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Transition temperature and magnetic properties of the granular Ising model in two dimensions
studied by Monte Carlo simulations: Impact of intragrain spin structure
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Monte Carlo simulations are performed on a stacked square lattice model of weakly interacting magnetic
grains composed of Ising spins. The role of intragrain spin structure on thermal properties are investigated in
this simple representation of granular recording media. Various thermodynamic quantities are calculated using
a cluster-flip algorithm which exhibit anomalies corresponding to both intragrain and intergrain ordering. In the
single-layer case, the intergrain transition temperature vs intergrain exchange coupling strength exhibits a
crossover to a nonlinear regime where the intragrain spin structure becomes increasingly important. Corre-
sponding results on multilayer systems are shown to be in good agreement with scaling theory. Preliminary
magnetization vs applied field (M-H) loops are also calculated as a function of temperature and indicate the

possible effect of the grain spin structure.
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I. INTRODUCTION

Traditional formulations of micromagnetic simulations of
magnetic recording processes based on the Landau-Lifshitz-
Gilbert dynamic equations have enjoyed remarkable suc-
cesses over the past 20 years.!> The fundamental assumption
of micromagnetics is that there are well-defined regions with
a uniform magnetization of constant magnitude, M;, which
interact via exchange and magnetostatic forces. In the case of
current recording media based on highly anisotropic cobalt
alloys, these regions are taken to be the magnetically sepa-
rated grains which are typically 89 nm in diameter and are
composed of hundreds to thousands of atomic spins. We re-
fer to this as the rigid grain approximation (RGA). In the
case of conventional recording media, the RGA may be jus-
tified by the fact that the intragrain spin-spin ferromagnetic
exchange interaction is typically 10-100 times larger than
intergrain exchange. In addition, temperatures relevant for
typical recording processes are about one-quarter of the Cu-
rie temperature for cobalt (T-=1400 K) so that thermal ef-
fects are not obviously important. Due to reductions in bit
size, the need for more accurate models, and the increasingly
important role of thermal effects [as in heat-assisted mag-
netic recording (HAMR) (Refs. 3 and 4)], there has been an
exploration of modified approaches which go beyond the
RGA and consider effects due to intragrain spin degrees of
freedom.>8 As grain sizes shrink, surface spins can play an
increasingly important role in determining reversal mecha-
nisms. This is due not only to modifications in surface-
exchange interactions arising from simple geometrical argu-
ments but also to a reduction in surface-spin anisotropy.
These effects can lead to modifications in grain magnetic
moments and magnetic field-induced reversal mechanisms
important for the recording process.’'4

In this work, we explore some limitations of the RGA
within the context of a simple model that includes explicitly
the internal atomic spins of a system of interacting granular
magnetic moments. Monte Carlo simulations are performed
on a model with grains composed of L' X L' X z Ising spins
with strong nearest-neighbor intragrain (spin-spin) exchange
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interactions J' and weaker intergrain exchange J between the
two-dimensional (2D) lattice consisting of L X L grains. We
refer to this model as the granular Ising model. The granular
Ising model may be viewed as a simple first approximation
to a more realistic Heisenberg model with strong anisotropy
(currently under investigation) representing recording media
based on cobalt alloys. In order to address equilibration is-
sues that arise as a consequence of the large difference in the
interaction energies in this model, the simulations utilize a
combination of a cluster-flip Wolff'> and Metropolis algo-
rithms. We evaluate a number of thermodynamic quantities
that reflect the degree of intragrain and intergrain ordering of
the spins. From these we are able to distinguish these re-
gimes where the RGA is valid and where it is not. We also
study the hysteresis associated with the reversal of the mag-
netization in an applied field for 7<T, and examine the
impact of the intragrain spins in determining the coercivity.

The paper is structured as follows. The granular Ising
model and Monte Carlo simulation techniques are described
in Sec. II. In Sec. III, results for various equilibrium proper-
ties: magnetization, heat capacity, and susceptibility are pre-
sented for several values of exchange, grain dimensions and
film thickness and certain key properties described within the
context of simple models. In Sec. IV, M-H loops for the
model are presented and we finish in Sec. V by drawing
some conclusions regarding the significance of the results
obtained from this series of simulations.

