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Abstract
A combination of Metropolis and modified Wolff cluster algorithms is used to examine the
impact of uniaxial single-ion anisotropy on the phase transition to ferromagnetic order of
Heisenberg macrospins on a 2D square lattice. This forms the basis of a model for granular
perpendicular recording media where macrospins represent the magnetic moment of grains.
The focus of this work is on the interplay between anisotropy D, intragrain exchange J′ and
intergrain exchange J on the ordering temperature TC and extends our previous reported
analysis of the granular Ising model. The role of intragrain degrees of freedom in heat assisted
magnetic recording is discussed.

(Some figures may appear in colour only in the online journal)

1. Introduction

The necessity for models of magnetic recording media that
go beyond approximations based on the physics at the
nanometer length scale is becoming increasingly important
not only due to shrinking bit dimensions but also for
the evaluation of new paradigms such as heat assisted
magnetic recording (HAMR) [1, 2]. The role of degrees
of freedom internal to media grains, normally assumed to
have uniform magnetization (referred to as the macrospin
model), has been shown to be significant in field-induced
reversal at temperatures which are comparable to the intrinsic
ferromagnetic Curie point [3, 4]. It is at temperatures near
Tc that HAMR technology operates. Brute force modeling
at the atomic spin scale is straightforward but not practical
for large systems [5]. Understanding of the regimes where
the uniformly magnetized grain approximation is no longer
reliable can be made through studies of how thermal
fluctuations affect the interplay between intragrain and
intergrain spin ordering and magnetization reversal.

Modern perpendicular recording media is composed of
weakly coupled Co-alloy based grains 5–10 nm in dimension,
composed of thousands of atomic spins subject to relatively
strong uniaxial (hcp) crystalline anisotropy. In our previous
study [6], Monte Carlo (MC) simulations were performed on

an Ising model of atomic-scale spins for a quasi-2D system of
grains, with intragrain ferromagnetic exchange J′, coupled by
intergrain exchange J. In that work, the macrospin model was
referred to as the rigid grain approximation (RGA) and was
defined such that all the spins in a grain are perfectly aligned
giving a uniform magnetization. This is the fundamental
assumption of, for example, micromagnetic simulations. A
key measure of the relative importance of intragrain degrees of
freedom in this study was the dependence of the system Curie
temperature on J and its deviation from the linear dependence
expected of the homogeneous 2D Ising model (J = J′). The
results of kinetic MC simulations of an Ising model of the
homogeneous 2D system to represent recording media for
HAMR applications have also been reported [7].

In the present work, we improve the previously studied
Ising model by replacing it by a Heisenberg system of
spins with strong single-ion uniaxial anisotropy D. The
dynamics of grain reversal within this more realistic model
can be expected to be significantly different than its Ising
counterpart [3, 8, 9]. Closely related to this model is
the so-called anisotropic exchange model characterized by
the difference 1 between exchange involving xy-spins and
exchange between the z-components of ESi. Previous MC
simulations have demonstrated that the critical behavior of
this model in 2D belongs to the Ising universality class [10].
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Related to the present work are several studies of the
dependence of Tc on 1. MC simulations were shown to agree
with a modified classical linear spin wave theory yielding a
nearly logarithmic dependence on 1 < 1 [11]. Similar results
were obtained from later work based on a quantum Green’s
function approach [12]. A recent high-temperature series
expansion study of spin quantum effects in the Heisenberg
model with uniaxial anisotropy D on a n-layered square
lattice focused on the dependence of Tc on large D values,
giving trends similar to the previous works [13]. Somewhat
surprisingly, there appears to have been few results on MC
simulations of Tc(D) in the classical 2D Heisenberg model
with single-ion uniaxial anisotropy, which, as noted by Costa
et al [14], can be expected to show different phase-transition
behavior in 2D from the case of exchange anisotropy.

This paper is organized as follows. In section 2,
the homogeneous 2D spin model and quasi-2D model of
interacting grains are introduced and a discussion of the
combined Metropolis and modified Wolff cluster algorithms
are described. Monte Carlo simulation results for the
homogeneous 2D model are presented in section 3 for a
number of thermodynamic quantities which show anomalies
related to the onset of ferromagnetic ordering at different
J = J′ and D values. Granular model results are presented
in section 4 and a scaling relation for Tc versus an effective
exchange and effective granular anisotropy is developed and
compared with the results of the corresponding macrospin
model. Our conclusions are given in section 5.

