
1 © 2016 IOP Publishing Ltd Printed in the UK

1. Introduction

Investigations of the antiferromagnetic (AF) kagome lattice 
continues to reveal unusual classical and quantum spin struc-
tures [1, 2] largely due to the macroscopic degeneracy associ-
ated with the four nearest neighbors (NN) of corner sharing 
triangles [3–5]. With only Heisenberg (or XY) exchange inter-
actions, q  =  0 or ×3 3  magnetic order characterized by 
planar 120° spin structures are among the degenerate ground 
states of the 2D lattice. Three-dimensional structures com-
posed of weakly coupled kagome layers having rhomohedral 
symmetry or distorted hyperkagome lattice structures have 
also been studied [6, 7].

Recent studies of a truly 3D kagome structure embedded in 
a fcc lattice composed of ABC stacked kagome layers along 
⟨ ⟩1 1 1  directions with eight AF NNs (depicted in figure  1) 
have been motivated by the ordered L12 phase of IrMn3 and 
its sister compounds. Neutron diffraction measurements [8] 
revealed the so-called T1 structure, in which Mn spins lie in 
{ }1 1 1  planes along ⟨ ⟩1 1 2  directions. These correspond to the 
q  =  0 kagome spin configuration [4], which may be character-
ized as three interpenetrating ferromagnetic sublattices. First 
principles calculations [9] show an unusually strong effective 

cubic anisotropy term with local axes along ⟨ ⟩1 0 0  directions 
(see figure 1). In the same article, simulations using stochastic 
micromagnetic equations were reported along with confirma-
tion of the T1 ordered state and high transition temperature 
≈T 1145N  K, consistent with experiment [8]. Monte Carlo 

(MC) simulations of bulk IrMn3 without anisotropy were con-
ducted in [10], and with cubic anisotropy added in [11] based 
on the Hamiltonian obtained in [9]. They also confirmed the 
T1 state and showed that including cubic anisotropy changes 
the order of the transition from first to second and gives rise  
to a net magnetization perpendicular to the kagome planes.  
In addition, these works emphasize that in the absence of cubic 
anisotropy the spin configurational degeneracies associated 
with NN exchange interactions of corner-sharing triangles 
that exist in the 2D case persist in the 3D fcc kagome lattice. 
In [10], the MC results, supported by analytic calculations in 
the ground state, reveal that sublattice spins on entire { }1 1 1  
planes can switch between energetically equivalent states. 
These degeneracies give rise to fluctuations in the MC results 
for the order parameter vs temperature. These degeneracies, 
evidenced in the MC results, were shown to be lifted with the 
addition of cubic anisotropy [11]. The impact of these effects 
on the spin wave dispersion curves was also examined [12].
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In contrast with ferromagnetic films [13, 14], layered struc-
tures composed of stacked frustrated AF lattices have received 
relatively little attention. Surface anisotropies (typically of the 
axial type normal to the film plane) can be substantial in mag-
nitude and compete with those in the bulk [15, 16]. In the case 
of ferromagnetic films, it is well known that that the com-
bined impact of finite-size effects associated with the reduced 
geometry as well as a reduction of coordination number and 
symmetry at the surface, can lead to significant changes in the 
spin structure relative to the bulk case. Most of the focus on 
AFs has involved helimagnets stabilized by either competing 
exchange interactions [17] or Dzyaloshinskii–Moriya interac-
tions [18, 19]. Studies of surface effects in geometrically frus-
trated AFs have been isolated but reveal that profound changes 
can occur in the magnetic order [20], especially when sand-
wiched with a ferromagnet [21]. Surface magnetic ordering 
is believed to play an important role in the recently revealed 
antiferromagnetic spintronics of IrMn thin films [22].

Alloys of IrxMn100−x, in both ordered and disordered 
phases, have found widespread utility in magnetic recording 
technology as the pinning AF layer, giving rise to the exchange 
bias (EB) phenomenon, in multi-layer spin valves [23, 24]. A 
neutron scattering investigation of 200 nm films of chemically 
ordered IrMn3 suggests that the bulk T1 structure is preserved 
in this case but that chemically disordered films revealed a 
new magnetic structure characterized by a tilting of the 
moments away from cube face diagonals by about °45  [25]. 
This work also reports on studies of IrMn3/Fe(bcc) bilayers 
and exchange bias was measured. Of particular relevance to 
the present work is an electronic structure study of IrMn3/
Co(fcc) interfaces giving rise to a moderate surface aniso-
tropy where the surface spin structure impacts the magn etic 
order in the first two or three layers and exhibits perpend-
icular coupling between Mn and Co spins [26]. This model, 

which includes Dzyaloshinskii–Moriya type antisymmetric 
exchange, served as the basis for a subsequent stochastic 
micromagnetic study of IrMn3/Co(fcc) films that yielded EB, 
detected from calculated MH hysteresis loops for a magnetic 
field applied perpend icular to the film plane [27]. We note 
that in spin-valve technology, EB is measured with the field 
applied in the film plane and the microscopic mechanism may 
be quite different.