I1. ISING MODEL OF GRANULAR RECORDING MEDIA

The model studied here consists of a system of N Ising
spins on a stacked square lattice. The lattice is subdivided
into L? grains with each grain represented by a L' X L' Xz
rectangular prism. The spins are coupled through a nearest-
neighbor exchange interaction. We denote by J' the ex-
change constant for the nearest-neighbor pairs that are lo-
cated within the same grain and by J for the nearest-neighbor
pairs that straddle the grain boundaries. We choose J' =1 and
consider values of J that lie in the range 0=J=1. We as-
sume periodic boundary conditions in lateral (L X L) direc-
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FIG. 1. Schematic of the granular Ising model showing 3 X3
grains each composed of 3 X3 spins with intragrain exchange J’
and intergrain exchange J.

tions but not in the perpendicular (z) direction. Figure 1
shows a schematic model for a system consisting of L>=9
grains, each with (L")?=9 spins and z=1. The model Hamil-
tonian is given by

H=_2JijSiSj_H2Si7 (1)
(ij) i
where the first sum is over nearest-neighbor pairs, S;= * 1,
Jiy=J or J', and H is the applied magnetic field. We denote
the number of spins in each grain by N,=L' X L' Xz and the
number of nearest-neighbor bonds between each grain as
A,=L'" X z. We refer to the single-layer (z=1), homogeneous
(J'=J) simply as the 2D Ising model.
Labeling the individual grains by the index I, we define
the average magnetization of the /th grain by

xS

jel

1
Ivg , (2)

M1=

where 2;.; denotes the sum over all L' X L' Xz spins in
grain /. The thermal average over all grain magnetizations is
thus given by

1
M(T) = —2<E M,>. (3)
L7\
The total system magnetization is defined through
1
M- 1—V< > S,-‘>, @

where i is summed over all N lattice sites. In addition, the
total magnetic susceptibility was calculated using

X(T) = BN(M(T)?) = (M(T))?), (5)
where B8=1/T and the specific heat is given by

2
(1) = %((E(TV) —(E(D)). (6)

To enhance equilibration, a combination of the Metropolis
and a Wolff cluster-flip algorithm was used. In order for the
cluster-flip algorithm to satisfy detailed balance while main-
taining an acceptance ratio of unity, the standard probability
for adding a spin to the cluster,!> P,;=1—-¢ 2%, was used for
spins inside a grain while a similar probability, P;=1
—e7?8/_ was used when determining whether to add a spin or
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FIG. 2. Spin configuration in the single-layer (z=1) granular
Ising model with L=12, L"'=10, J=0.03, and T=1.79. Up and down
spins are shown as black and white points and grain boundaries as
gray lines.

not between grains. An iteration over each spin in the lattice
using the Metropolis procedure and one cluster attempt with
the Wolff algorithm was defined as one Monte Carlo Step
(MCS). MCS, initial steps were discarded for equilibration.
Typical runs used to obtain the results presented below had
MCS;=5000 and MCS=50 000. As an initial test of the al-
gorithm, we verified for N=120X 120X 1 spins and J=J’
=1 that the model exhibits the onset of ferromagnetic order
at 7.=2.28 as expected for the 2D Ising model.

III. RESULTS

In this section we present the results for the intragrain and
intergrain ordering from a series of simulations at H=0 for
various values of J, L', and z. We first consider the case z
=1 as this reveals many of the key features of the present
analysis. Results are presented for L=12 and L'=5 or 10. A
snapshot of a typical spin configuration is illustrated in Fig. 2
for the case L'=10, J=0.03, and T=1.79.

The spin configuration shown in Fig. 2 shows the spins to
be highly ordered within the grain while the grains them-
selves show a considerable degree of disorder. The intragrain
ordering is clearly seen in Fig. 3 which shows the grain
magnetization defined by Eq. (3) as a function of tempera-
ture for several values of J and L'. The results show that the
intragrain magnetization is relatively insensitive to the value
of J and is at least qualitatively similar to the magnetization
for a finite-size 2D Ising system. The ordering of the spins
within the grains also gives rise to a well-defined peak in the
heat-capacity curves shown in Fig. 4 for the specific case
L"=10. Denoting the location of the upper peak in the heat
capacity by T, we note that both the location and the shape
of the heat-capacity curve in the vicinity of 7. are insensitive
to the value of J. We also note that the value of 7\ ~2.0 we
obtain from the heat-capacity curve is close to the value for
the 2D Ising model.