2. The model

We consider a model consisting of grains on a L × L square
lattice, with each grain represented by a rectangular prism
composed of Ng = L′×L′×z spins. The total number of spins
in the model is thus N = Ng × L2. Spins within a grain are
coupled through near-neighbor intragrain exchange J′ (which
is set as J′ = 1) and spins between grains are coupled through
intergrain exchange 0 ≤ J ≤ 1. Periodic boundary conditions
are imposed in the L × L plane but not in the perpendicular
z direction. The homogeneous 2D model is defined by J = J′

with z = 1, a single layer. Figure 1 shows a schematic model
for a system consisting of L2

= 9 grains, each with (L′)2 = 9
spins and with z = 1. The model Hamiltonian is given by

H = −
∑
〈ij〉

Jij ESi · ESj − D
∑

i

(Sz
i )

2 (1)

with only near-neighbor sites included in the first sum, ESi
denotes the spin vector at the lattice site i with |ESi| = S, Jij = J
or J′, and D > 0 is the uniaxial anisotropy strength. Note
that the number of nearest-neighbor bonds between each
grain is given by Ag = L′ × z. High anisotropy media for
HAMR applications might have anisotropy values in the range
0.001 < D/J′ < 0.01 [3, 15].

The average magnetization of the Ith grain is given by

MI =
1

Ng

∣∣∣∣∣∑
j∈I

ESj

∣∣∣∣∣ (2)

Figure 1. Schematic of the granular Heisenberg model showing
L2
= 3× 3 grains each composed of (L′)2 = 3× 3 spins with

intragrain exchange J′ and intergrain exchange J. Here, z = 1
(single layer).

where
∑

j∈I is over all Ng spins in grain I. The thermal average
magnetization over all grains is thus given for a specific
temperature T by

Mg(T) =
1

L2

〈∑
I

MI

〉
. (3)

The total magnetization is defined by

M(T) =
1
N

〈∣∣∣∣∣∑
i

ESi

∣∣∣∣∣
〉

(4)

where i is over all N lattice sites. In addition, the total
magnetic susceptibility was calculated using

χ(T) = βN(〈M(T)2〉 − 〈M(T)〉2) (5)

where β = 1/T and the specific heat is given by

C(T) =
β2

N
(〈E(T)2〉 − 〈E(T)〉2). (6)

For J � 1 the low-temperature behavior of the model
is dominated by the reversal of entire grains. To enhance
equilibration, the Metropolis algorithm is combined with
a cluster spin algorithm to give good statistics at low
temperatures. In this paper we employ a combination of
Metropolis and a modified Wolff cluster algorithm [16, 17]
in which the probability of extending a cluster from site
i to include a neighboring site j is given by Pij = 1 −

e−2βJij( ESi·ûs)( ESj·ûs), where ûs is a seed unit vector used in the
algorithm. At low temperatures the clusters formed by the
modified Wolff algorithm encompass entire grains, and have
an acceptance ratio ∼e−2VDβ , where V denotes the volume
of the cluster. In this regime we would expect the granular
model to approximate that of the macrospin model. While
the inclusion of the anisotropy can lead to a low acceptance
ratio for large values of D, the modified Wolff algorithm,
when combined with a single spin Metropolis algorithm, was
able to provide good statistics for the moderate values of
D considered in this paper. In calculating thermodynamic
quantities, a single Monte Carlo step (MCS) consisted of

2
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Figure 2. Simulation results for the susceptibility in the
homogeneous 2D case at various anisotropy values, using L = 80.

a Metropolis step attempt for every spin of the lattice
followed by a single cluster flip attempt using the modified
Wolff algorithm. Typical data were collected averaging
around 25 000 MCS, with MCS0 initial steps discarded for
equilibration (typically 10% of MCS). As an initial test of the
algorithm, we verified for the 3D Heisenberg model with D =
0, J = J′ = S = 1, using L = 10,L′ = 1 and z = 1, that the
algorithm yields a specific heat anomaly signaling the onset
of ferromagnetic order at Tc/JS2

= 1.44, as expected [17].