In the present work, spin structures in the ground state as 
well as at finite temperature are examined using an effective 
field method and Metropolis MC simulations for three and 
six-layer ABC stacked kagome layers forming (1 1 1) planes. 
Interior layers are assigned a cubic anisotropy (as in the bulk 
case) whereas surface layers are given a uniaxial aniostropy 
− ′DS

z
2  (where ˆ ′z  is perpendicular to the (1 1 1) plane), as 

illustrated in figure 2. The magnetic order of the surface and 
inter ior layers, as well as the Néel temperature, are studied as 
a function of D. The relative impact of the two types of aniso-
tropy on the reduction of the fundmental kagome spin degen-
eracy discussed above is explored. Special attention is given 
to the magnetization with a view of its potential relevance to 
the EB effect.

The remainder of the paper is organised as follows. In sec-
tion 2, a model for films of IrMn3 is described. In section 3, 
the ground state of the system is analyzed analytically with 
results supported by calculations using an effective field 
method as well as MC simulations (with details provided in an 
appendix). In section 4, MC simulation results on the specific 
heat are presented for the films at surface and interior layers. 
Corresponding results for the order parameters and magneti-
zation are shown in sections 5 and 6, respectively. Our conclu-
sions are given in section 7.

2. The model

We consider films composed of ABC stacked kagome layers. 
Inspired by the work in [9] and taking into account effects of 
axial surface anisotropy, we consider the Hamiltonian

∑ ∑ ∑

∑

=− ⋅ − ⋅

− ⋅

γ
γ

∈ ∈

∈
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D n S ,

i j
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2

surface
1 1 1

2

( )

( )
〈 〉 { }

→ → → →

→ → 
(1)

where γ
→n  are unit vectors along x, y and z axes of the con-

ventional fcc cell of the corresponding bulk lattice and →n1 1 1 
is a unit vector normal to the surface (in the [1 1 1] direc-
tion). Here, the isotropic exchange interaction (J ) is restricted 
to the NN interactions. It is also assumed that the exchange 
interaction is the same for six NN surface spins and the eight 
NN interior spins. The second term includes the contribution 
of the effective on-site cubic anisotropy [9], and the third 
term represents the assumed axial surface anisotropy. For 
the remainder of this paper, dimensionless units are defined 
by taking J  =  −1. In the particular case of IrMn3, the cubic 
anisotropy constant has been estimated as 10% of value of | |J  
[9] so that we assume here for convenience the value K  =  0.1 
throughout. The surface anisotropy constant D is varied over 

Figure 1. Fcc atomic structure of the bulk IrMn3. Ir ions (blue) 
at the vertices of the cube are not magnetic. Mn ions (red) form 
magnetic kagome lattices in { }1 1 1  planes. Local anisotropy axes 
are depicted.
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a range of positive values thus defining an easy axis which is 
perpendicular to the plane, which is common in films [13, 14]. 
Note that a negative value of D would not influence the spin 
structure in the ground state except to force the surface spins 
to lie on the (1 1 1) plane.

3. Ground state

The following analysis of the ground state spin structures 
corresponding to the model described above is carried out 
for three and six layer films in the Cartesian coordinate 
system with axes coinciding with the conventional unit cell 
of the corresponding infinite fcc kagome lattice. While the 
generalization of the analysis of ground state properties to 
a larger number of layers is straightforward there is little 
qualitative change in the spin structure and the extension to 
the general case is only discussed briefly towards the end of 
this section.

Based on the results from low temperature MC simulations 
we assume here, as in the bulk case [11], that there are only 
three distinct spin directions in each layer. Denoting the sur-
face spins by S S S, ,1 2 3, and the interior spins by M M M, ,1 2 3 
such that spins with the index 1 have as NNs only spins with 
indices 2 and 3, spins with the index 2 has NNs only those 
with indices 1 and 3, etc. The local cubic anisotropy axes for 
the interior spins M1, M2, and M3 are x̂, ŷ, and ẑ, respectively. 
For the three layer case the expression for the energy per spin 
may then be written as

= − ⋅ + ⋅ + ⋅

− ⋅ + ⋅ + ⋅

− ⋅ + + ⋅ + + ⋅ +

− + + + + +

+ + + − + +
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To study minimum energy spin configurations based on equa-
tion (2) for K  =  0.1 as a function of D we first consider the 
two limiting cases | |� �D K J  and | |� �K J D as these 
limits can be treated analytically. Numerical results based on 

an effective field method [28] are also presented over a range 
of values of ⩽<D0 10 that interpolate between these two 
limiting cases.