The temperature dependence of the intergrain order is re-
flected in the magnetization curves shown in Fig. 5. In con-
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FIG. 3. (Color online) Grain magnetization vs temperature in
the single-layer (z=1) granular Ising model with L=12 for two
grain sizes L'=5 and L’=10 and two values of J=0.01 and J=0.1
as shown in the legend.

trast to the intragrain magnetization, the intergrain magneti-
zation shows a strong dependence on the value of J, most
notably in the temperature that marks the onset of intergrain
magnetic ordering, which we denote by 7. The onset of this
intergrain magnetic ordering is also reflected in the peaks in
the magnetic susceptibility presented in Fig. 6 and in the
very small low-temperature peaks seen in the heat capacity
in Fig. 4.

The value of intergrain ordering temperature 7,, defined
by the peak in the susceptibility is plotted as a function of J
in Fig. 7 for L' =5 and 10. In both cases we see that, for low
values of J, T. shows a linear dependence on J while for
larger values of J the transition temperature deviates signifi-
cantly from linear behavior. This deviation of the transition
temperature from the linear dependence observed for larger
values of J is more pronounced for the case L'=10, which,
as will be shown, reflects the increasing importance of the
intragrain fluctuations as the size of the grains increase.
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FIG. 4. (Color online) Heat capacity vs temperature in the single
layer (z=1) granular Ising model with L=12 and L'=10 as a func-
tion of intergrain coupling J (values shown in the legend). Upper
and lower peaks correspond to 7. and T,, respectively.
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FIG. 5. (Color online) Total magnetization vs temperature in the
single-layer (z=1) granular Ising model with L=12 and L'=10 as a
function of intergrain coupling J (values shown in the legend).

Extending the analysis to the multilayer case (z>1) al-
lows for a broader understanding of the interplay between
intergrain coupling, intragrain coupling, and grain size.
Simulations were performed with z=5 and z=10 layers,
grain sizes L'=5 and L’=10 on systems with 12X 12 and
24 X 24 grains. Examples of results for the magnetization,
susceptibility, and heat capacity that are used to estimate 7,
and 7. in the multilayer case are plotted as a function of
temperature in Figs. 8—10. Within the accuracy of the simu-
lations, the values of 7 are insensitive to the specific value
of J, depending only on the variables z and L'. The values
for T obtained for J=0.1 from the simulations are summa-
rized in Table I.

Table I includes simulation results for J=J'=1 which cor-
responds to the case of L' =o. Theoretical estimates of uni-
form layered systems can also be made based on scaling
analysis.!® This yields the relation T.(z)=Tuf(z), where T,
~4.5] denotes the transition temperature of the bulk mate-
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FIG. 6. (Color online) Susceptibility vs temperature in the
single-layer (z=1) granular Ising model with L=12 and L'=10 as a
function of intergrain coupling J (values shown in the legend).
Peaks correspond to T..
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FIG. 7. (Color online) 7, vs J in the single-layer (z=1) granular Ising model with L=12 and L'=5 (left) or L’ =10 (right).

rial with J'=1.0, f(1)=2.27/4.51=0.5 while for z=3 the
function f(z) is given by

f(z)=1—z%(1—§) )

with a=1.37572, b=1.92629, and »=0.6289. Estimates
based on this theory of 7'(z) are included in parenthesis in
Table T (in the last column) and show good agreement with
the simulations.

In order to estimate 7. for finite L’ and z we note that the
correlation length for the 2D Ising model is given asymptoti-
cally by

’ -1 _ ‘I_,_J_,
§(1) —4(T YZ) (8)

We estimate the grain magnetization melting temperature by
the condition &'[T/(L",z)]=L’, and setting 7. =T.(z) we ob-
tain the following expression for T.(L’,z):

mJ=001
@ J=0.02
vV J=0.03
A J=0.04
» J=0.05

FIG. 8. (Color online) Magnetization vs temperature for differ-
ent values of J shown in the legend. Here, L'=10 and z=10.