3. The homogeneous 2D model

We previously examined the behavior of the transition
temperature for the case of the Ising model [6]. To assess
the effect of the intergranular interaction we compared the
transition of the granular model with the corresponding result
obtained from a macrospin model with Tc = 2.269Jeff, where
Jeff denotes an effective intergrain exchange interaction given
by Jeff = JAg = (L′z)J (figure 11 of [6]). Extending this
analysis to the anisotropic Heisenberg model is complicated
by the fact that the transition temperature of the homogeneous
2D anisotropic Heisenberg model is not simply a linear
function of the exchange constant, but depends also on the
ratio D/J. Moreover, as pointed out in the Introduction,
there do not appear to be any analytical or numerical studies
that provide reliable estimates for Tc as a function of D.
Anisotropy adds new important physics to the present model
system, as D = 0 has no long range order in 2D or quasi-2D
Heisenberg models. As a prelude to our analysis of the results
for the granular model we examine the transition temperatures
as a function of both exchange and anisotropy for the case of
a homogeneous 2D system, z = 1,L′ = 1 and J = J′.

Figure 2 shows representative results for the susceptibil-
ity from the homogeneous 2D model with J = S = 1, and
L = 80 at various values of D. From the peaks in these data the
critical temperatures can be estimated. Simulations were also
performed using a larger range of D values. Figure 3 shows
the dependence of Tc on JS2 at various values of D. Unlike

Figure 3. Transition temperature versus exchange for the
homogeneous 2D Heisenberg model at various anisotropy strengths.

Figure 4. Tc/JS2 versus D/J, showing the effect of anisotropy
strength on the critical temperature for the homogeneous 2D
Heisenberg model for two values of J = J′ (using L = 80 and
L = 160 for J = 0.5 and J = 1.0, respectively). Inset shows a
semi-logarithmic plot of the same data.

the Ising case, and in contrast with mean-field theory, these
Tc(J) plots exhibit clear non-linearity which increases with
D. As expected, the overall values of Tc also increase with
increasing D.

We also plot in figure 4 the dependence of Tc/JS2 on
D/J for two different values of exchange, J = 0.5 and 1.0
and varying anisotropy, 0.001 < D < 20. As expected, the
two data sets collapse onto a single universal curve that is a
function of the two variables Tc/JS2 and D/J. The data show
a very strong non-linearity for small values of the ratio D/J.
This reflects the effects of the critical fluctuations at the onset
of the long range order, which increase as D/J goes to zero,
at which point the long range order disappears. Note that in
mean-field theory the relation would be Tc/JS2

= 1+D/J. For
large D, transverse fluctuations are suppressed and the critical
temperature tends to its 2D square-model Ising value, Tc ≈

2.269JS2. Scaling studies of the anisotropic exchange model
predict a logarithmic dependence of Tc at small anisotropy

3
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Figure 5. Granular model results for L = 8,L′ = z = 5 and D = 0.01, showing total magnetization, susceptibility, specific heat and grain
magnetization versus temperature for different values of Jeff.

values [18] and for completeness we show our data plotted in
this manner in the inset of figure 4. Although a linear behavior
at small values of D/J cannot be excluded, this regime is not
the focus of the present work and is not necessarily expected
in the case of single-ion anisotropy. Numerical studies of these
issues have been addressed by other works [10–14].

4. The granular quasi-2D model

In the case of the homogeneous Heisenberg model Tc/JS2 is
no longer constant as it was in the Ising model but is instead
a function of D/J as shown in figure 4. Also in the case
of the Ising model the fact that the magnitude of the grain
magnetization Mg was only weakly temperature dependent
for the temperature range of interest allowed us to treat the
grain as a macrospin with S = 1. In the Heisenberg model
the grain magnetization is temperature dependent even down
to the lowest temperatures, which will be discussed below
(see also figures 5(d) and 6). This can be incorporated into
the macrospin model by assigning the macrospin vectors a
temperature dependent magnitude Seff = Mg(T) [19–21]. To
determine the range of applicability of the macrospin model
in the case of the granular Heisenberg model we therefore
study the relationship between Tc/JeffM2

g(Tc) and Deff/Jeff
with the data from figure 4 serving as a reference, where Deff
is defined as

Deff = (L
′2z)D. (7)

Figure 6. Total magnetization, susceptibility, specific heat and
grain magnetization scaled for L = 8,L′ = 5, z = 5,Deff = 1.25
and Jeff = 0.125. Three regions of different behaviors, region (a):
T < Tc, region (b): Tc ≤ T ≤ T ′c, and region (c): T > T ′c have spin
and macrospin vectors as depicted in figure 7.