Consider first the limit � �D K J and begin by with the 
specific case D  =  K  =  0. In the absence of anisotropy the 
spins will align to minimise the exchange energy such that 
=S Mi i and

⋅ = ⋅ = ⋅ = − ≠i jS S M S M M
1

2
fori j i j i j (3)

with /= −E J5 3ex . We note that the minimum exchange 
energy is highly degenerate since it is invariant under any 
global rotation of the spins. To understand this degeneracy we 
define ground state Φ0 in which the spins all lie in the (1 1 1) 
plane with

( )= = − −S M
1

6
1, 2, 11 1 (4a)

( )= = − −S M
1

6
2, 1, 12 2 (4b)

( )= = − −S M
1

6
1, 1, 23 3 (4c)

This °120  spin configuration is shown schematically in 
figure 3(a). From this we can construct a sequence of ground 
state spin configurations by a rotation of Φ0 around the axis 

( )/= −u 1, 1, 0 3  by some angle θ to generate a new ground 
state ( ) ( ( ) ( ))θ θ θΦ = M S,i i  where ( )θMi  and ( )θSi  are defined 
by

( ) ( ) ( )θ θ θ= = ⋅S M R Mi i iu (5)

with ( )θRu  representing the rotation tensor. Figures 3(b) and 
(c) show the states ( )Φ °70.582  and ( )Φ °90 , respectively, dis-
cussed below.

This degeneracy is broken by both the cubic aniso-
tropy of the interior spins and the axial anisotropy of the 
surface spins. We consider first the case of finite K  =  0.1 
and D  =  0. The normalised cubic anisotropy energy 

( ) ( ( ) ( ) ( ))θ θ θ θ= − + +ε M M Mx y zcubic 1
2

2
2

3
2  is plotted in figure 4 

over the range ⩽ ⩽π θ π− . From figure 4 we see that ( )θεcubic   
is two fold degenerate with minima corresponding to θ ≈ °70.61  
and θ = °1802  with ( ) ( )θ θ= = −ε ε 2cubic 1 cubic 2 . We note that 

Figure 2. Schematic model of the film with three layers.
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the spin configuration corresponding to the state ( )θΦ 1  lie in 
the (1 1 1̄) plane, while for the ( )θΦ 2  they lie in the (1 1 1). The 
specific spin configuration for the ( )θΦ 1  state is given by

( )= = − −S M
1

6
2, 1, 11 1 (6a)

( )= = − −S M
1

6
1, 2, 12 2 (6b)

( )= =S M
1

6
1, 1, 23 3 (6c)

and is shown schematically in figure 3(b). Thus the effect of 
the the cubic anisotropy is to reduce the continuous degen-
eracy of a global rotation to a eightfold degeneracy (as we 
could have equivalently used the [0 1 1] or [1 0 1] as our axis 
of rotation, or reversed the spins ( →−S Si i in equations (4)).

A plot of the normalised axial anisotropy energy 
( ) (( ˆ ) ( ˆ ) ( ˆ ) )θ = − + +ε S n S n S n. . .axial 1 1 1 1

2
2 1 1 1

2
3 1 1 1

2  as a func-
tion of θ is also presented in figure 4. The graph shows two 
minima at θ =± °90  in which the spins lie in the (1 1 2̄) plane 
with S3 directed along n̂1 1 1 axis, as shown in figure 3(c), and two 
maxima at θ = 0 and °180  in which the spins lie in the (1 1 1)  
plane. The two curves show that the surface axial aniso tropy 
will break the degeneracy of the ( )θΦ 1  and the ( )θΦ 2  states; 
D  =  0+ will select ( )θΦ 1  as the ground state while D  =  0− will 
select the ( )θΦ 2  state. Since we are interested only in the case 
D  >  0, ( )θΦ 1  is the relevant ground state when D is small yet 
finite.

The above results apply when D  =  0+ , K  =0.1 for �K J.  
In order to compare the ground state spin configuration obtained 
in these limiting cases with that obtained for small but finite D 
and for K  =  0.1, we have calculated the ground state to second 
order in K/J and D/J.

