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Monte Carlo simulations of a kagome lattice with magnetic dipolar interactions
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The results of extensive Monte Carlo simulations of classical spins on the two-dimensional kagome lattice with
only dipolar interactions are presented. In addition to revealing the sixfold-degenerate ground state, the nature
of the finite-temperature phase transition to long-range magnetic order is discussed. Low-temperature states
consisting of mixtures of degenerate ground-state configurations separated by domain walls can be explained
as a result of competing exchange-like and shape-anisotropy-like terms in the dipolar coupling. Fluctuations
between pairs of degenerate spin configurations are found to persist well into the ordered state as the temperature
is lowered until locking in to a low-energy state.
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I. INTRODUCTION

The study of spin systems with short-range antiferro-
magnetic exchange interactions on geometrically frustrated
lattices has revealed a remarkably wide variety of magnetic
structures and phase transitions [1]. Exotic spin states resulting
from frustration through the lattice geometry or magnetic
interactions couple to other degrees of freedom and are
associated with a range of disparate phenomena, including the
anomalous Hall effect [2], the magnetoelectric effect [3], and
exchange biasing in spin valves [4,5]. The study of magnetic
dipole-dipole interactions on lattice types which are known to
induce frustration with only near-neighbor exchange coupling
has received much less attention due to the relative weakness
of magnetostatic effects. An exception is the pyrochlore lattice
and its association with spin-ice phenomena [6]. Recent atten-
tion has also been devoted to artificially templated magnetic
islands on frustrated and unfrustrated lattice types which
are well separated and interact only through magnetostatic
coupling [7,8].

Although the dipole-dipole interaction is much smaller than
exchange effects, its long-range nature can lead to significant
effects on magnetic structures in systems with ferromagnetic
exchange [9]. In cases where the fundamental magnetic
interaction is antiferromagnetic, dipole effects tend to be much
weaker due to smaller net magnetization. However, for low-
dimensional systems and at surfaces, there can be larger net
magnetization in systems with antiferromagnetic exchange,
and dipole effects can be more important. In spin-valve
structures, the antiferromagnet provides exchange biasing to
the adjacent thin ferromagnetic film, which exchange couples
to it [10]. The impact of dipole interactions within the surface
layer of the antiferromagnet in this case may be an important
effect for the explanation of the exchange-bias field, but
the phenomenon of exchange bias is not well understood.
The most popular compound for use as the antiferromagnet
in spin valves for magnetic recording is IrMn3, which, in
its ordered crystalline fcc phase, is composed of ABC-
stacked [111] planes of magnetic Mn ions on kagome sites
[4,5,11–15].

The large number of studies over the past few decades
on the near-neighbor antiferromagnetic exchange Heisenberg
kagome model has shown that the large degeneracy associated
with the 120◦ spin structures on corner-sharing triangles leads
to the stability of so-called q = 0,

√
3 × √

3 and other more
exotic spin structures [16–20]. This local 120◦ ordering also
occurs in the edge-sharing triangular lattice with near-neighbor
exchange [1]. In the case of long-range dipole interactions,
details of the lattice geometry can play a more important role.
For the triangular lattice, the ground-state and low-temperature
spin structures have been established to be ferromagnetic,
whereas for the kagome lattice, this appears to not be the
case [21–23]. Spin-ice-type order has been proposed for the
kagome lattice using both Ising-like [24,25] and anisotropic
Heisenberg [26] spin models. Of particular interest to the
present work are the Monte Carlo (MC) simulation studies of
Tomita [23] on the kagome lattice using a purely Heisenberg
spin model with dipole interactions. These results suggest that
alternating rows with sixfold ferromagnetic order and disorder
are stabilized below a critical temperature of TN � 0.43 (in
dimensionless units). The ground-state spin configuration was
not studied.

In this work, extensive Metropolis MC simulations are
performed on the two-dimensional kagome Heisenberg spin
lattice with only dipole interactions. We confirm a phase tran-
sition to long-range magnetic order, but the spin configuration
we find differs from that of Tomita. Significant fluctuations
occur between coexisting sixfold nonferromagnetic degener-
ate states over a range of temperature T before locking in to
a pair of states at lower T . The nature of the ground state is
examined using the effective field method and confirmed by
low-T MC simulation results. The impact of the range of the
interaction on the ground state is also examined.

The remainder of this paper is organized as follows. In
Sec. II, the model is described, and in Sec. III the effective
field method (EFM) is used to reveal the sixfold-degenerate
spin order in the ground state. MC simulation results for
the magnetization, sublattice order parameters, specific
heat, and susceptibility are presented in Sec. IV. A summary,
conclusions, and directions for future work are given in Sec. V.
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II. THE MODEL

The dimensionless dipole interaction Hamiltonian for
Heisenberg model spins is given by

Hdip =
∑
i,j

�Si · �Sj

r3
ij

− 3
(�Si · �rij )(�Sj · �rij )

r5
ij

, (1)

where �rij is the (dimensionless) vector connecting spins on
lattice sites i and j . This Hamiltonian contains two terms that
offer some insight into how the spins may tend to align at
low temperatures. The second term in Eq. (1) favors spins
that align along the vectors �rij . Therefore, in the ground state
it is reasonable to expect spins to exhibit some preferred
orientation related to the lattice vectors. This phenomenon
is referred to as shape anisotropy and is dependent on the
geometry of the lattice. The first term is noticeably similar to
the antiferromagnetic exchange interaction.

