�� differ only in their chirality.10

Period-2 structures with �0,��, �2� ,0�, and �� ,� /2� differ
only by a rotation of axes. With the addition of interlayer
exchange J�=0.4 �solid lines�, there is a nontrivial interplay
between qz and qx ,qy as can be seen in Eq. �21�. The bound-
ary between P3 and IC phases disappears and there is an
additional AF or IC modulation between adjacent planes. For
example, in the lower part of the phase diagram, degenerate
modulations �0,� ,2�� and �2� ,0 ,0� both yield simple AF
interplane structures since q ·wB=� and q ·wC=�. Also in-
dicated on Fig. 1 is the point corresponding to J2=0.3 and
J3=0.3 �close to the values in I� which are used in the cal-
culation of the H-T phase diagram described below.

B. Fourth- and sixth-order isotropic terms

Higher-order terms can also be evaluated with the as-
sumed spin density �10�–�12�. For convenience, regular
�nonumklapp� terms and umklapp terms are written sepa-
rately. In the case of the isotropic fourth-order contributions,
the result can be expressed as follows:

F4 = F4,R + F4,3 + F4,4, �22�

where

F4,R = B1S4 +
1

2
B2
S · S
2 +

1

4
B3m4 + 2B4
m · S
2 + B5m2S2,

�23�

F4,3 = B4,3��m · S��S · S�e3i� + c.c.��3Q,G, �24�

F4,4 =
1

4
B4,4��S · S�2e4i� + c.c.��4Q,G. �25�

As shown in Ref. 10, umklapp terms involving 2Q are ac-
counted for within the regular terms by a suitable renormal-
ization of the spin-density amplitude. Expressions for some
of the coefficients in terms of the Fourier transform of the
nonlocal function B�r1 ,r2 ,r3 ,r4� are given in Ref. 10 and
the others may be easily deduced. For example, B1
=BQ,−Q,Q,−Q, B4=B0,Q,0,−Q, and B4,3=B0,Q,Q,Q. The important
point here is that the nonlocal formulation naturally leads to
the result that each independently invariant term has its own
independent coefficient. In a local formulation, all isotropic
terms have equal coefficients. In the present model, each of
these fourth-order �and sixth-order� independent coefficients
is assumed to be constant. As discussed previously,9,23 non-
collinear spin structures are stabilized with B20 and col-
linear states with B2�0. Usual spin-flop transitions in anti-
ferromagnets occur as a consequence of having B40 so
that a spin configuration with S�H is stabilized.

The above umklapp terms are nonzero only if 3Q=G �and
m�0� or 4Q=G, allowing for the possibility of energy re-
duction if the system assumes these periodicities.14 In the
case of S �m for the first term, or in the case of any collinear
state for the second term, these expressions reduce to
2B4,3mS3 cos�3�� and 1

2B4,4S4 cos�4��, respectively. For
positive coefficients, these two terms are then each mini-
mized by phase factors �=� /3 and � /4, respectively.

In an effort to reduce the number of model parameters, a
somewhat simplified approach is adopted to treat the isotro-
pic sixth-order contributions. In addition to the regular terms,
there are umklapp terms involving periodicities G /3, G /4,
G /5, and G /6. For simplicity, it is assumed that each of the
independent terms forming the regular part has the same co-
efficient C. This is equivalent to a local formulation of these
contributions. Each of the umklapp terms, however, are as-
signed an independent coefficient. The result can be ex-
pressed as

F6 = F6,R + F6,3 + F6,4 + F6,5 + F6,6, �26�

where

F6,R =
1

6
C	ST

6 + 6ST
2
S · S
2 + 24ST

2
m · S
2

+ 12��S · S��m · S��2 + c.c.�� , �27�

F6,3 =
1

6
C6,3	�12ST

2�m · S��S · S� + 6�m · S���S · S�2

+ 8�m · S�3�e3i� + c.c.��3Q,G, �28�
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FIG. 1. Sketch of the J2−J3 phase diagram based on minimiza-
tion of the exchange integral Jq with J1=1. Broken curves corre-
spond to the case J�=0 and solid curves to J�=0.4. Solid circle
indicates values used in the present model; J2=J3=0.3 and J�
=0.4.
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F6,4 =
1