The details of the perturbation theory are described in 
the appendix. Results from this perturbation expansion were 

Figure 3. Ground state spin configurations for various limiting cases of the parameters D, K and J are shown schematically. The triangular 
surface shown in all the above figures indicates the (1 1 1) surface. (a) The ground state spin configuration for D  =  K  =  0 refered to as Φ0 in 
the text. (b) The ground state spin configuration for both the interior spins (Mi) and the surface spins (Si) for the case D  =  0+ , K  =  0.1 and 
| |�J K, (c) ground state spin configuration for the surface spins (Si) for the case | |�D J . (d) The ground state spin configuration for the 
interior spins (Mi) for the case K  =  0.1 and | |� �K J D.

Figure 4. Normalised anisotropy energies ε cubic  =  −Σi 
( ( ) ( ) ( ))θ θ θ+ +M M Mx y z1

2
2
2

3
2  and ( ( ) ˆ )θ= −∑ε S n.i iaxial 1 1 1

2 
calculated for the states ( )θΦ  as a function of the rotation angle θ.
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verified using the effective field method (EFM) [28] and using 
low temperature (T  =  10−6) MC simulations. Table 1 shows 
that there is good agreement between the analytic calculation 
results and the two numerical methods at the smaller values 
of D. At all the values of D tested, the two numerical results 
show good agreement.

The angles between NN spins calculated for K  =  0.1 and 
D  =  0.02 are shown in table  2. They are very close to, but 
not exactly equal to, °120 . However, the angle between the 
spins and the surface normal is significantly different (eg. in 
the limit → +D 0  we have, with an overline denoting the angle 

between two vectors, ˆ = °̂n S 19.51 1 1 3  and ˆ = °̂n S 118.11 1 1 1 ) 
and clearly shows the effect of the surface axial anisotropy 
tilting the spins towards the n̂1 1 1 axis while essentially main-
taining the characteristic °120  kagome spin structure between 
the NNs.

The other limit that admits an analytical solution is the 
case � �K J D. Here, surface anisotropy will dominate and 
hence the surface spin structure will be of the Ising type with 
the spins aligned along the n̂1 1 1 axis, with S3 pointing away 
from the plane and S1 and S2 pointing towards the interior, 
as shown in figure  3(c). Whereas in the previous case the 
dominant nature of the exchange required that =S Mi i, such 
an assumption cannot be made here. Instead, noting that the 
interlayer exchange only couples S2 and S3 to M1, and given 
that = −S S2 3, then the net exchange field acting on M1 will 
be zero. A similar argument may be applied to M2. On the 
other hand M3 will experience a net exchange field from S1 
and S2 which is finite. Based on this argument, the expression 
for the energy given by equation (2) reduces to

( )

( ) ( )

= − ⋅ + ⋅ + ⋅ − +

− + + + + +

E J D J

K M M M J M M M

M M M M M M
2

9

2

3

4

9
1

9

4

9 3
.x y z x y z

1 2 1 3 2 3

1
2

2
2

3
2

3 3 3

 (7)
From here it immediately follows that for �K J the ground 
state solution for the middle layer spins will be of the form 
given by equation (5) with M3 pointing in the [1 1 1] direction 
as shown schematically in figure 3(d).

The above analysis shows that in the limit �K J, the effect 
of the surface axial anisotropy is to transform the essentially 
antiferromagnetic q  =  0 ground state with the spins lying in 

the (1 1 1̄) plane in the limit → +D 0 , into a state in which the 
surface spins are aligned perpendicular to the (1 1 1) plane in a 
collinear ferrimagnetic configuration (S3 up, S1 and S2 down),  
while the interior spins are simply rotated by °90  around the  
(1 1̄ 0) axis so that M1, M2 and M3 are aligned parallel to  
the (1 1 2̄) and M3 is aligned parallel to S3 (such that the angle 
betwen NN interior spins is °120  in the limit →∞D ).

To determine how the system transforms between the two 
limiting cases discussed above we have computed ground state 
of equation (2) using the EFM for K  =  0.1 and 0  <  D  <  10. 
Calculations for both L  =  3 and 6 were performed on lattices 
of size × × L6 6  with periodic boundary conditions in the lat-
eral direction. A schematic of the ground state configuration 
for K  =  0.1 and D  =  1.0 is shown in figure  5 for the three 
layer case.

To illustrate the dependence of the ground state spin con-
figuration on D, the angles between the NN spins within the 

same layer, denoted by ̂S Si j  and ̂M Mi j , and adjacent layers, 
denoted by ̂M Si j , are plotted as a function D for the three layer 
case in figure 6. The angles were calculated for each pair of 
adjacent spins and then averaged over the lattice. All of these 
ground-state results were verified by zero-T MC simulations 
using lattices × ×18 18 3 at a temperature T  =  10−6.

