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Monte Carlo simulations of magnetic ordering in the fcc kagome lattice
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Monte Carlo simulation results are reported on magnetic ordering in ABC stacked kagome layers with fcc
symmetry for both XY and Heisenberg models which include exchange interactions with the eight near neighbors.
Well known degeneracies of the two-dimensional (2D) system persist in the 3D case and analysis of the numerical
data provides strong evidence for a fluctuation-driven first-order transition to well-defined long-range order
characterized as the layered q = 0 (120◦) spin structure. Effects of varying the interlayer coupling are also
examined. The results are relevant to understanding the role of frustration in IrMn3 alloys widely used by the
magnetic storage industry as thin films in the antiferromagnetic pinning layer in GMR and TMR spin valves.
Despite the technological importance of this structure, it has not previously been noted that the magnetic Mn
ions of fcc IrMn3 form kagome layers.
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I. INTRODUCTION

The phenomenon of pinning the magnetization direction
of a thin-film ferromagnet due to coupling with an adjacent
thin-film antiferromagent (AF) is key to spin-valve based
magnetic transducer technology.1,2 Understanding exchange
bias at the microscopic level has progressed substantially
in recent years and suggests that a mechanism to stabilize
domains in the surface layers of the AF is essential.3 Nearly
degenerate energy states of the surface spin structure, such
as found in geometrically frustrated AFs, can facilitate
such domain formation.4 Although there are many features
of the Ir-Mn compounds, such as high Néel temperatures
(TN ∼ 900 K) which have contributed to their being one
of the most commonly used materials for the pinning layer
in mass produced spin valves, it has been argued that the
spin frustration realized in the parent fcc compound IrMn3

is relevant.5 IrMn3 is in a class of magnetic compounds
having the CuAu3 crystal structure which can be described
as two-dimensional (2D) triangular planes ABC stacked along
〈111〉 axes.6 However, it has not been previously noted that the
magnetic Mn ions reside on sites in these planes that form the
kagome structure. The present work uses Monte Carlo (MC)
simulations to explore the spin ordering and phase transitions
with near-neighbor (NN) exchange interactions of such a 3D
system, which we call the fcc kagome lattice.

Heisenberg or XY spins on the 2D lattice formed from
corner sharing triangles (see Fig. 1) exhibit a high degree of
degeneracy in the case of near-neighbor exchange interactions
where the only requirement is that the sum of spins on each
triangle be zero (thus forming the 120◦-spin structure).7,8 The
classical Heisenberg system shows entropy-driven planar spin
nematic “order from disorder” at T = 0 and has extensive
entropy. The expected zero temperature limit of the specific
heat, CV = 11

12kB per spin, has been verified by Monte Carlo
simulations.8,9 Long range ground state Néel order has been
demonstrated by adding further-neighbor exchange interac-
tions in the Heisenberg case giving rise to so-called q = 0 (see
Fig. 1) or

√
3 × √

3 spin structures.10 The XY spin model on

the 2D kagome has received much less attention, likely due
to the lack of relevant experimental systems. However, it has
been argued that at T = 0 the spin order should be that of the
three-state Potts model,11 which is known to exhibit a weak
first order transition at a nonzero temperature in 3D.12

Three-dimensional structures are formed from weakly
coupled ABC stacked kagome layers of magnetic ions in the
family of compounds with rhombohedral symmetry known as
the jarosites, AB3(SO4)(OH)6, where a variety of experimental
results suggest long range spin order of the q = 0, 120◦
type, below temperatures in the range of 1–60 K.13,14 Stacked
kagome layers have recently been investigated in an Fe-based
metallo-organic compound which exhibits spin dynamics
driven by frustration-induced domain walls.4 Numerical simu-
lations of the magnetic phase transitions in these systems have
not been reported. Another 3D example is the hyperkagome
spin lattice, derived from the pyrochlore structure by removing
1/4 of the magnetic sites, which has been shown to exhibit
the degeneracy of the 2D kagome lattice and MC simulations
indicate a first order transition to octupolar ordering at very
low temperature.9