T.(z)

T(L,7) =~ ——————.
(L',2) 1+T.(z)/4J'L’

)
Estimates for 7,(L,z) calculated from Eq. (9) are also in-
cluded in Table I for L' =5, 8, and 10. A comparison with the
results obtained from the simulations indicate that, despite
the very approximate nature of Eq. (9), the results are in
reasonable agreement with this analysis and certainly show
the correct systematic dependence of 7 on the dimensions of
the grains.

The above analysis of the dependence of 7. on the dimen-
sions of the grain suggests that for 7<<7. we have &' (T)
<L’ and hence, to a good approximation, the magnetization
within an individual grain may be considered uniform and
close to saturation. It is therefore reasonable to expect the
RGA to be valid for 7. <T.. Separating intragrain and inter-
grain contributions to the exchange energy, we express the
Hamiltonian given by Eq. (1) as

H=-T3 3 &»S,—JE( > s,sj)-szsi, (10)
I (ijel 4y \(ijyelns I iel

where 2y S:S; denotes the sum over all pairs of nearest-
neighbor spins contained in the /th grain, X, denotes the

7000
X 6000 2 W =001
= ® =002
5000 Vv J=0.03
l- A J=0.04
> =005
4000 -
- @
3000 = ®
‘0
| PS v
2000 D oo Y
Yy 4
[ | * N4
< A

N4 vV
[ >
1000 !
[] e v AAA»
<
0

FIG. 9. (Color online) Susceptibility vs temperature for different
values of J shown in the legend. Here, L'=10 and z=10.
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FIG. 10. (Color online) Heat capacity for different values of J shown in the legend. Here, L’=10 and z=10. Boxed region show peaks
where T~ T, with an expanded graph shown on the right. Note that the peaks associated with the intergrain ordering are barely discernible

over the noise.

sum over all nearest-neighbor grains and X/, denotes
the sum over all nearest-neighbor spins connecting grains /
and J.

Within the RGA, we can specify the state of the system in
terms of the L? variables o;= = 1 that denote the orientation
of the spins in the I/th grain. We can then write the Hamil-
tonian of the system as

L? L?
Hroa = Eo—Jetr > 0,0 — Her 2, 0 (11)
'y !
where we have defined
Jeff=JAg=JL,Z, (12)
Hes=HN,=HL'’z, (13)
E0=—J,[3ZL,2_L,(L,+2Z)]’ (14)

where E is the exchange energy due to the intragrain cou-
pling, which in the RGA is simply a constant. In the RGA
our model therefore reduces to the 2D Ising model and value
of T, is simply given by

TABLE L. Intragrain order temperature 7, at which the peak in
the heat capacity occurs as a function of the grain dimensions L’
and z. The values in parentheses are calculated from the scaling
relations Egs. (7) and (9).

L' 5 8 10 L'=x (J'=1)
z=1 1.78 (2.04) (2.12) 2.04 (2.15) (2.269)

z=5  3.15(3.35) (3.57) 3.65 (3.66) 4.03x0.01 (4.028)
z=8 (3.50) 3.7 (3.75) (3.84) 4.25+0.05 (4.246)
z=10 3.4 (3.55) (3.80) 3.9 (3.90) 4.32+0.01 (4.317)

T, =2.269] =2.269]L'z. (15)

The numerical estimates of 7. are plotted for z=5 and 10 as
a function of Jeg=JA,=JL'z in Fig. 11. This shows that for
z=5and JXL' Xz=1, T.=2.269/ indicating that the re-
sults are in good agreement with the predictions of the RGA.
We note also that the slope of lines used to fit the data shown
in Fig. 7 for z=1 are very close to 2.269L’, the value pre-
dicted by the RGA.

