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Abstract. Ultrasonic velocity data obtained on CuFeO2 are re-analyzed in the context
of a Landau free energy which includes spin-lattice coupling. This comprehensive model
simultaneously accounts for the elastic and magnetic properties of CuFeO2 at zero field.
Softening of the elastic constants C11, C44, and especially C66, ineluctably indicates that the
R3m → C2/m structural transition at TN1 = 13.7 K is primarily pseudoproper ferroelastic.
The present analysis also suggests that the elastic anomalies observed at TN2 are dominated by
magnetoelastic coupling and strengthens the conclusion that the unusual properties of CuFeO2

are a consequence of the interplay between its magnetism and elastic deformations.

1. Introduction
The properties of the multiferroic compound CuFeO2 have been the object of many
theoretical and experimental investigations in recent years. This rhombohedral-lattice frustrated
antiferromagnetic system is well known for its unusual magnetic phase diagram and its
unconventional field-induced magnetoelectric effect correlated with the stabilization of a non-
collinear spin configuration [1]. In zero magnetic field, successive magnetic phase transitions
occur from paramagnetic to an incommensurate collinear spin polarization at TN1 = 13.7 K,
followed by a period-4 collinear (↑↑↓↓) spin modulation at TN2 ' 10.5 K, both with S||ĉ. As
the magnetic anisotropy of the Fe3+ ions is expected to be small, it has been recently proposed
that the spin-lattice coupling in CuFeO2 is more likely responsible for the stability of collinear
magnetic structures [2, 3]. Considering the affluence of experimental [4, 5, 6] and numerical
[3] evidences indicating that magnetoelastic effect must play a vital role in the properties of
CuFeO2, the focus of this work is to explore this effect within the frame work of a Laudau free
energy. The approach adopted here is to compare the model predictions to the elastic properties
of CuFeO2 obtained from recent ultrasonic velocity measurements [7].

2. Pseudoproper ferroelastic model
In a previous paper [7], we presented a soft-mode Landau free energy that accounts for most
of the temperature dependence of the elastic properties of CuFeO2 at zero magnetic field.
Our velocity measurements, shown in Fig. 1, confirm that the elastic properties are strongly
coupled to the magnetic order taking place at low temperatures. The most striking feature
shown in Fig. 1 is the large variation in the value of the velocity as the temperature approaches
TN1 = 13.7 K. This variation, produced by the softening of the lattice structure, is especially
pronounced for transverse waves traveling along x and polarized along y, VTxP (y). A similar
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temperature dependence is also noted for longitudinal waves propagating along x (VLx) and
shear modes associated with VTzP (x). According to our analysis [7], this peculiar temperature
dependence can be attributed to a pseudoproper ferroelastic phase transition [8] which coincides
with the magnetic phase transition at TN1. In conformity with the R3m high temperature crystal
symmetry, a two dimensional order parameter (η1, η2) can be associated with the softening of
E-symmetric modes belonging to the D3d group [8, 9]. Results derived in [7] are reproduced in
Table 1. For simplification the coupling terms [β1(e1 + e2)+β3e3](η2

1 + η2
2) have been neglected,

along with the elastic constant C13 = 0. As shown in Fig. 1, numerical predictions based on
these results agree particularly well with most experimental data obtained above TN2. It is
clear that the nature of the R3m → C2/m structural phase transition is driven by the softening
of the E-symmetric mode. Nevertheless, this model fails to reproduce observations at lower
temperatures. In particular, it gives no explanation for the temperature dependence of C33,
which, as previously proposed [7] could be attributed to magnetoelastic effects.

3. Magnetoelastic coupling
It has recently been shown, using a nonlocal free energy functional to represent the spin-spin
interaction, an effective free energy for the spin contribution at H = 0 can be written as [10]

FS = AQS2 − JzS
2 + BICS4 −BuS4∆4Q,G . (1)
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Figure 1. Temperature dependence of the relative velocity variation of longitudinal (L) and
transverse (T) modes.
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Table 1. Temperature dependence of the velocity of selected acoustic modes for a R3m → C2/m

pseudo-ferroelastic phase transition with η1 =
√

a(TN1−T )
2B , A(T ) = a(T − To).

modes Trigonal R3m Monoclinic C2/m

soft-mode soft-mode Spin
∆V
VLx

' 1
2

∆C11
C11

− δ2
1

2C11A(T ) − 1
2C11

δ2
1

A(TN1)+2Bη2
1

− β2
1

4C11BIC
+ 2γ1

C11
S2

z

∆V
VLz

' 1
2

∆C33
C33

0 0 − β2
3

4C11BIC
+ γ3

C33
S2

z

∆V
VTz(Px) ' 1

2
∆C44
C44

− δ2
2

2C44A(T ) − 1
2C44

δ2
2

A(TN1)+2Bη2
1

+ γ4

C44
S2

z

∆V
VTy(Px) ' 1

2
∆C66
C66

− δ2
1

2C66A(T ) − 1
2C66

δ2
1

A(TN1) +γ1−γ2

C66
S2

z

with S = Sz, AQ = asT +JQ, and BIC > 0. Since the effective exchange coupling parameter JQ

must minimize the spin-spin interaction, values for the incommensurate and commensurate spin
modulations are identified as JIC and JC . An anisotropy term, with Jz > 0, is also necessary
in order to account for collinear spin configurations with S||ẑ. The Kronecker delta function
∆4Q,G indicates that Umklapp terms are allowed whenever the spin wave vector modulation 4Q
coincides with one of the reciprocal lattice vector G. This term is particularly important as it
contributes to the stability of the period-4 phase. Minimizing the free energy (1) with respect
to S, we obtain