In addition to the very significant effort to understand the
exchange bias mechanisms relevant to Ir-Mn thin films at the
macroscopic level (see, e.g., Ref. 2 for a review), there have
also been a number of works devoted to investigations of
the antiferromagnetic spin order in bulk Ir-Mn (and sister)
alloys at the microscopic level. Early neutron diffraction
results on samples with various relative concentrations of Ir
in the disordered form of IrMn1−x alloys exhibit a simple
two-sublattice magnetic order which suggest a peak in TN

for values of x close to 0.25.15 The magnetic structure
of IrMn3 was found to possess the long-range 120◦-type
spin order below TN � 960 K, referred to as the T1 state,
which is equivalent to an ABC stacking of q = 0 ordered
kagome planes.16 This magnetic structure had previously
been proposed for the ordered phases of RhMn3 and MnPt3
alloys.6 This conclusion is also consistent with first prin-
ciples electronic structure calculations which, in addition,
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(a) (b)

FIG. 1. (Color online) (a) Fcc kagome lattice (solid circles)
formed by ABC stacking of triangular layers (solid and open circles).
In the case of IrMn3, solid circles represent magnetic Mn ions and
open circles denote nonmagnetic Ir ions. (b) Projection of the q = 0,
120◦ spin structure with ABC stacking along the 〈111〉 direction
(out of the page) where colors distinguish the layers. Note this
configuration corresponds to one particular ground state with spin
triangles in a plane having identical alignment.

suggests that multiple-q spin stuctures are stabilized in
the disordered alloys.17 Most relevant to the present work
involves a simulation of the spin structure of ordered IrMn3

using the stochastic Landau-Lifshitz-Gilbert equations with a
Heisenberg spin Hamiltonian, which includes a local 〈111〉
anisotropy term.18 Such simulations are essentially equivalent
to the MC approach. Model parameters, which included a
large number of exchange interactions up to 10 Å between
neighbors, were determined from first-principles electronic
structure calculations. The q = 0 (T1) spin structure was
verified and simulations of the order parameter vs temperature
yielded the estimate TN � 1145 K.

In the present work we examine the nature of the magnetic
order, ground-state degeneracies and phase transitions in
the fcc kagome Heisenberg and XY models with exchange
interactions between the 8 NN shown in Fig. 2. This is achieved
through extensive ground state as well as Metropolis MC
simulations. Results are presented for the temperature depen-
dence of the internal energy, specific heat, order parameter,
and susceptibility, all of which show clear indications of a

FIG. 2. (Color online) Illustration of the eight near neighbors of
the fcc kagome lattice projected onto the (111) plane (see Fig. 1).
Four neighbors are in the (red) plane, and two each are in adjacent
planes (black and blue).

phase transition to q = 0 spin order for both models. Analysis
of the energy histograms as well as finite-size scaling of the
specific heat and Binder cumulant indicate a strong first-order
transition in the XY case but only weakly so for the Heisenberg
model. We propose a model of the ground state degeneracy
involving planes of defects which appears to explain the
multiple values of the sublattice magnetization found from the
simulations at low T. The model also explains the differences
between MC simulation results performed as heating, cooling,
or independent temperature runs. Additional MC simulation
results are discussed for cases with weaker interlayer exchange
coupling which show the expected decrease in TN . The
remainder of this paper is organized as follows. In Sec. II,
the model Hamiltonian is presented as well as details on
how the simulations were performed. In Sec. III, the main
results are shown for the temperature dependence of the
various thermodynamic quantities. Finite-size scaling analysis
results are also discussed. This is followed by a description of
our model of degeneracies. Simulation results with weaker
interlayer coupling are presented in Sec. IV, followed by
Sec. V where we discuss our results and directions for future
simulations.