The significance of these results from the perspective of 
exchange bias is clearly demonstrated in figure 7 in which the 
ground state surface magnetization per unit spin together with 
magnetization per unit spin of the interior layer(s) for both 
L  =  3 and 6 are plotted. The data show a significant surface 
magnetization which increases with increasing D, saturating 
at /=M 1 3surf  per spin for both the three and six layer cases. 
In the three layer case, the magnetisation of the interior layer 
initially increases from effectively zero to a maximum value 
of 0.04 at ≈D 1.4, decreasing monotonically thereafter. For 
the six layer case, the interior magnetisation is effectively zero 
( <M 0.0009int ) over the entire range of D. Thus the effect of 
the axial surface anisotropy is to induce a ferrimagnetic sur-
face spin configuration with a finite surface magnetization 
enclosing an antiferromagnetic kagome spin configuration 
within the interior layer(s).

4. Monte Carlo simulations

The MC simulations presented in this section have been car-
ried out for systems consisting of L layers, with L  =  3 and 6, 

Table 1. Comparison of the ground state energy per spin of the 
× ×6 6 3 system obtained by different methods.

D 2nd order Monte Carlo Effective field

0 −1.689 102 78 x −1.689 102 81
0.01 −1.692 13 x −1.692 205 53
0.02 −1.694 94 −1.695 32 −1.695 453 66
0.1 −1.713 93 −1.722 32 −1.722 387 72
0.5 −1.825 54 −1.867 91 −1.867 922 13
1 −1.968 48 −2.083 07 −2.083 071 48
3 −0.430 10 −3.281 52 −3.281 524 67
5 x −4.597 19 −4.597 199 86
10 x −7.9198 −7.919 812 72

Table 2. Angles between NN spins and the surface normal, n̂1 1 1, 
in ground state configuration calculated for K  =  0.1 and D  =  0.02 
using perturbation method described in the appendix.

S1 S2 S3 M1 M2 M3 n̂1 1 1

S1 °119.55 °120.23 °119.64 °120.23 °119.9
S2 °119.55 °119.64 °119.64 °120.23 °119.9
S3 °120.23 °120.23 °120.13 °120.13 °7.8
M1 °119.64 °120.13 °119.72 °120.11 °119.9
M2 °119.64 °120.13 °119.72 °120.11 °119.9
M3 °120.23 °120.23 °120.11 °120.11 °9.1

J. Phys.: Condens. Matter 28 (2016) 196003
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of dimension ×′ ′L L . Most of the results presented below were 
done with ′=L 18 and were found to differ only marginally 
from corresponding results at ′=L 12. In all cases, the system 

is initialized to some random spin configuration and a simula-
tion performed at some suitably high initial temperature (typi-
cally T  =  2.5). The system is then cooled by using the final 
state of the previous simulation as the initial configuration 
for the subsequent simulation, as the temperature is lowered. 
Between ×2.0 105 and ×2.5 105 MC steps (MCS) were used, 
with the initial 10% being discarded for equilibration.

Figure 5. Ground state of the 3-layer system with D  =  1 and K  =  0.1.

Figure 6. Ground state angles for the three layer system  
(a) between spins in the same layer and (b) between spins in 
adjacent layers plotted as a function of D for K  =  0.1.

Figure 7. Magnetization per spin of the surface and interior spins 
as a function of D for both (a) three layer and (b) six layer cases. 
Also shown is the total magnetization Mf (also see section 6).

J. Phys.: Condens. Matter 28 (2016) 196003
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Figure 8 shows the specific heat per spin for the three and 
six layer systems with K  =  0.1, as a function of temperature 
and surface anisotropy D. The sharp peaks correspond to the 
onset of magnetic order. We note that for sufficiently large D 
the specific heat data for the three layer system exhibit a broad 
shoulder at high temperature that does not appear in the six 
layer case.

That the high-T shoulder is observed only for three-layer 
film suggests that it is a surface effect. To confirm this we 
introduce the quantities Csurf and Cint arising from the energy 
fluctuations of the surface and the interior spins, respectively. 
These are given by the following expressions

(⟨ ⟩ ⟨ ⟩ )β= −C k E Esurf B
2

surf
2

surf
2 (8)

(⟨ ⟩ ⟨ ⟩ )β= −C k E E ,int B
2

int
2

int
2 (9)

where Esurf and Eint denote the energy associated with the sur-
face and interior layers respectively that include inter-layer 
couplings. Note that Csurf and Cint are not strictly specific 
heats since the Boltzmann factor used in the MC simulations 
involves the total energy of the mutlti-layer systems. The data 
for Csurf and Cint as a function of T are shown for in figures 9 
and 10 and suggest that the high-T shoulder may be attributed 
to surface term in the Hamiltonian. This is analogous to the 

Schottky anomaly [28] observed in simulations performed at 
large K values in bulk IrMn3 [11].