6
C6,4	�3ST

2�S · S�2 + 20�m · S�2�S · S��e4i�

+ c.c.��4Q,G, �29�

F6,5 = C6,5	�m · S��S · S�2e5i� + c.c.��5Q,G, �30�

F6,6 =
1

6
C6,6	�S · S�3e6i� + c.c.��6Q,G. �31�

Note that odd-order umklapp terms occur only in the pres-
ence of a magnetic field where m�0 and have a maximum
effect on lowering the free energy with linearly polarized
spin configurations and S �H. In-plane and c-axis periodici-
ties, n and m, respectively, can be separated by writing Q
= 1

nG�+ 1
mG�, where G� and G� are reciprocal-lattice vectors

perpendicular and parallel to the hexagonal c axis. At low
values of magnetic field, antiferromagnetic interplane ex-
change J�0 dominates and period-2 interlayer c axis
modulations are stabilized. For the odd-period in-plane com-
mensurate structures Q� =0, G� and the umklapp conditions
3Q=G and 5Q=G are satisfied for P3 and P5 spin configu-
rations, respectively. These characterizations are consistent
with neutron-diffraction data.1,2

A complete description of the spin structures usually re-
quires that additional wave-vector components �Q�� be
added to the Fourier expansion of the spin density �11� which
lead to a “squaring up” of magnetic structures.12,14 Fourth-
order isotropic umklapp terms of the form �S� ·S��S ·S� exist
for cases where Q�+3Q=G leading to the incipient relation
S��S�S ·S�. With a magnetic field present, terms of the form
�S� ·m��S ·S� occur at fourth order if Q�+2Q=G giving S�
�m�S ·S�. A larger number of possible secondary wave vec-
tors arise from sixth-order umklapp terms. A fully consistent
analysis would lead to many additional contributions to the
free energy, but it is not required for the semiquantitative
description of the phase diagram given here.

C. Anisotropic terms

Evaluating the anisotropic contributions to the free ener-
gies Fz, FCP, and FK in terms of the spin-density parameters
m, S, and Q follows the method as described above. Since
anisotropy is known to be small in CuFeO2, anisotropic um-
klapp terms are omitted for simplicity. The resulting aniso-
tropic exchange terms are identical in form to isotropic ex-
change but involve only z components of the spin vectors;

Fz =
1

2
Jz0mz

2 + JzQ
Sz
2. �32�

Here, JzQ is given by the relations �19�–�21� but with the
isotropic exchange parameters Ji and J� replaced by their
anisotropic counterparts Jzi and Jz�, as in I. The coefficient Jz0
is then given by this expression evaluated at Q=0 and �
=0 in Eq. �21�.

An expression for the nonlocal biquadratic antisymmetric
exchange interaction can be determined by first evaluating
FC using Eqs. �10� and �11� with the assumption that the
electric polarization vector P is uniform. This gives38

FC = i�CxPx + CyPy�ẑ · �S � S�� , �33�

where, as in I, magnetoelectriclike interactions C1=C�ax̂�
and C�=C�w� are included, giving

Cx = −
4

3
b�C1 cos

1

2
qx sin qy −

1

3
C��sin�1

3
qz −

2

3
qy�

− sin�1

3
qx +

1

3
qy�cos

1

2
qx��1 + 2cos ��� ,

Cy =
2

3
a�C1�sin qx + sin

1

2
qx cos qy�

+ C� sin
1

2
qx cos�1

3
qy +

1

3
qz��1 + 2 cos ��� . �34�

Minimization of the free energy FCP=FC+FP, where FP

= 1
2AP�Px

2+ Py
2�, thus yields the relations between P and the

spin-polarization vectors;

Px = − �i/AP�Cx�S � S��z,

Py = − �i/AP�Cy�S � S��z. �35�

The combined antisymmetric biquadratic exchange contribu-
tion to the free energy then takes the form

FCP =
1

2Ap
�Cx

2 + Cy
2��S � S��z

2. �36�

These relations make clear that a uniform electric polariza-
tion cannot be induced by a collinear spin structure where
	=0 or � /2 since

�S � S��z = 2i�S1 � S2�z = iS2 sin 2	 sin 
 . �37�

Note also that P=0 in cases where S lies strictly in the ẑ-�̂2
plane �
=0� as has been recently emphasized.5,20,39,40

Finally, the local formulation of the trigonal anisotropy
term given above can be expressed in terms of the spin-
polarization vector components as

FK = K	�3�Sx
��2SySz − SzSy�Sy

��2 + 2SySz
��3
Sx
2 − 
Sy
2�� + c.c.� .