II. MODEL AND SIMULATIONS

Monte Carlo simulations were performed using the standard
Metropolis algorithm on L × L kagome planes, ABC stacked
with L layers. Periodic boundary conditions were used on
lattices with L = 12, 18, 24, 30, 36, and 60. Between 105 and
107 MC steps (MCS) were used, with the initial 10% discarded
when calculating thermodynamic averages. (We note that
most of the results relevant to this work could be estimated
using less than 104 MCS and that simulations with MCS
106 are typical for 3D frustrated systems when performing
the more demanding exercise of attempting to extract critical
exponents.12,22) Only NN exchange interactions were included
in the simulations, as defined by the following Hamiltonian:

H = J

intraplane∑
i<j

Si · Sj + J ′
interplane∑

i<j

Si · Sj , (1)

where the sum is over NN lattice sites, J ≡ 1 represents AF
coupling to the four in-plane NNs and J ′ > 0 couples to the
four NN sites in adjacent planes, as in Fig. 2. Most of the
results below focus on the case of the fcc lattice stucture where
J ′ = J , giving the full eight NN interactions. Results are also
presented for systems with weaker interplane interactions,
J ′ < J . Simulations were performed assuming both XY and
Heisenberg spin degrees of freedom. In the XY case, spins were
assumed to lie in plane.

Preliminary to performing simulations on the stacked
kagome lattice, extensive checks of the computer code were
performed against published results for related systems. The
ground state spin configurations and energies for a 2D
kagome model which also included second and third neighbor
exchange interactions reproduced results in Ref. 10 for the
boundaries between the q = 0 and

√
3 × √

3 phases. [It is of
interest to note that only the q = 0 (and not the

√
3 × √

3)
spin configuration is consistent with near-neighbor antiferro-
magnetic exchange for the 3D fcc lattice.] MC simulations
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on the 2D system for the specific heat at low temperature
gave results consistent with those in Ref. 9 with NN exchange
interactions only. Additional simulations were made on the
ordinary Heisenberg fcc AF (ABC stacked triangular layers)
where the temperature and first-order nature of the transition,
based on the specific heat, were found to agree with previous
results.19

III. FCC KAGOMÉ LATTICE

A. Order of the transition

A focus of these simulations was to establish the nature
of the transitions to long range magnetic order in the XY
and Hesienberg models on the fcc kagome lattice through
evaluations of the internal energy and specific heat. Figure 3
shows the energy vs temperature of these two models for the
case of L = 24. Three types of simulation results are shown.
In the case labeled cooling, the first simulation was run starting
at a high temperature with a random initial spin configuration.
Subsequent runs were made at decreasing temperatures (�T =
0.03) where the initial spin configuration at each temperature
was taken to be the final spin state of the previous run. A
corresponding technique was used for heating runs (again
with �T = 0.03), starting from the q = 0 ground state. In
these cases, thermal averaging was performed using 106 MCS
on a single CPU. We also performed independent temperature
simulations where a new random initial state was assumed
at each value of T , using a finer interval of �T = 0.01. For
this purpose, simulations at each temperature could each be

(a)

(b)

FIG. 3. (Color online) Internal energy of the fcc kagome (a) XY
and (b) Heisenberg models for L = 24 with cooling, heating, and
independent temperature simulations.

(a)

(b)

FIG. 4. (Color online) Specific heat of the fcc kagome (a) XY
and (b) Heisenberg models for L = 24 with cooling, heating, and
independent temperature simulations.

performed on multiple, separate CPU and 107 MCS were used
for averaging in these cases. Error bars are estimated to be
smaller than the symbols used in Fig. 3. The results show a
clear indication of phase transition for both models and the
discontinuity close to TN = 0.760 ± 0.005 for the XY model
indicates it is first order for this two-component spin system.
In the Heisenberg case, the order of the transition close to
TN = 0.476 ± 0.005 is less clear and is further investigated
below. These results can be compared with the first order
transition estimated to be at TN = 0.446 in the ordinary fcc
Heisenberg AF which involves collinear long range magnetic
order.19 The fact that the three types of simulations result in
identical energy curves will be relevant to the discussion below
of degenerate spin states.