The energy fluctuations for both surface only and interior 
only cases exhibit an upturn as T approaches zero, a feature 
not seen in figure 8 when all layers are included and gives the 
correct limit ≈C 1 in the limit →T 0. The precise reason for 
this upturn is not known but appears to be associated with the 
fact these quantities defined by equations (8) and (9) are not 
true specific heats.

For completeness, we also show in figure  11 the impact 
of larger lateral dimensions ( ′L ) on the total specific heat in 
the case D  =  0.1. There is a small difference in the results 
between =′L 12 and 18 but for larger systems, the results sug-
gest little effect.

Figure 12 shows the transition temperature for both three 
and six layer cases as a function of D estimated from the peaks 
in the specific heat. As expected for thin-film systems [16], the 
ordering temperatures estimated from the specific heat data 
are, in all cases, less than that of the bulk system, �T 0.52N  
[11]. For the three layer film, there is well formed maximum 
in the specific heat near D  =  0.7, which also exists for the 
six layer case but is not so pronounced. We also note that as 

→∞D , TN does not tend to 0, but to some finite value because 

Figure 8. Specific heat for (a) three layer and (b) six layer films. Figure 9. Energy fluctuations per spin from surface layers for (a) 
three layer films and (b) six layer films.

J. Phys.: Condens. Matter 28 (2016) 196003



H V Yerzhakov et al

8

the D term acts only on the surface spins and the system can 
still establish order through coupling to the interior layers. By 
way of comparison, for K  =  D  =  0.1, the transition temper-
ature is about 0.52 in the 3D case. The film results above 
indicate that it has values of about 0.41, for L  =  6 and 0.25 
for L  =  3. Comparing figures 8 and 10 it is evident that the 
inter ior spins in the six layer case provide the main contrib-
ution to the magnetic order, as expected.

5. Order parameter

The ground states of the form given by equation (4) consist 
of three interpenetrating ferromagnetic lattices and therefore 
the onset of order can be characterised by the order para-
meter [11]

∑ ∑ ∑=
γ γε

M
N

S
1

t
i

i
layers

 (10)

where ∑γ denotes the sum over three sublattices. The order 
parameter defined by equation (10) is calculated from cooling 
cycles for both three and six layer films is plotted as a func-
tion of temperature in figure 13. The transition temperatures 

deduced from these figures  correspond approximately to 
those estimated from the specific heat peaks. Differences 
between the three and six layer films are attributed to the rela-
tive contributions of the surface vs interior layers. The plots 
of Mt show that for three layer films the order parameter is 
not always saturated at zero temperature and that some of 
the points show over a much wider range of scatter around  
the transition temper ature than the corresponding results for the  
six layer case. These features are largely independent of the 
value of D. Such effects may be attributed to the presence 
of planes of atoms in which pairs of NN spins have been 
interchanged as discussed earlier and described for the 3D 
case in [10] and [11]. In the absence of the cubic anisotropy  
(ie K  =  0) the ground state energy of the film, like the 3D 
fcc Kagome lattice, is left invariant by the presence of such 
defects. This give rise to the large degeneracy of the ground 
state spin configurations that characterises the kagome lattice 
in both two and three dimensions. The presence of a finite 
cubic anisotropy (ie K  >  0) lifts this degeneracy and serves 

Figure 10. Energy fluctuations per spin from interior layers for (a) 
three layer films and (b) six layer films.

Figure 11. Total specific heat for six layer films with D  =  0.1 and 
varying lateral dimensions ′ ′×L L .
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to suppress the presence of such defects at low temperatures. 
Previous simulation studies show that a value of K  =  0.1 is 
sufficient to remove such defects over the entire temperature 
range < <T T0 N [10] for bulk systems. To further emphasize 
this point, we show in figure 14 MC simulations results for 
order parameter in the three-layer case but now with cubic 
anisotropy K  =  0.1 also included for the surface layers which 
show smooth behaviour and saturation (in all but one case) 
at low T. Similar results (not shown) are also obtained in 
MC simulations with increasing temperature (starting from a 
saturated state). The lack of saturation at low T for the one 
case of D  =  3 in figure 14 is a reflection that for larger values 
of D the smaller cubic anisotropy values are not statistically 
guarenteed to remove the defects. Additional runs using the 
same parameters reveal non-saturation for D  =  10 as well. 
Examination of the spin configuration in these cases reveals 
planes of defects where sub-lattice spins have been switched, 
as found in [10] in the case of zero cubic anisotropy and hence 
that the sytem has not relaxed to a ground state spin configura-
tion in the limit →T 0.