If we use T.(z,L)>T.(z,L) as our criteria for the validity
of the RGA up to the Curie temperature, T,(z,L), then we
obtain the following result:

2.0f(2)

_ 20flm) Jer _JL'z
1+ 1.13f(z)/L’ -

=20 >
f(2) =

(16)

Approximating f(5)=0.892 and f(10)=0.957 as unity and
setting J'=1, the above approximation reduces to J.;<<2.0.
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FIG. 11. (Color online) T, vs JXL' Xz in the multilayer case
for different J, L', and z (values shown in the legend). Straight line
has a slope of 2.269=T,/J.; equivalent to the result expected for
the 2D Ising model.
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FIG. 12. (Color online) (a) M-H loops for the 2D Ising model using the standard Metropolis algorithm with the magnetization plotted as
a function of H/J for two similar values of T/7. and (b) two plots of the scaled coercive field H°/J plotted as a function of the reduced

temperature 7/7, for two values of J as shown in the legend.

This is consistent with the results plotted in Fig. 11, which
shows the values of 7, deviating from the result predicted by
the RGA at J.=1.0. Using f(1)=0.5 the above inequality
reduces to J<<1.0/L’ for z=1, which is again consistent with
the data presented in Fig. 7, and shows the values of 7.
deviating from the result predicted by the RGA at J=0.1 and
0.05 for L"=5 and 10, respectively. These results suggest that
the RGA breaks down for some temperature T<<7. for
Joge!/ J' = f(z) and therefore must be applied with some cau-
tion in describing the properties of granular films in this
regime.

IV. M-H LOOPS

Hysteresis is an inherently nonequilibrium phenomenon, a
fact that is reflected in the observed dependence of the coer-
cive field on the measurement sweep rate. In the case of the
Heisenberg model, there are a number of simulation results
that indicate a reliable estimate of the coercivity can be ob-
tained using a simple Metropolis algorithm.!*!7 In addition,
it is possible to link the Metropolis algorithm to Langevin
micromagnetics through the Fokker-Planck equation and
quantify the time associated with each Monte Carlo step.!®1?
For the Ising model the situation is somewhat more compli-
cated with the coercive field being strongly dependent on the
particular algorithm used (e.g., Metropolis, Wolff, etc.) as
well as the number of Monte Carlo steps.?’ The results in this
section are therefore exploratory from which only tentative
conclusions can be made regarding trends rather than abso-
lute values. Comparative calculations on the Heisenberg
model with anisotropy will be reported elsewhere.

Two sample M-H loops together with a plot of the coer-
civity versus temperature calculated from the Metropolis al-
gorithm are presented in Fig. 12 for the 2D Ising model for
two values of exchange constant J. The coercivity data are
plotted in terms of the reduced parameters H./J and T/T,
and show the data collapse expected on the basis of simple
scaling arguments with limT_,TCHCzO. A similarly shaped
curve is found from micromagnetic simulations of aniso-
tropic Heisenberg model systems?! which correctly accounts
for the dynamics associated with hysteresis.

In the case of the granular Ising model, the low accep-
tance rates for the individual spin flips for 7<7, means that
calculating the coercive field using the Metropolis algorithm
is computationally far more demanding than in the case of
2D Ising model, while the Wolff algorithm, while ideal for
efficiently sampling states close to equilibrium, yields a
value of the coercive field that is effectively zero down to the
lowest temperatures.

In order to construct a MC scheme that allows for the
coherent reversal of individual grains in a manner that re-
spects ergodicity and detailed balance, we consider a variant
of the Wolff cluster algorithm used in the previous section.
Writing the energy for a given spin configuration in an ap-
plied magnetic field H as H=THy+7H', where we define

Ho=-1'2 2 SiS;. (17)
I (ijel
H’:—JE( D SiSj)—HESi. (18)
an \(ijperns i

The clusters are constructed using only the intragrain portion
of the exchange energy, H,, with the acceptance ratio deter-

mined by the Boltzmann factor e PA' While it can be
readily shown this algorithm respects both ergodicity and
detailed balance, constructing the clusters based on H,, en-
sures that the maximum cluster size cannot exceed the size of
a single grain. The motivation for this modified Wolff algo-
rithm is based on the assumption that the spins within a
single grain equilibrate much more rapidly than the indi-
vidual grains and is constructed such that the individual
grains maintain a “quasiequilibrium” as the grains order col-
lectively in response to the changes in the applied magnetic
field.