Energy correlations were used to calculate the specific heat
for the two models, shown in Fig. 4, using the same simulation
runs as for the energy. Well defined peaks occur at temperatures
corresponding to the features in the energy plots of Fig. 3 and
again there is no difference in results obtained from the three
types of simulations. Errors in the plotted specific heat values
can be estimated from the scatter in the data over the three types
of runs. They are approximately ±0.2 and ±1.0 close to the
temperatures where the peaks occur, and ±0.005 and ±0.05 at
low temperatures, for XY and Heisenberg cases, respectively.
However, the main purpose of these plots is to identify the
transition temperatures. The curves also appear to suggest a
zero temperature limit for the specific heat of close to 1/2kB

per spin in the XY case and close to 1 for the Heisenberg
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FIG. 5. (Color online) Internal energy of the fcc kagome Heisen-
berg model for L = 36 with independent temperature simulations.

model. The latter result is consistent with the value 11
12kB per

spin known to occur in the 2D Heisenberg system.8,9 This
result is based on a mode counting in the N

3 unit cells of the
kagome lattice. Each cell has six modes in the Heisenberg case
and three modes in the XY case. Each mode contributes kB/2
to the specific heat unless it is dispersionless in which case
it contributes kB/4. Such an analysis would also suggest that
the corresponding value for the 2D XY model should be 5

12kB

per spin. Further neighbor couplings in the 3D model could
lift the degeneracy associated with the dispersionless mode.
A detailed estimate of these limiting values of the specific
heat would require an extensive simulation effort,20 beyond
the goals and scope of the present work. Further indication
that the degeneracies present in two dimensions persist for the
3D fcc kagome lattice are explored below.

Additional simulations were performed to explore finite
size effects on the order of the phase transition for the
Heisenberg case. An indication that this transition is weakly
first order in the thermodynamic limit is suggested by the
clearer discontinuity in the energy shown in Fig. 5 for the larger
lattice L = 36 using 107 MCS for averaging and independent
temperature runs.

Further convincing evidence of the first order nature is also
provided by the energy histograms shown in Fig. 6 which
illustrate a discontinuous jump in the energy minimum as the
temperature varies only slightly around TN for both the XY
and Heisenberg models.21 These histogram data also provide
an accurate estimate of the respective transition temperatures
corresponding to the value of T which exhibits a double peak
structure.

Finally, the Binder energy cumulant21 was also calculated
for the Heisenberg model using the larger lattice sizes with 107

MCS for averaging, as shown in Fig. 7. The minimum exhibits
clear finite-size volume scaling; however, its extrapolated
value for L → ∞ appears close to 2/3 (0.66666 ± 0.00001)
expected of a continuous transition but our data are not accurate
enough to make a conclusion on this point. It is noteworthy that
for the frustrated stacked triangular AF, the extremely weak
nature of its first order transition was confirmed by numerical
simulations only after some 20 years of study by a large number
of groups.22,23

(a)

(b)

FIG. 6. (Color online) Energy histograms for the fcc kagome (a)
XY with L = 24 and (b) Heisenberg models with L = 60.

B. Order parameter and susceptibility

The q = 0 ground state magnetic structure of the 2D
kagome lattice is defined by the spins on each triangle
being 120◦ apart. This rule can also be satisfied in the ABC
stacked fcc structure with eight NN spins, as shown in Fig. 2.
We have verified this to be the ground state for the 3D
system and it is assumed here that this is the long range
ordered state that occurs below the transition temperatures
in the XY and Heisenberg cases considered in the previous
section. The order parameter (OP) is defined through the
three interpenetrating ferromagnetically aligned sublattices,
Mη (η = 1,2,3) associated with the 120◦ spin structure

Mt = (3/N )
{〈

M2
1 + M2

2 + M2
3

〉/
3
} 1

2 , (2)

where N is the number of sites and

M2
η = (

Mx
η

)2 + (
My

η

)2 + (
Mz

η

)2
(3)

with

Mσ
η =

∑
i∈η

Sσ
i , (4)

where σ = x,y,z and i is over sublattice sites. In the XY model,
only x and y spin components are considered.

