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Monte Carlo simulations of the fcc kagome lattice: Competition between triangular frustration
and cubic anisotropy
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The impact of local cubic anisotropy on the magnetic states of the Heisenberg model on the fcc kagome lattice
are examined through classical Monte Carlo simulations. Previous simulations revealed that the macroscopic
degeneracy of the two-dimensional (2D) kagome exchange-coupled co-planar spin system partially persists in
the 3D case of ABC stacked layers giving rise to a discontinuous phase transition. Local cubic anisotropy is
shown to remove this degeneracy by re-orienting the spins out of the co-planar configuration. In addition, the
re-oriented states are shown to carry a uniform magnetic moment. Simulation results indicate that the effect of
anisotropy is to transform the first-order phase transition to a continuous one. These results are relevant to Ir-Mn
alloys which have been widely used by the magnetic storage industry in thin-film form as the antiferromagnetic
pinning layer in spin valves.
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I. INTRODUCTION

The macroscopic degeneracy associated with magnetic
dipoles on the two-dimensional (2D) kagome lattice composed
of corner-sharing triangles, with four near-neighbor (NN)
exchange interactions, continues to generate new physics
after twenty years of study.1–3 The main focus of these
works has been associated with ultralow temperature and
quantum effects. Quasi-3D experimental manifestations have
been limited to systems with weakly coupled kagome layers
or distorted hyperkagome lattice structures.2,4 Studies of a true
3D version of the kagome structure composed of ABC stacked
kagome layers, with four in-plane and four out-of-plane
identical antiferromagnetic (AF) NN exchange interactions
which we call the fcc kagome lattice, depicted in Figs. 1 and
2, have recently demonstrated long-range magnetic order at
temperatures comparable to the exchange interaction.5,6

For continuous spin models on the 2D kagome lattice
with NN exchange interactions, the ground state is highly
degenerate with a net zero magnetic moment for each triangle
giving rise to 120◦ spin structures in either q = 0 or

√
3 × √

3
co-planar forms.1 The 120◦ spin structure can be thought of as
three interpenetrating ferromagnetic sublattices. In addition to
the usual continuous degrees of freedom associated with XY

and Heisenberg models, the q = 0 spin structure on the 2D
kagome lattice allows for the interchange of sub-lattice spins
with its neighbor along a row with no change in energy. Unlike
the triangular lattice AF, there is no correlation between the
chiralities of adjacent triangles.7 In the 3D fcc kagome case,
the q = 0 structure is selected and two sublattice spins within
a plane defined by the eight NN exchange interactions can be
reoriented with no cost in energy.6,8

Interest in the fcc kagome lattice has been driven not only
by it being a unique realization of this type of frustration in
three dimensions but also due to its connection with thin-film
magnetic technology through IrMn3, which is commonly used
as the exchange pinning layer in spin valves.9–11 This and sister

compounds RhMn3 and PtMn3 have the fcc CuAu3 crystal
structure12 where magnetic Mn ions reside on the cube faces
and the nonmagnetic (Ir) ions site at the cube corners. The
magnetic ions can thus be viewed as being on ABC stacked
(111) kagome planes, where each site has eight NNs (four
in-plane, two to the plane above, and two to the plane below)
as shown in Fig. 1 of Ref. 6. Bulk IrMn3 was shown to have
long-range magnetic order below TN ≈ 960 K,13 referred to
as the “T1” structure, which is the 3D manifestion of the 120◦
q = 0 spin structure.6 Similar magnetic order is also found in
RhMn3 and PtMn3. In thin-film applications, the (111) plane
is perpendicular to the film plane. It is of interest to note
that the 3D q = 0 structure remains favored in the presence
of 6 ferromagnetic second-NN exchange interactions, 16 AF
third-NN exchange and 12 ferromagnetic fourth-NN exchange
interactions calculated for IrMn3.5

Agreement on the fundamental mechanism responsible for
exchange bias in Ir-Mn thin films and other materials remains
elusive.14 It is believed that frustration of some sort at the
interface between the AF and ferromagnet is essential.15 It is
clear that there needs to be a pinned ferromagnetic component
within the first few layers of the AF. Some studies also suggest
that exchange bias is enhanced if this moment is perpendicular
to the plane of the film.16,17 An essential requirement for
technological applications is that the AF layer magnetically
orders well above room temperature.