Just as in the Ising model, we calculate the temperature
dependence of the various thermodynamic values, namely
the total magnetization, susceptibility, specific heat and
grain magnetization. Figure 5 shows these as a function of
temperature for various representative values of intergrain
coupling J = 0.004, 0.01, 0.02 and 0.05 with D = 0.01 and
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Figure 7. Spin configuration for different temperature regimes,
showing several grains of the spin system (left) and the macrospin
representation (right) with the same parameters as in figure 6 for:
region (a) T < Tc, region (b) Tc ≤ T ≤ T ′c, and region (c) T > T ′c
(dots represent a grain with almost zero magnetization). The
intergrain distance serves only as a visual guide.

L = 8 for grains with dimensions L′ = 5 and z = 5, giving
Deff = 1.25 and the values of the effective intergrain exchange
Jeff indicated on the figures.

Figure 5(a) shows the total magnetization curves. Taking
the point of inflection in each curve to represent the
critical temperature associated with the onset of intergrain
ferromagnetic order at 0.25 . T . 0.75, one sees a strong
dependence on J. Comparing these results with those from the
corresponding Ising model, the enhanced fluctuations of the
Heisenberg model are seen to induce a sharper decrease in M
at low T for the larger values of J. The magnetic susceptibility,
figure 5(b), shows a peak at the critical temperature Tc which
corresponds roughly to the point of inflection in the total
magnetization curves. As such, these two quantities serve as a
means to estimate the value of Tc.

In contrast with the Ising case, the specific heat data of
figure 5(c) indicates virtually no dependence on the value
of Jeff. Rather, there is a peak which occurs at T ≈ 1.05,
which we label T ′c, corresponding to the intragrain ordering
temperature. Note that, except for enhanced noise at very

Figure 8. Critical temperature versus effective exchange comparing
the granular Heisenberg model with different anisotropy strengths to
the homogeneous 2D model with L′ = 5, z = 5, and L = 8. the
horizontal line at 0.8 estimates the region above which the
macrospin model would break down.

low T due to lower acceptance rates as the Boltzmann factor
becomes very small, the specific heat tends to unity for T→ 0,
as expected of Heisenberg models. The intragrain order is also
clear from figure 5(d) showing that the grain magnetization
has a point of inflection at the same T ′c, also independent of
Jeff. Notably, unlike the Ising case, Mg(T) also exhibits a large
slope even at very low T .

The total magnetization and specific heat allow for a
good estimation of intergrain order Tc whereas the grain
magnetization and specific heat can be used to obtain
the intragrain ordering temperature T ′c. Shown in figure 6
are results for one value of J = 0.005 with all of these
(normalized) quantities on the same graph. There are three
different regions of interest, corresponding to (a): T < Tc,
(b) Tc ≤ T ≤ T ′c, and (c) T > T ′c.

At high temperatures in region (c), the system is
paramagnetic and all the spins are randomly oriented. As
the temperature decreases below T ′c in region (b), the spins
inside grains start ordering and individual grains can often
be considered to have most spins pointing in one direction.
When the temperature decreases even more to below Tc
(region (a)), the total and grain magnetization are both near
unity, as the grains order amongst themselves. This is seen
in figure 7, where the spin configuration of the system in
these different regions is shown along with their grain-level
macrospin representation.

To obtain more meaningful results, additional simulations
were run on a system with the same dimensions as above
using the anisotropy values Deff = 0.125, 1.25 and 12.5, with
varying Jeff. Figure 8 shows how Tc and T ′c vary as a function
of Jeff. The data show T ′c ∼ 1 is almost independent of Jeff
while Tc increases rapidly until Tc and T ′c merge, beyond
which the intra- and intergrain ordering occur simultaneously,
with Tc increasing more slowly with increasing Jeff. The data
also show that, for Jeff fixed, Tc increases with increasing Deff,
rising rapidly until Tc and T ′c coincide at which point it flattens
off.

5
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Figure 9. Reduced and normalized critical temperature versus
reduced anisotropy comparing the granular Heisenberg model to the
homogeneous 2D model with L′ = 5, z = 5,L = 8, for a range of
values of Deff.

The same data is also presented in figure 9 with
Tc/DeffM2

g(Tc) plotted as a function of Jeff/Deff together with
the results presented in figure 4 for the homogeneous 2D
Heisenberg model. For the low anisotropy case, Deff = 0.125,
the data for the granular Heisenberg model track the results
of the homogeneous model over the entire range of Jeff/Deff
shown in the graph and beyond to Jeff/Deff = 20. This implies
that for Deff = 0.125 the macrospin model in which the
macrospin describing the grains have a magnitude Seff =

Mg(T), an effective anisotropy constant Deff = (L′2z)D and
an effective nearest-neighbor coupling constant Jeff = L′zJ are
consistent with the granular Heisenberg model for the range of
temperatures and parameters considered in the present work.