Figure 8 shows the temperature dependences of the calcu-
lated OPs for the XY and Heisenberg models with L = 24 for
cooling, heating, and independent temperatures simulations
using 106 MCS for averaging (with error bars smaller than the
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(a)

(b)

FIG. 7. (Color online) (a) Binder energy cumulant of the fcc
kagome Heisenberg model using independent temperature simula-
tions. (b) Scaling of the minimum value vs inverse volume. Error
bars are estimated from scatter in the data (a).

(a)

(b)

FIG. 8. (Color online) q = 0 order parameters for the (a) XY
and (b) Heisenberg models with L = 24 from cooling, heating, and
independent temperature simulations.

(a)

(b)

FIG. 9. (Color online) Susceptibilities corresponding to the q = 0
order parameter for the (a) XY and (b) Heisenberg models with L = 24
from cooling and heating simulations.

symbol sizes). The curves obtained by heating the system from
its 3D q = 0 ordered state show full saturation of the OPs for
T → 0 and smooth, monotonically decreasing functions as T

increases. The curves for the cooling process are also smooth
but do not saturate at low T . The independent temperature
runs are not monotonic and the OP value jumps between a
number of values that mostly lie between the heating and
cooling curves. These results, together with the fact there is no
difference in energy between these three types of simulations
shown in Fig. 3, indicate there are multiple degeneracies
associated with the q = 0 magnetic structure of the fcc kagome
lattice. These points are explored further in the next section.

Spin correlations were also studied through the OP suscep-
tibility response function defined by

χ = (〈
M2

t

〉 − 〈|Mt |〉2)/(kBT ). (5)

Figure 9 shows cooling and heating runs only which are not
identical due to the degeneracies illustrated in Fig. 8. Indepen-
dent temperature runs were also performed (not shown) and
show large fluctuations due to the jumping between degenerate
spin states (Fig. 8). The peaks in these curves that occur near
0.76 and 0.47 for the XY and Heisenberg cases, respectively,
are consistent with the transition temperature estimated based
on the energy and specific heat anamolies, providing further
evidence that the fcc kagome lattice indeed exhibits long range
q = 0 type spin order.
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C. Spin degeneracies

In order to further investigate the impact of the q = 0
spin configuration degeneracies associated with NN exchange
interactions on the stacked kagome lattice, the three individual
sublattice ferromagnetic OPs (M1, M2, and M3) were calcu-
lated. Figure 10 illustrates three example results of cooling runs
performed on the XY model using three different random initial
spin configurations. In each case, one of the OPs saturates
at T = 0 to the expected value of 1/3 and the other two
OPs both tend toward the same smaller values, approximately
given by 0.22, 0.19, and 0.25. Additional simulations starting
with different random initial spin configurations exhibit other
saturation values of the OPs although none are less than about
0.16. Similar results were found for the Heisenberg model.

These results can be understood by the observation that
there is no change in energy with an interchange of the
direction of two sublattice spins along a line in 2D or in a
plane in 3D. This is equivalent to rotating the spins along a

(a)

(b)

(c)

FIG. 10. (Color online) Three ferromagnetic sublattice order
paramaters associated with the q = 0 spin state corresponding to
three different cooling simulations, (a), (b), and (c), of the XY model
with L = 24.