Szunyogh et al.5 used symmetry arguments supported by
electronic structure calculations to demonstrate the importance
of an effective local-axis cubic anisotropy term in the spin
Hamiltonian for IrMn3 (see Fig. 2). Its value is estimated
to be about 10% of the NN exchange strength and gives a
preference for the sublattice moments to be directed out of a
co-planar configuration and to be along the three 〈100〉 axes.
The projection of the spins in the {111} plane maintains the
120◦ structure.

We examine here effects of adding cubic anisotropy to the
NN Heisenberg fcc kagome lattice AF through a series of
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FIG. 1. (Color online) The fcc kagome lattice with magnetic Mn
ions on cube faces forming stacked 2D kagome layers along the
(111) axis. Nonmagnetic Ir ions are at the corners. The four interlayer
exchange interactions (J) are indicated.

extensive Monte Carlo (MC) simulations. Previous MC results
of Heisenberg and XY models on this lattice which included
only exchange effects revealed the spin degeneracies in three
dimensions and supported the notion that the discontinuous
phase transition is of the order-by-disorder type.6 In the present
work, an analytic calculation of the ground state reveals an
out-of-plane rotation of the sublattice spins driven by the
anisotropy as well as a concomitant net magnetic moment per-
pendicular to the plane. The effect of anisotropy in removing
certain degeneracies is determined. The impact of anisotropy
on the Néel temperature and various thermodynamic properties
is studied. In addition, results from energy histograms and
fourth-order cumulants18 are used to argue that the transition
changes from discontinuous to continuous as a consequence
of anisotropy reducing spin degeneracies.

This paper is organized as follows. In Sec. II, the Heisenberg
model on a 3D kagome fcc lattice is described with a focus
on the effect of cubic anisotropy. In Sec. III, analytical
calculations are presented for the zero-temperature ground
states. In Sec. IV, MC simulation results are shown that
describe the effect of the anisotropy on the critical temperature
behavior. This section also analyzes the order of the phase
transition in comparison to the model without anisotropy.
We discuss the results and extensions for future work
in Sec. V.

FIG. 2. (Color online) Schematic showing a 120◦ ground-state
spin structure (blue arrows) in the cubic (111) plane, along with the
local [100] anisotropy axis directions (red rods). The cube shown has
sides of length a/2, where a is the lattice constant of the fcc unit cell.

II. MODEL

We consider a 3D lattice that consists of L layers of
L × L spins per kagome (111) plane, ABC stacked as shown
in Fig. 1. MC simulations were done on this model using
lattice sizes L = 18, 24, 30, and 36. All the simulations
were performed using the Metropolis algorithm. This method
gave satisfactory results even down to the lowest relevant
temperatures. Typically between 105 and 107 Monte Carlo
steps (MCSs) were used with an initial 10% discard rate
for equilibration. The interactions include NN Heisenberg
exchange, and the effective local cubic anisotropy developed
by Szunyogh et al.,5 as described by the Hamiltonian

H = J
∑
〈i,j〉

Si · Sj − K
∑

γ

∑
k⊂γ

(Sk · nγ )2, (1)

where i,j are summed over all the N = 3
4L3 spins of the entire

lattice, J ≡ 1 is the antiferromagnetic coupling to the four
in-plane and four out-of-plane NN spins, and the anisotropy
K > 0 is varied over a wide range of values. Here, γ represents
sublattice 1, 2, and 3 and k is summed over the N

3 = 1
3 ( 3

4L3)
spins of sublattice γ , Si are unit spin vectors at each site, and
nγ are unit vectors in the cube axes directions, n1 = x̂, n2 = ŷ,

and n3 = ẑ, as in Fig. 2. Electronic structure calculations5 have
been used to estimate K ≈ 0.1 in the case of IrMn3 but we
consider a wide range of anisotropy values.