M-H loops were calculated using this modified algorithm
with J'=1.0 for several values of J with lattice dimensions
L=L"'=10 and z=1. The resulting coercive fields vs tempera-
ture are shown in Fig. 13 in terms of the reduced parameters
Hyl Jo and T/T,, where J and Hyy, are defined by Egs.

€

(12) and (13) and T, is defined by the peak position in the
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FIG. 13. (Color online) Plots of the scaled coercive field
Hl Joge [see Eqs. (12) and (13)] plotted as a function of the re-
duced temperature T/T, for several values of J (shown in the leg-
end) with z=1 and L’ =10.

susceptibility data. Data for the 2D Ising model are also in-
cluded for comparison. The results show some degree of the
data collapse expected if the RGA were valid; however, the
coercivity for the granular Ising model is seen to deviate
systematically from the predictions of the RGA as J. is
increased. While it is tempting to attribute this deviation to
the increasing significance of the internal grain degrees of
freedom as the intergrain coupling increases, in a manner
analogous to the results of the previous section, the possibil-
ity that the deviation is simply due to the inherent inadequa-
cies of the Ising model in determining the coercive field
cannot be ruled out. More detailed studies of the effect of the
internal grain degrees of freedom on the coercivity within the
context of the anisotropic Heisenberg model are currently in
progress are currently in progress.

V. CONCLUSIONS

We have presented the results from a series of Monte
Carlo simulations of an exchange coupled Ising model of a
highly anisotropic, granular media. The principal focus of
these studies is to examine the interplay between the fluctua-
tions within the grains, where the spins are strongly coupled
and the fluctuations associated with the more weakly coupled
grains. Various thermodynamic quantities that exhibit signa-
tures associated with the onset of the ordering of the spins
within a grain and with the onset of ordering between the
individual grains were calculated. From these quantities, es-
timates of the temperatures at which the intragrain and inter-
grain order occur, denoted as 7, and T, respectively, were
obtained. The simulations were performed using the Wolff
cluster algorithm to address the difficulties associated with
equilibrating a system with two distinct energy scales.

Two principal results emerged from these studies. First, it
was found that the intragrain transition temperature 7., esti-
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mated from the peak in the heat capacity, could be approxi-
mated by the formula

lé _ 2.0f(z)

T, 1+L13f(z)/L" (19)

where T}, denotes the Curie temperature for the bulk material
(i.e., J=J" and z— ) and f(z) is defined in Eq. (7). Second,
it was found that the intergrain transition temperature 7.,
estimated from the peak in the susceptibility, was consistent
with the RGA result, T.=2.27J., provided J./J" =f(2),
where J =JL'z denotes the effective coupling between the
grains in the RGA approximation. In this regime, the tem-
peratures at which the intergrain and intragrain ordering oc-
cur are well separated with 7, <T 2/2, and the fluctuations
within the individual grains do not play a significant role in
the intergrain ordering.

We have also simulated M-H loops for the granular Ising
model to examine the role of the intragrain fluctuations on
the coercive field. The simulations were performed using a
modified Wolff algorithm designed to capture phenomena on
a time scale associated with grain reversal. The results for
the coercive field shown in Fig. 13 show a systematic devia-
tion with increasing intergrain coupling. More detailed simu-
lations based on the Heisenberg model are currently in
progress to better model the nonequilibrium behavior of
granular recording media.

In conclusion, these simulations provide quantitative esti-
mates of the temperatures at which we may expect to observe
the onset of intergrain and intragrain ordering in highly an-
isotropic granular magnetic films. The results of these simu-
lations also help delineate the regime for which the RGA,
implicit in micromagnetics studies, may be applied with
some confidence. Specifically we show that the RGA is valid
provided T=<0.5T. and J.¢/J' <f(z) with 7. and f(z) given
by Eqgs. (7) and (9), respectively. Finally, while estimates of
the coercivity obtained from these simulations suggest that
the RGA is valid provided the effective coupling between the
grains J is small relative to the intragrain coupling J', these
simulations yield at best qualitative estimates of the coercive
fields. It is hoped that these results can serve as a useful
guide toward understanding the level of detail required to
accurately model magnetic recording processes that involve
a significant interplay between thermal fluctuations and in-
tergrain media exchange coupling as found in promising new
technologies such as HAMR as well as, for example, ex-
change coupled composite media.?
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