FIG. 11. (Color online) Three ferromagnetic sublattice spins
shown as red, blue, and black. (a) Perfect q = 0 spin state. (b)
Illustration of defects along the indicated horizontal line where two
of the three ferromagnetic sublattice spins (black and red) are rotated
by 120◦.

line (or plane) by 120◦.8,14 The 2D case is illustrated in Fig. 11.
The possible values of the saturated sublattice magnetization
due to this effect can be enumerated by considering all possible
defect lines/planes of sublattice switching, and is given by

Mη =
√(

1
4L3 − 3

2n
)2 + (√

3
2 n

)2

3
4L3

, (6)

where n is the number of spins making the switch (e.g.,
between sublattices 1 and 2). In 2D the smallest deviation from
full saturation of a sublattice occurs if there is only one row of
switched spins so that n = L/2. In 3D, k planes of switching
involves k(L/2)(L/2) spins up to a maximum where half of
the population switches, n = 1

8L3 (where the number of spins
on each sublattice is 1

4L3). This means that for the fcc kagome
lattice the OP (at T = 0) of each sublattice will lie in the range
[ 1

6 , 1
3 ] in the case of NN exchange interactions. The possible

saturation values for the two switched sublattice OPs in the
case L = 24 are shown in Fig. 12 and are consistent with the
values found in the simulation results of Figs. 8 and 10.

Note that in each run, one of the sublattices undergoes
no switching. It is possible that in different parts of the
lattice different sublattices will take the role of the one that
does not switch. Planes of switched spins formed in the
cooling and heating processes usually are parallel; however,
in some cases the planes may intersect each other. The spin
configurations at these intersections impose an extra energy
on the system. In a slow cooling process, these costly spin
configurations at the intersections of the planes are eliminated
by thermal relaxation, and finally all the switched planes are
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FIG. 12. Possible values of the sublattice order parameter due to
switched spins in the case of L = 24.

aligned parallel. It may be possible to trap these costly spin
configurations in a fast cooling process and values of sublattice
magnetization not predicted by Eq. (6) would occur.

IV. INTERLAYER COUPLING

In addition to bulk materials which exhibit fcc symmetry,
magnetic compounds composed of ABC stacked kagome
planes which are weakly exchange coupled are of interest (as
noted in the Introduction). We examine here the dependence of

(a)

(b)

FIG. 13. (Color online) Example specific heat simulation results
for interlayer coupling J ′ < 1 as indicated for the (a) XY and (b)
Heisenberg models from independent temperature simulations with
L = 24.

FIG. 14. (Color online) Transition temperatures for the XY and
Heisenberg models with interlayer coupling J ′ > 1.

the transition temperature of both XY and Heisenberg models
on the inter-layer exchange coupling J ′ through simulations
of the specific heat on L = 24 systems with periodic boundary
conditions and using 107 MCS for averaging. Values 0.05 �
J ′ � 0.95 in steps of 0.05, with intraplane exchange J = 1,
were considered in independent temperature simulations (with
�T = 0.01) distributed over 400 CPUs.

Example results for a few values of J ′ are shown in Fig. 13
and a summary of the dependence of TN (±0.005) on J ′ is
given in Fig. 14. The absence of a detectable peak in the
specific heat at the smallest J ′ over this range of T � 0.05 is
consistent with the predicted lack of long range spin order in
2D. We find that the specific heat tends to the T → 0 values
observed for the fcc case (Fig. 4), independent of J ′. This
result again suggests that NN interlayer coupling does not
alter the nature of the spin degeneracies of the 2D system. The
general shapes of these curves are consistent with previous
investigations of quasi-2D systems.24,25

V. SUMMARY AND CONCLUSIONS

A significant conclusion from the results presented in this
work is that the fcc kagome spin lattice with NN exchange
interactions (J ) exhibits long range magnetic order of the
q = 0 (120◦) type through first order phase transitions at
temperatures 0.760J and 0.476J for XY and Heisenberg
models, respectively. In the Heisenberg case, finite-size scaling
of the energy cumulant, along with other results, suggest
that the first-order nature of the transition is very weak. For
both of these models, mean field theory would predict a
continuous phase transition. Spin configuration degeneracies
are well known in the 2D system as lines of defects appear
to persist in the 3D case as planes of defects and lead to
multiple (but well defined at T = 0) possible values of the
sublattice magnetization order parameters. These observations
suggest that the transitions are driven by the order-by-disorder
phenomenon. Additional simulations of ABC stacked kagome
planes with weaker interlayer coupling, J ′, exhibit similar
types of transitions and degeneracies, with TN decreasing
monotonically to zero as J ′ → 0.