There are two order parameters calculated for this model.
The sublattice magnetization is defined as

Mt = 1

N

〈 ∑
γ

∣∣∣∣∣
∑
k⊂γ

Sk

∣∣∣∣∣
〉
. (2)

Angular brackets denote thermal averaging over MC states. A
similar order parameter was also used in the case6 of K = 0
to characterize the ground-state spin configuration. With the
addition of anisotropy, the ferromagnetic magnetization vector
becomes nonzero and is defined as

Mf = 1

N

∣∣∣∣∣
〈 ∑

i

Si

〉∣∣∣∣∣. (3)

It is zero for all temperatures when K = 0 and in the
paramagnetic state with K 	= 0. Its zero-temperature value
can be calculated analytically, as shown below.

III. GROUND STATE

Analysis of the effect of the anisotropy is made convenient
by defining α as the cosine of the angle between each sublattice
spin and its anisotropy axis [α = cos(Si · ni)] and β the cosine
of the angle with respect to the other anisotropy axes [β =
cos(Si · nj ), i 	= j ]. As such, each spin will have direction
cosines of the general form 1:(±α, ± β, ± β), 2:(±β, ± α, ±
β), and 3:(±β, ± β, ± α). When K = 0, this gives specific
planar configurations of the system’s many degenerate ground
states.

With the addition of a finite anisotropy, the continuous
degeneracy is removed, as the spins now have a preferential
direction. There are eight possible ground states when this
anisotropy is added to the system, corresponding to the four
possible (111) planes with two configurations related to spins
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being lifted out of either side of each plane. These can be enumerated as

±(111) → ±[S1 = (α, − β, − β),S2 = (−β,α, − β),S3 = (−β, − β,α)], (4)

±(1̄11) → ±[S1 = (−α, − β, − β),S2 = (β,α, − β),S3 = (β, − β,α)], (5)

±(11̄1) → ±[S1 = (α,β, − β),S2 = (−β, − α, − β),S3 = (−β,β,α)], (6)

±(111̄) → ±[S1 = (α, − β,β),S2 = (−β,α,β),S3 = (−β, − β, − α)]. (7)

Since each spin is a unit vector,

Si · Si = 1 = α2 + 2β2. (8)

The system energy per spin is given by

E = 4
3J (S1 · S2 + S2 · S3 + S3 · S1)

− 1
3K[(S1 · n1)2 + (S2 · n2)2 + (S3 · n3)2] (9)

with the energy in the ground state given by

E = 4(β2 − 2αβ) − Kα2. (10)

Finding the energy minimum and solving for α gives

α =
√

1/2 + 1/2
√

1 − 1/[1 + (K + 2)2/32] (11)

and [from Eq. (8)]

β =
√

1 − α2

2
(12)

using the positive values of the square roots to give physical
solutions. When K = 0, α = 2/

√
6 and β = 1/

√
6 which

defines spins in the co-planar 120◦ spin structure.
For low values of K , an expansion can be made which gives

an energy per magnetic site in the ground state of E � −2 −
2K/3. The degeneracy that corresponded to interchanging
sublattice spins in a plane at zero anisotropy will now have
an energy cost of K/(3L), thus removing the degeneracy up
to order K .

When K = 0, the spins are in one of many degener-
ate coplanar ground states subject to the requirement that
the interspin angle on a triangle be 120◦. This angle can be
calculated using Si · Sj = β2 − 2αβ for any i 	= j with the
analysis above for finite K . The results in Fig. 3 show how the
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FIG. 3. (Color online) Interspin angle and magnetic moment at
zero temperature vs anisotropy strength.

addition of anisotropy modifies the 120◦ spin configuration.
In the limit of very large K , the angle reaches 90◦ where
the spins are pointing along the anisotropy (cube axes)
directions.

For any nonzero anisotropy the spins are no longer coplanar
and have a net moment directed out of the (111) plane,
given by

Mf = S1 + S2 + S3

= [±(α − 2β), ± (α − 2β), ± (α − 2β)] (13)

with its norm equal to (α − 2β)/
√

3. The magnetization as a
function of K is shown in Fig. 3, where in the limit of large
K , M → 1√

3
.