In the context of the current model the effects of the aniso-
tropy terms on these defects are somewhat more complicated. 
It can readily be shown that the axial surface anisotropy leaves 

the energy invariant under the interchange of NN spins along 
planes of atoms. This is consistent with the observation that 
the scatter in the order parameter near TN and the lack of satur-
ation at the lowest temperature observed in the results pre-
sented in figure 13 is largely independent of the parameter D.  
The suppression of such features with increasing thickness 
reflect the fact that the energy of such defects, due to the cubic 
anisotropy, will be proportional to the number of interior 
layers.

6. Magnetization

In section 3 it was shown that the ground state for both three 
and six layer films is characterised by ferrimagnetic surface 
layers with a saturated magnetization /=M 1 3surf  per spin in 
the limit →∞D  with essentially antiferromagnetic inter ior 
layers. In figure  15 the surface magnetization per spin is 
plotted as a function temperature for several values of D. 
While the data around TN show a lot of scatter, the magne-
tization for both the three and six layer films appears to be 
significant over the temperature range < <T T0 N. Projections 

Figure 13. Order parameter Mt defined by equation (10) of the 
films with (a) three layers and (b) six layers obtained from the 
cooling cycle. Figure 14. Order parameter Mt for the three-layer case with cubic 

anisotropy K  =  0.1 included for all layers obtained from the cooling 
cycle.
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of the magnetizations of the top layer onto the normal to the 
film ( ′z -axis, parallel to [1 1 1]) were also calculated and are 
nearly identical to the results of figure 15 indicating that the 
magnetization vector points nearly perpendicular to the film 
plane and that there is no preferrential direction (up or down) 
along the ′z  axis as to be expected from uni-axial anisotropy. 
Note that the magnetization (defined as the sum of all spin 
vectors, distinct from the order parameter) is defined such that 
it has a maximum value of 1/3 per layer.

The data in the six layer case also show, except close to TN, 
that the surface magnetization increases monotonically with 
increasing D for a given T (consistent with the ground state 
results of figure 7). In the three layer case, the dependence of 
the surface magnetization shows a more complex dependence 
on D and T due to the fact that TN shows a strong dependence 
on D. However, it can be shown that, even for the three layer 
case, the surface magnetization increases with increasing D 
for a constant value of / ( )T T DN .

The magnetization of the interior layers was also calcu-
lated and found to be small, less than 0.03, over the same 
range of D and T values. This result is expected based on 
the ground state magnetization of the interior layers shown 
in figure  7. The antiferromagnetic character of the interior 

also is reflected in the plots of temperature dependence of 
the magnetization per spin of the entire film Mf shown in 
figure 16. These results are consistent with the magnetization 
in the bulk case from [11] (with D  =  0 and K  =  0.1) which 
exhibits a saturation value of about 0.008 at low T. Also note 
that Mf may be written as

( )= + −M M
L

M M
2

f int surf int (11)

and assuming �M Mint surf, giving the approximate scaling 
relation /≈M M L2f surf .

We close this section by noting that the finite temperature 
results for the six layer film, like the ground state calculations 
of the previous section, show many of the characteristics one 
would expect of a thick film, while the behaviour of the three 
layer film is dominated by the surface magnetization and its 
properties are strongly dependent on the value of D. While 
the magnetic properties of the three layer film are interesting, 
the properties of the six layer film are more representative of 
thicker films where the effects of the surface anisotropy are 
limited to the first few layers and do not significantly affect the 
intensive properties of the film. That the effects of the surface 

Figure 15. Magnetization of the surface layers from (a) three layer 
and (b) six layer films.

Figure 16. Magnetization Mf from (a) three layer and (b) six layer 
films.
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anisotropy, most notably the surface magnetization, do not 
appear to propagate beyond the first few layers is a significant 
result and represent a desirable property from the perspective 
of EB.