These results are relevant to a number of experimental
systems. Fcc IrMn3 is one of the Ir-Mn compounds well known
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in the magnetic recording industry as useful for the pinning
AF layer in spin valve devices. Previous neutron scattering
experiments have confirmed that this and sister compounds
show long-range q = 0 spin order (known in the industry
as T1 magnetic order). The pinning of the magnetization in
a ferromagnetic layer through exchange coupling with an
adjacent AF is believed to be due to the presence of defects
and domains. The results of the present work emphasize
that geometrical frustration is useful in generating these spin
defects in compounds with the fcc kagome spin structure, like
IrMn3.

This work represents a preliminary investigation of a
number of problems related to both fundamental aspects
of geometrical frustation as well as exchange pinning. We
have already performed initial simulations on the behavior of
the fcc kagome system in an applied magnetic field. Such
studies previously revealed a tricritical point in the case
of the stacked triangular lattice and further illuminated the
nature of the first order transition for that lattice structure.12

Another extension of the present work is to examine the
impact of the single-ion anisotropy noted in Ref. 18, as well

as Dzyaloshinskii-Moriya interactions,26 on the nature of the
phase transitions in 3D. MC simulations of thin film ABC
stacked kagome systems which include anisotropy as well as
surface effects (on both exchange and anisotropy) would be
useful to study surface spin states and their possible impact
on defects and domain formation. Extensions to include also a
ferromagnetic layer with dipole interactions would reveal more
about the microscopic mechanisms important for exchange
pinning for IrMn3.27 Investigations of spin waves in stacked
kagome systems10 would complement previous studies of
the layered triangular AF28and would provide insight into
the mechanism relevant to high frequency spin-valve sensor
response.
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(1993).
13A. S. Wills, Can. J. Phys. 79, 1501 (2001); M. Nishiyama, T.

Morimoto, S. Maegawa, T. Inami, and Y. Oka, ibid. 79, 1511 (2001).

14P. Mendels and A. S. Wills, in Introduction to Frustrated Mag-
netism, edited by C. Lacroix, P. Mendels, and F. Mila, Springer
Series in Solid-State Sciences, Vol. 164 (Springer, Heidelberg,
2011).

15T. Yamaoka, M. Mekata, and H. Takai, J. Phys. Soc. Jpn. 36, 438
(1974).

16I. Tomeno, H. N. Fuke, H. Iwasaki, M. Sahashi, and Y. Tsunoda, J.
Appl. Phys. 86, 3853 (1999).

17A. Sakuma, K. Fukamichi, K. Sasao, and R. Y. Umetsu, Phys. Rev.
B 67, 024420 (2003).

18L. Szunyogh, B. Lazarovits, L. Udvardi, J. Jackson, and U. Nowak,
Phys. Rev. B 79, 020403(R) (2009).

19H. T. Diep and H. Kawamura, Phys. Rev. B 40, 7019 (1989); M. V.
Gvozdikova and M. E. Zhitomirsky, JETP Lett. 81, 236 (2005).

20S. Schnabel and D. P. Landau, Phys. Rev. B 86, 014413
(2012).

21M. S. S. Challa, D. P. Landau, and K. Binder, Phys. Rev. B 34, 1841
(1986); P. Peczak and D. P. Landau, ibid. 39, 11932 (1989).

22A. Mailhot, M. L. Plumer, and A. Caillé, Phys. Rev. B 50, 6854
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