IV. SIMULATION RESULTS

Our previous MC simulation results for the K = 0 Heisen-
berg model on the fcc kagome lattice6 demonstrated the onset
of long-range q = 0 spin order at TN = 0.476J . Degeneracies
were evident by examining the total order parameter Mt

in cooling runs, where complete saturation, Mt → 1 at
T = 0, does not occur due to sublattice spin switching. In
the ground state, any finite amount of anisotropy will lock
the spins to a particular (111) plane, thus eliminating the
degeneracy associated with the relative orientation of planes of
spins.

Figure 4 shows results at L = 24 for the total order
parameter Mt as a function of temperature in cooling runs
for values of K between 0 and 0.06. At each value of K , the
results of only one run are shown. At values of K = 0.01 and
0.04 there is a noticeable impact on removing the degeneracy
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FIG. 4. (Color online) Sublattice magnetization order parameter
vs temperature for small values of K from simulations with
L = 24.
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FIG. 5. (Color online) Specific heat vs temperature used to locate
TN for the values of K indicated from simulations with L = 24. Inset
shows results for K = 10 and the expected broad peak at T � K/6
due to short-range order.

compared to the K = 0 results. At K = 0.03, 0.05, and 0.06,
the system fully saturates. The particular degenerate spin
configuration that the system locks into upon cooling below
TN is largely random and the impact of K on reducing the
degeneracy is dependent upon its value relative to thermal
fluctuations as well as the system size and number of MCSs.
For K larger than � 0.06, this is no longer the case (for the
set of simulation conditions used in this example) and the
sublattice magnetization order parameter always tends toward
unity as T = 0 is approached. This result, together with the
analysis of the ground state, is suggestive that any nonzero
value of K eliminates the degeneracy that is associated with
the NN Heisenberg model on a kagome lattice.

The impact of anisotropy on the transition temperature TN

can be estimated through the location of the specific-heat peak,
as shown in Fig. 5 for K = 0, 0.1, 0.5, 1, 5, and 10. Note that
for large K the system acts primarily under the influence of the
single-site uniaxial anisotropy. In this case, a broad maximum
in the specific heat is expected19 at T � K/6 due to the onset
of short-range correlations well above TN . Such a maximum
is seen in the inset of Fig. 5 for K = 10.

Figure 6 summarizes the results of estimating TN from
simulations of the specific heat for a wide range of K values.
For small and moderate values of K it is seen that TN increases
to a maximum of about 0.9 J at K � 5, followed by a
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FIG. 6. Néel temperature TN vs the anisotropy strength K

estimated from the specific-heat peaks from simulations with L = 24.
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FIG. 7. (Color online) Simulation results with L = 24 for the
ferromagnetic magnetization vs temperature for the values of K

indicated.

monotonic decrease up to the largest anisotropy value (K =
50) examined. In the limit of infinite anisotropy, all NN spins
are perpendicular to each other and the interspin exchange
interaction would thus be reduced to zero, eliminating long-
range order.

Figure 7 shows the total magnetization Mf vs temperature
at K = 0, 0.1, and 0.5. In the absence of anisotropy, the
simulated Mf is zero for all T , as expected from the ground-
state calculations. Its temperature dependence for the nonzero
values of K is similar to the order-parameter results of Fig. 4.
The values of Mf extrapolated from these data at T = 0 agrees
with those expected from the analytic analysis of Sec. III.

In the absence of anisotropy, the Heisenberg fcc kagome
lattice has a phase transition that appears to be weakly first
order, possibly driven by an order-by-disorder phenomenon.
Evidence in support of these ideas was found in MC simulation
results of energy histograms and the Binder energy cumulant.6

The addition of anisotropy removes the usual kagome-type
degeneracies and it is believed that this leads to a continuous
transition, as would occur within mean-field theory. To verify
this, we calculated energy histograms and cumulants for a
number of different values of K . Figure 8 shows the results
for the energy histograms near the corresponding critical
temperatures (determined by the specific-heat peak locations)
for K = 0.1 and K = 5. In contrast with the previous MC
results for K = 0, a double-peak structure is not observed in
the present cases indicative of a continuous phase transition.