For Deff = 1.25, the results from the granular Heisenberg
model presented in figure 9 track the homogeneous model
only up to Jeff/Deff ∼ 2, corresponding to a value of Jeff ∼

2.5. From figure 8 we see that this corresponds to a ratio of
Tc/T ′c ∼ 0.8, thus we see in analogy with the earlier work
on the Ising model that the macrospin model breaks down
as Tc approaches T ′c due to the intragrain fluctuations. If we
assume this ratio Tc/T ′c ∼ 0.8 defines in some qualitative
sense the limit for the applicability of the macrospin model
then we obtain from figure 8, for Deff = 0.125, a value of
Jeff ∼ 2.5. This would therefore imply that for Deff = 0.125
the macrospin model would be applicable up to Jeff/Deff =

2.5/0.125 = 20, a result consistent with the comparison of
the granular Heisenberg model and the macrospin model
discussed above.

Applying the same criteria to the high anisotropy case
Deff = 12.5, we obtain from figure 8 that Tc/T ′c = 0.8
corresponds to a value of Jeff ∼ 1. This would imply that the
macrospin model would break down for Jeff/Deff ∼ 1/12.5 ∼
0.08. While high anisotropy data shown in the inset of
figure 9 are fairly noisy they nevertheless show Tc/DeffM2

g(Tc)

tracking the homogeneous Ising model fairly well up to that
point.

While the deviation of the curves plotting Tc/DeffM2
g(Tc)

against Jeff/Deff for the granular Heisenberg model from the

corresponding macrospin results given in figure 4 is less
marked than the results seen in the Ising model [6], they are
nevertheless adequate to estimate the range of the applicability
of the macrospin approximation in the present case. The above
analysis would therefore suggest that, provided the macrospin
model is modified to include the temperature dependence of
the grain magnetization Mg, it appears to provide a reasonable
account of the static properties of the granular Heisenberg
model when Tc . 0.8 T ′c for at least the temperatures and
parameters considered.

5. Conclusions

In this paper, Monte Carlo simulation results are presented
to illustrate the effect of intragrain spin fluctuations for
the ferromagnetic Heisenberg model with single-ion uniaxial
anisotropy on a stacked square lattice. The simulations
combine a modified Wolff cluster algorithm with the
single spin Metropolis algorithm. This work represents an
extension of our previous study of a corresponding Ising
model [6], where a deviation between transition temperatures
of macrospin and granular models occurs as intergrain
exchange coupling J increases. It includes the dependence of
the ratio of Tc/JS2 on J/D and the effect of the enhanced
fluctuations on the temperature dependence of the grain
magnetization Mg(T), that are relevant to the study of the
Heisenberg model. In analogy to the earlier work on the
Ising model the method provides an estimate of the limit
of the applicability of the macrospin model. In the case of
the Heisenberg model this is given by the requirement that
coupling between the grains should be such that Jeff is selected
so that Tc . 0.8 T ′c. This is in contrast with our corresponding
estimate for the Ising model Tc . 0.5 T ′c [6].

A goal in the design and fabrication of modern recording
media is to reduce intergrain exchange, as this leads to
a reduction in so-called transition noise [22]. Typically,
intergrain exchange is a factor of about 100–1000 smaller
than intragrain exchange so that HAMR targeted media
might correspond to a ratio of anisotropy to exchange
in the range 0.1 < Deff/Jeff < 10. For modeling efforts
at zero temperature, the macrospin (RGA) approximation
can thus be expected to be valid. However, the present
work suggests that even for room temperature modeling
of materials such as Fe–Pt with T ′c ' 800 K, [15] the
macrospin approximation is questionable and is certainly not
appropriate when the material is heated close to T ′c, as in
the HAMR process, even with the temperature dependence
of the magnetic moment of the grains included. To properly
account for the impact of internal spin degrees of freedom
on switching behavior of grain magnetization vectors under
the influence of an applied magnetic field and thermal
fluctuations requires the application of the more sophisticated
atomistic calculations [3] or the Landau–Lifshitz–Bloch
formalism [23]. Such methods include a more complete
account of the internal spin degrees of freedom on both
the static and dynamic properties of these high anisotropy
materials.
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