�38�

Using the parametrizations of S given above, this interaction
term can be written as

FK = 3KS4 cos2 	 sin 2
�sin2 	 − cos2 	 sin2 
� , �39�

which generally favors canted spin structures 0�
�� /2.

IV. MAGNETIC PHASE DIAGRAM OF CuFeO2

The nonlocal free-energy functional formulated above can
be expressed as a function of the parameters which charac-
terize the spin density F=F�Q ,S ,m ,� ,� ,
 ,	�. Equilibrium
spin configurations as a function of temperature and mag-
netic field are then determined by minimization �numeri-
cally� of F for a given set of coefficients. Since the phase
diagram involves spin structures characterized by a number
of different wave vectors Q, which can each have associated
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umklapp terms, it is necessary to minimize �with respect to
the other parameters� separately and compare the distinct
free energies associated with IC, 3Q=G, 4Q=G, and 5Q
=G �labeled FIC ,FP3 ,FP4 ,FP5� phases in order to determine
the equilibrium state.

A feature of the present model is the large number of
coefficients which is a consequence of not only the nonlocal
formulation but also the many competing interactions. This
multitude of effects are, however, essential for a complete
understanding of the complex magnetic phase diagram of
this highly frustrated compound. In order to reduce the num-
ber of free parameters, zero-temperature coefficient values
from I are used here and other coefficients are a priori as-
signed reasonable values. Only a relatively small number of
coefficients are adjusted in an effort to reproduce the essen-
tial features of the phase diagram. As in I, the overall energy
scale is set by assigning J1�1 with other exchange param-
eters given by J2=J3=0.3 and J�=0.4. Magnetoelectric cou-
pling coefficients used in I are adopted here, C1=0.3, C�
=0.1, and AP=1, as well as the assignment of an anisotropy
strength of 3% so that Jiz=0.03Ji and Jz�=0.03J�. This level
of anisotropy is also adopted here for the trigonal coefficient
K=0.03. Some of the Landau coefficients were arbitrarily set
as follows: a=1, B0=1, B1=1, B2=0.1, B3=0.1, and C=0.1.
Assuming a positive value for the term B4
m ·S
2 was always
found to yield a low-field spin-flop transition �since aniso-
tropy is weak�, which is not observed in the magnetic phase
diagram of CuFeO2 �at least in moderate field values�. As-
signing the negative value B4=−0.2 serves to enhance the
stability of the reported configurations with S �H in the P5
and P3 states �also, see Ref. 11�. �This point is discussed
further below.� Coefficients of the umklapp terms B4,3, B4,4,
C6,6�C6,3, C6,4, and C6,5 are then adjusted to reproduce es-
sential features of the H-T phase diagram. Note that the
6Q=G umklapp term in Eq. �31� contributes to the P3 state
and its coefficient is assigned the same value as the sixth-
order 3Q=G umklapp term for simplicity.

For the range of coefficients considered here, the inter-
layer phase factor � is always found to be zero. The overall
spin-polarization phase factor � appears only in umklapp
terms and the free energy is minimized with �=� /n for
commensurate states described by nQ=G.