The energy cumulant, defined by UE = 1 − 〈E4〉/3〈E2〉2,
was examined in Ref. 6 for K = 0 but provided inconclusive
support for a first-order transition.18 In the present work, this
case is studied again along with an analysis of cumulant results
at K = 0.1, 0.5, and 1 for lattice sizes L = 18, 24, 30, and 36.
Simulations were performed at temperatures close to TN (L)
estimated from specific-heat peaks using 106 MCS. Figure 9
shows example data for the cases K = 0 and K = 0.1. The
value of the minimum for each curve was estimated and
clearly will depend on the temperature interval examined.
Data collected for the study presented in Ref. 6 were at a
relatively large interval of �T = 0.001 whereas a smaller
value of 0.0002 was used in the present work allowing for
a more accurate estimate of the minima.
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FIG. 8. (Color online) Energy histogram at values of T near TN for K = 0.1 and K = 5 with L = 36 from simulations using L = 24.

Figure 10 shows our best estimation of the minima vs 1/N

where N is the number of magnetic lattice sites (N = 3
4L3) for

K = 0, 0.1, 0.5, and 1. In the case of a continuous transition,
the minimum should extrapolate to 2/3 in the thermodynamic
limit.18 Our data show a clear distinction in the trend of the
finite-size scaling between the results for finite K , which
appear to be consistent with the 2/3 limit, and the K = 0
case, in support of the notion that nonzero anisotropy drives
the transition to be continuous.

V. SUMMARY AND CONCLUSIONS

The extensive Monte Carlo simulations analyzed in this
work have demonstrated the importance of cubic anisotropy on
the ABC stacked kagome lattice of magnetic dipoles, relevant
for fcc IrMn3 and related compounds. An expression for the
eight possible degenerate ground states is obtained at T = 0,
allowing for an analytic description of the interspin angle
showing an increasing deviation from 120◦ with increasing K.
As a result of anisotropy, the spins develop a nonzero ferromag-
netic moment along the [111] direction. Simulations show that
the Néel temperature increases nonlinearily as the anisotropy
strength is increased until a maximum at K � 5 when it
begins to overwhelm the exchange interaction. The transition
temperature then decreases for larger K , approaching zero in
the limit of infinite anisotropy. Additional simulations of the

present model to examine the interplay between anisotropy
and an applied magnetic field have been initiated.20

It is argued that the large spin degeneracy of the pure
isotropic Heisenberg model is removed with the addition of
uniaxial anisotropy and that the phase transition to long-range
q = 0, local 120◦, magnetic order changes from first order6

to continuous. Evidence to support this conjecture comes
from simulation data on the energy histograms near TN ,
which show a double peak6 at K = 0 and a single peak
at K 	= 0. Analysis of the Binder energy cumulant is also
consistent with this conclusion. We speculate that the spin
degeneracy of the pure Heisenberg model for this lattice leads
to a first-order transition driven by order-by-disorder-type
fluctuations. A preliminary analysis of the spin-wave modes
in the 3D pure Heisenberg system show the presence of a
zero-energy mode (for wave vectors along certain directions)
which develops a finite energy of order K as anisotropy is
added.8 It is anticipated that finite-temperature fluctuations
remove the degeneracy associated with this K = 0 mode.
A somewhat analogous effect has been shown to occur
in the pyrochlore antiferromagnet Er2Ti2O7 which involves
a partial removal of the infinite ground-state degeneracy
due to the addition of exchange anisotropy, leaving two
separate spin states as basis functions for the 2D irreducible
representation E of the tetrahedral point group.21 The present
case is different in that the usual kagome degeneracy of spins
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FIG. 9. (Color online) Energy cumulants for K = 0 and K = 0.1 at temperatures close to T = TN (L) estimated from the specific-heat
peaks for the values of L indicated.
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state with magnetic representation 2T1 + T2 of the octahedral
point group is fully removed.22

The development of a finite magnetic moment along the
[111] direction as a consequence of anisotropy along with
the expected in-plane canting of the spins on the top layer of
the antiferromagnet in the presence of a ferromagnetic layer17

are expected to be important to describe the exchange bias seen
in IrMn3. For this purpose, simulations are planned to study
thin films of the fcc kagome structure and to also include
exchange coupling to a ferromagnetic layer. Experimental
verification of the presence of ferromagnetism in the bulk
or thin-film ordered phase IrMn3 and related compounds is
desirable.
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