7. Conclusions

We have extended previous MC studies of classical AF magn-
etic order in 2D and 3D kagome lattices to the case of (fcc) 
ABC stacked films. A focus of the present work has been to 
examine the impact of axial surface (D) and bulk cubic (K) 
anisotropies on the spin configurations and degeneracies for 
three and six layer films. It is shown that for the six layer case 
that the presence of the surface anisotropy leads to a relatively 
small change in the value of TN from its 3D value. This is in 
contrast with the three layer case where TN vs D exhibits a 
maximum near D  =  0.7 with =T 0.3N  before decreasing to a 
nearly constant value of ≈T 0.15N  for D greater than about 4 
(Note that for the case of ferromagnetically exchange coupled 
spins, TN increases monotonically with increasing D [29].). In 
addition, the magnetic structure of the interior layers is quali-
tatively similar to the q  =  0 spin structure of the bulk material 
described in [11], while the spins at the surface layers have a 
component normal to the (1 1 1) plane and order ferrimagn-
etically. This conclusion regarding interior spins may be 
viewed as consistent with the neutron scattering results of [25] 
on the thick 200 nm films where the T1 120° spin structure 
was observed. It would not be expected that a different surface 
spin state would be detected using these standard diffraction 
techniques where polarized neutron reflectometry or small 
angle neutron scattering would be more suitable [30]. We also 
note that our work is not directly comparable to the electronic 
structure calculations of IrMn3/Co bilayers where Mn-Co 
interactions across the interface were included [26, 27].

Results for the order parameter Mt as a function of temper-
ature show switching between nearly degenerate kagome 120° 
spin states as in the bulk case, but only for the three layer 
film where surface effects are more pronounced. Switching 
is much less probable in the six layer case. This suggests that 
the magnetic structure of thicker films would be similar to the 
six layer films studied here, with values for TN close to that of 
the bulk material.

One of the most striking features of the results is that a 
moderate to large value of the surface anisotropy parameter 
D induces a ferrimagnetic arrangement of the spins on the 
surface of the film with a net magnetization directed perpend-
icular to the film. The results of these simulations imply that 
a perpendicular surface anisotropy in IrMn3 would induce a 
robust surface magnetization, that persists up to TN, while the 
interior of the film remains antiferromagnetic with a small net 
magnetization. This suggests a mechanism for EB that is rel-
evant to the fcc kagome structure of IrMn3. However, to what 
extent this accounts for the pinning mechanism in cur rent spin 
valves is not yet clear. For example, the fact that the surface 
magnetization is perpendicular to the surface means that a 
simple exchange coupling between the IrMn3 and the planar 
ferromagnetic Co layer would not produce exchange bias in 

the parallel field. However, more complex coupling, e.g. long-
range dipole interactions [31, 32] or anti-symmetric exchange 
[27], could result in a coupling between an fcc kagome lattice 
and a planar ferromagnet. It is also of interest to examine the 
influence of surface (Ir-Mn) disorder as well as vacancies [33] 
and magnetoelastic coupling [34] on the magnetic domain 
structure believed to be relevant for the field-cooled-induced 
in-plane uniaxial effective anisotropy associated with the EB 
phenomenon [35].
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Appendix

An analsis of the ground state in the case < �D J0 , 
< �K J0  is outlined here where perturbation theory is used. 

Consider first the case with = =D K0, 0 when spins lie in 
the (1 1 ̄1) plane [11]. We note that the reduced number of NNs 
at surfaces does not change the spin structure from the bulk 
case so that we take

( )= − −S
2

3
,

1

6
,

1

6
,1 (A.1a)

( )= − −S
1

6
,

2

3
,

1

6
,2 (A.1b)

( )=S
1

6
,

1

6
,

2

3
.3 (A.1c)

It is convenient to work in a polar coordinate system, 
since while minimizing, the condition + + =S S S 1ix iy iz

2 2 2  
is fulfilled automatically. Then, spins S1, S2, M1, and M2 
are described with a polar and an azimutal angles ( )θ φ,1 1 , 

( )θ φ−π,1 2 1 , ( )α β,1 1  and ( )α β−π,1 2 1 , respectively, and spins 

S3 and M3 are described with angles ( )θ π,3 4
 and ( )α π,3 4

.
To account for the effects of small K and D, we write the 

angles which minimize the energy as an expansion in the form

( ) ( ) ( ) ( ) ( ) ( )
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(A.2)

where the superscript (0) corresponds to the case K  =  D  =  0, 
and

( ) ( ) ( )

( ) ( ) ( )

θ φ θ

α β α

= = − =

= = − =

arccos
1

6
; arctan

1

2
; arccos

2

3
,

arccos
1

6
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 (A.3)
After expansion of the energy to second order, minimization 
requires a solution to the following matrix equation:
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For small values of D, the solution obtained by this approx-
imation is in excellent agreement with a direct numerical 
minimization of the energy equation  (A.2) (using Wolfram 
Mathematica).
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