TN2 < T < TN1, S2
IC = as(TN1−T )

2BIC
, FIC = −a2

s(T−TN1)2

4BIC
, with TN1 = (−JQIC

+ Jz)/as

T < TN2, S2
C = as(Ts−T )

2(BIC−Bu) , FC = − a2
s(T−Ts)2

4(BIC−Bu) , with Ts = (−JQC
+ Jz)/as.

(2)
The condition FC = FIC at T = TN2, gives the relation

BIC

BIC −Bu
=

(
TN2 − TN1

TN2 − Ts

)2

. (3)

Setting parameters as = 1, Jz = 0.1, BIC = 0.5, Ts = 11.5 K, TN2 = 10.3 K, TN1 = 13.7 K, and
Bu = 0.46, Eq.(2) leads to the usual mean field continuous transition at TN1 followed by a first
order phase transition at TN2, in accord with the experimental observations.

A total free energy, which involves the spin (Eq. 1) and soft-mode degrees of freedom, can be
expanded as

Ft(S, eα, η) = Fη + Fηe + Fe + FS + FSe + FηS (4)

in order to include the magnetoelastic coupling. Explicit expressions for the first three terms,
associated with the pseudoproper ferroelastic free energy, can be found in [7]. All magnetoelastic
coupling terms must be invariant under time reversal and R3m symmetry operations. Coupling
between Sz and strain components eα (Voigt notation) takes the form

FSe = β1S
2
z (e1 + e2) + β3S

2
ze3 + γ1(2e2

1 + 2e2
2 + e2

6)S
2
z + γ2(4e1e2 − e2

6)S
2
z

+ γ3e
2
3S

2
z + γ4(e2

4 + e2
5)S

2
z + γ5((e1 − e2)e4 + e5e6)S2

z , (5)

where linear (eαSz) and quadratic (e2
αS2

z ) terms are included. As outlined in [7], coupling
between the soft-mode and Sz gives only one term, FηS = γ(η2

1 + η2
2)S

2
z . Minimization of the
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full free energy (4) gives S2
z ∝ (η2

1 + η2
2) and

e1 − e2 = − 2 (δ1 C44−δ2 C14)
C44(C11−C12)−2C2

14
η1, e4 = δ2 (C11−C12)−2δ1 C14

C44(C11−C12)−2C2
14

η1,

e1 + e2 = − 2 δ3
C11−C12

(η2
1 + η2

2)− 2 β1

C11−C12
S2

z , e5 = (δ1 C14−δ2 C66)
C44C66−C2

14
η2,

e3 = − δ4
C33

(η2
1 + η2

2)− β3

C33
S2

z , e6 = (δ2 C14−δ1 C44)
C44C66−C2

14
η2.

(6)

The magnetoelastic effects on the sound velocity is presented in the last column of Table 1.
According these results, the linear coupling constants, β1 and β3, should give rise to a step
like variation at TN1 on VLx and VLz. Since no such variation is observed, these terms are
neglected. The model prediction for ∆V/VLz is then particularly interesting as it indicates that
longitudinal modes propagating along z can be used to probe the temperature dependence the
magnetic order parameter Sz. In order to test this prediction, the temperature dependence
of ∆V/VLz has been compared to Eq. 2, with S2

IC replaced by as(TN1 − T )2β. As shown in
Fig. 1d, a very good agreement is obtained when the mean field critical exponent is replaced
with the fitted value β = 0.25. We note that this value is significantly lower than of the XY
universality class [10]. This result has been used to calculate the magnetoelastic effect on the
velocity of other modes. Finally, Fig. 1 also shows numerical predictions which consider both
ferroelastic and magnetoelastic effects. For C11, C44, and especially C33, there is much improved
agreement between the model’s predictions and the experimental data when spin-lattice coupling
is accounted for.

4. Conclusions
This study presents an analysis of magnetoelastic effects on the ultrasonic velocity data
previously obtained for CuFeO2 [7]. In order to fully account for the experimental observations,
two types of order parameters are required. While, close to TN1, anomalies observed on velocity
measurements are driven by E-symmetric soft-modes, our numerical analysis indicates that
magnetoelastic effects are responsible for variations observed at TN2. The interplay between
these two mechanisms is particularly evident on C33 where the temperature dependence at low
temperatures is well reproduced by a magnetoelastic coupling term, with no contribution from
the soft-mode. Within the Landau model considered in this work, Eq. 6 also indicates that
the R3m → C2/m symmetry change observed at TN1 is associated with the order parameter
η = (η1, 0) with the spin modulation Sz serving in a second role.
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