Consider first the sequence of transitions which occurs at
H=0. With the addition of axial anisotropy, the spin structure
to first appear as the temperature is lowered from the para-
magnetic state, is linearly polarized S � ĉ. The free energy up
to fourth order is given by

F0 = �AQ + JzQ�S2 + �B1 +
1

2
B2�S4 +

1

2
B4,4S4 cos�4���4Q,G

�40�

with the transition temperature given by TN1=−�JQ+JzQ� /a.
The wave vector is thus determined by the value which
maximizes this function as shown in Fig. 1. For the set of
exchange parameters used here, this gives the collinear IC
phase with degenerate wave vectors �qx ,qy ,qz�= �2q ,2� ,��,
�2�−q ,3 /2q−� ,��, and �2�−2q ,� ,�� �or equivalently
�qa ,qb ,qc�= �2q ,2�+q ,�� , �2�−q ,q ,��, and �2�−2q ,2�

−q ,��, respectively� where q�0.22, giving TN1�2.0. The
result 1

5 �q�
1
4 is consistent with neutron-diffraction data2

and the speculation of multi-q domain structures.40 Numeri-
cal minimization of the free energies corresponding to IC
and P4 �� ,2� ,�� phases with all terms included is then
performed in order to compare FIC and FP4 as a function of
temperature.14 Assigning the parameter values B4,4=0.8 and
C6,4=0.2 is found to yield the result FP4�FIC for T�TN2
�1.5, which approximately agrees with the experimental
data for TN2 /TN1. The transition at TN1 is continuous while
the IC-P4 transition at TN2 is discontinuous.

Using this method of comparing free energies associated
with IC and commensurate spin states, the phase diagram
with H � ĉ is determined numerically. The three remaining
coefficients are fit to best reproduce the transition boundaries
in an effort to achieve semiquantitative agreement with the
corresponding experimental results presented in Refs. 3 and
4. This procedure yields B4,3=1.0, C6,6=0.1, and C6,5=0.6.
The linear IC, P5, and P3 phases remain stable with S � ĉ at
all field values considered due to setting B4�0. The ellipti-
cal IC phase is stabilized at moderate field values with 	
�0.19� at lower T. There is little change in wave vector
from the zero-field values since Cx

2 and Cy
2 in Eq. �36� are

small. Due to the small trigonal interaction term FK, this
structure is also found to be canted away from the ĉ axis by
about 
�100. Similarly, at low temperatures, the linear P4
phase exhibits a discontinuous transition to canting away
from the ĉ axis by about 45° �indicated by the thin solid line
in Fig. 2�. The transition between elliptical and linear IC
phases is continuous with 	 acting as an order parameter.
The canting of magnetic structures does not occur within the
present model in the case K=0. Critical fields at low tem-
perature, HP4−IC�1, HIC−P5�2, HP5−P3�3, are in fair
agreement with the experimentally observed ratios
HIC−P5 /HP4−IC�13T /7T and HP5−P3 /HP4−IC�20T /7T.3,4

V. DISCUSSION AND CONCLUSIONS

In this work, a model nonlocal Landau-type free energy
that captures essential features of the complex magnetic

0

1

2

3

4

5

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
T

H
IC

P4

IC

P5

P3

S||�

S||�

S||�

S||�

canted
linear

canted
elliptical S=0

FIG. 2. Sketch of the model phase diagram based for CuFeO2 on
minimization of the free energy �in units of J1�. Solid and broken
lines represent discontinuous and continuous transitions,
respectively.
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phase diagram of the highly frustrated magnetoelectric trian-
gular antiferromagnet CuFeO2 and serves as an extension of
a previous zero-temperature model13 has been developed and
analyzed. In contrast to local formulations, the present ap-
proach naturally leads to the result that each symmetry-
invariant isotropic term has its own independent coefficient.
In the case of CuFeO2, it is argued that strong magnetoelastic
coupling is one source for such nonlocal biquadratic �and
higher-order� spin interactions. As emphasized in Ref. 13,
magnetoelectric coupling also provides a microscopic
mechanism for the existence of biquadratic antisymmetric
exchange. In addition to weak axial anisotropy, the rhombo-
hedral crystal symmetry also supports a somewhat unusual
trigonal term which couples basal-plane and axial spin com-
ponents. With analysis performed in terms of a Fourier ex-
pansion of the spin density, this approach also facilitates
comparison with neutron-diffraction data.

There are a number of limitations associated with this
method. The Landau model is an expansion of the free en-
ergy around s�r�=0 so that results far below TN and at high-
field values may require a large number of terms. In addition,
only a small number of modulated spin structures can be
fully described by just a few Fourier components. The model
in its present form fails, for example, to account for the very
high-field spin-flop P3 phase suggested by magnetization
measurements.4 The merging of P4, IC, and P5 transition
boundaries suggested by the experimentally determined
phase diagram is also not found in our truncated model. The
reentrant behavior associated with this multicritical point6 is
not a feature of the present Landau expansion. Alternative
theoretical approaches could be useful for this purpose, such
as those which do not rely on a restricted form of the Landau
order-parameter function, but solutions can be difficult even
in cases of relatively simple systems.41 In principle, the
Hamiltonian associated with the free energy examined here
could also be treated within a nonperturbative mean-field
approach, a method which can be successful in producing
more subtle aspects of phase diagrams in frustrated spin sys-
tems such as reentrant phenomena.42 Note that within the
present �mean-field� formulation, the paramagnetic-IC �para-
IC� transition temperature is given by TN1=−�JQ
+JzQ�j2 / �akB�, where a=3 / �2j�j+1��. Using j=5 /2 and the
estimate J1�5.3K�kB� from spin-wave data19 �along with the
other exchange interactions values given above� gives TN1
=38.6K. The nearly factor of 3 discrepancy with the experi-
mental value can be attributed to strong critical fluctuation
effects associated with the high degree of frustration in this
compound.

The nature of the symmetry breaking at the two continu-
ous transitions, para-IC and IC�linear�-IC�elliptical�, can be
analyzed in a manner similar to the weak axial triangular
antiferromagnet CsNiCl3.43 Both should belong to the stan-

dard XY universality class involving a two-component con-
tinuous order parameter. In the case of the para-IC transition,
the two components can be identified as the magnitude of the
spin order S and the associated phase angle �. In the case of
unfrustrated systems, this transition would be identified with
Ising universality. In the finite-field transition to the elliptical
phase, the system develops �XY� basal-plane components �̂1
and �̂2.

The consequence of the present model and analysis is that
basal-plane components of the electric polarization P are in-
duced by the mechanism proposed by Kimura et al.3 if the
spin structure is canted relative to the ĉ axis. This result
offers a resolution to the issue raised recently concerning the
microscopic origin of the magnetolectric effect in this
compound.5,20,39,40 Such a canting occurs in crystals with
rhombohedral symmetry only as a consequence of the trigo-
nal interaction term FK.

The method and some of the results presented here are
also relevant to other frustrated triangular antiferromagnets.
Although hexagonal MnBr2 shows planar anisotropy and
strong interplane coupling responsible for a period-4 c-axis
modulation, it shares the same basal-plane P4-IC transition
as CuFeO2.14 NaFeO2 not only has the same rhombohedral
symmetry as CuFeO2 and a P4-IC transition but also has
S� ĉ and a more complicated P4 spin structure.15 Two of the
three basal-plane triangular crystal directions show period-4
modulations and the third is ferromagnetic. This can be de-
scribed by q= �� /2,� /4�xy or equivalently q= �� /2,� /2�ab,
which satisfy the umklapp requirement 4Q=G. Differences
with CuFeO2 could be due to additional interplane exchange
interactions. It is of interest to note that this material does not
appear to exhibit the structural phase transition to monoclinic
symmetry found in CuFeO2 below TN1, providing another
example where the stability of a P4 phase is not related to a
structural distortion. Other potential applications of the
present model include the hexagonal magnetoelectric antifer-
romagnet RbFe�MoO4�2, which exhibits a complex phase
diagram involving P3, P4, and P5 spin structures,44 and a
series of rhombohedral magnetoelectric antiferromagnets
ACrO2 �A=Cr, Ag, Li, and Na�.45 Even in cases of frustrated
spin systems with relatively few interactions, enhanced un-
derstanding of finite temperature effects has been achieved
by re-examination through successively less approximative
models—Landau theory, mean-field theory, and, finally,
Monte-Carlo simulations.12 Application of these latter tech-
niques to the complex phase diagrams of CuFeO2 and related
systems is desirable.
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