In view of what is known about the ground state of the
exchange-only kagome lattice, the ground state of the dipolar
kagome system can be expected to be a three-sublattice system
with fixed spin orientations for each sublattice (although this
was not assumed in the simulations presented below unless
otherwise noted). We expect that in the ground state all spins
on sites of the same sublattice will point in the same direction,
so the ground state can be represented by three angles, one
for each sublattice. From the above arguments it can be seen
that in the ground state, the spins will tend to lie in the
plane of the lattice due to the shape anisotropy induced by
the dipole interaction. In order to efficiently compute the
long-range interaction, we use standard Ewald summation
techniques [27].

III. THE GROUND STATE

The EFM has been successful in the determination of
complicated spin structures associated with spin glasses [28].
In our implementation of this method, the starting point is
an ordered or random initial spin configuration, the spins of
which are iteratively aligned with the local field to minimize
the energy. This procedure is then repeated multiple times to

FIG. 1. (Color online) Example low-temperature spin structure
identified by MC and EFM simulations. The state contains states 1
and 5 as defined in Table I. Domain walls separate the two ground
states. Spins in a domain wall have an orientation that is the average
of the orientations of the spins belonging to the sublattice on which
the domain wall forms. The top two rows are state 1, while the bottom
rows correspond to state 5.

TABLE I. Ground states for classical dipoles on the kagome
lattice. Note that the number of the state does not correspond to
the value of n that defines the overall orientation of the magnetization
of that state.

Domain θA θB θC

1 23.6113 96.3887 60
2 203.6114 276.3887 240
3 36.3887 0 −36.3887
4 216.3887 180 143.6114
5 120 83.6113 156.3887
6 300 263.6113 336.3887

ensure that the global minimum-energy spin state is achieved.
This approach is effective in discarding unwanted metastable
states. Periodic boundary conditions are used. In addition, low-
temperature MC simulations presented in Sec. IV corroborate
the ground-state results.

This analysis reveals multidomain spin configurations
involving pairings of six types of magnetic states, separated
by domain walls, as shown in Fig. 1. These six ground states,
defined in Table I, all exhibit a three-sublattice structure with
fixed spin orientations for each sublattice. Each state exhibits
shape anisotropy as predicted, as one sublattice in each state is
aligned along the direction of θ = nπ

3 relative to the horizontal
axis, where n is an integer, n ∈ {0,1,2,3,4,5}. The orientation
of spins on the other two sublattices deviates from θ by an angle
φ = 36.3887◦ such that the angles of the other two sublattices
are given by θ± = θ ± φ, as seen in Table I. The energy of
each of these six spin configurations is the same, giving rise to
a sixfold degeneracy. The six ground-state spin configurations
are shown in Fig. 2.

(a) State 1

(c) State 3

(e) State 5 (f) State 6

(d) State 4

(b) State 2

FIG. 2. (Color online) Six pure-ground-state domains of the two-
dimensional dipolar kagome spin lattice.
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To further illustrate how the ground states combine to
form domain walls at low temperatures, Fig. 3 shows spin
configurations 3 and 6 from Table I as pure ground states and
then shows the mixture of these two states.

The ground states have an overall orientation that can
be defined by considering a “macrospin” formed by three
spins located on a single triangle within the lattice. The
overall orientation θM of a domain is defined by the average
orientation of the three spins that form a macrospin, θM = (θ +
θ+ + θ−)/3 = θ . Therefore, each state can be defined by an
orientation θM = nπ

3 ,n ∈ 0,1,2,3,4,5. Our shape anisotropy
predictions made from the magnetic dipole interaction term
are confirmed further as the spins all lie in the plane of the
lattice with deviations from the plane being minimal.

At low temperatures, the system orders itself into mixtures
of these states separated by domain walls that have a very
small effect on the system’s total energy. There are six
favorable pairs of states at low temperatures: (1,5), (1,3),
(2,6), (2,4), (3,6), and (4,5). Within these specific state
pairings, the two participating domains have a sublattice with
similar orientation, and for each of these pairs, θM in the two
domains differs by 60◦. For example, states 1 (θM = 60◦) and
5 (θM = 120◦) have similar values of θB , as seen in Table I.
The triangular lattice, which orders ferromagnetically, has less
geometrical frustration than the kagome lattice, which may be
responsible for the difference in ground-state spin structures.

In a previous MC study on the dipolar kagome system,
Tomita suggested that the spin structure of the system at
low temperatures is composed of ferromagnetic chains with
spins between the chains appearing to not be ordered [23].
In fact, snapshots of the spin structure from our simulations
at temperatures studied by Tomita indicate distinctly different
spin structures. As a result of this disagreement, we develop
a simple computational model to verify our results. By
generating many configurations of the states reported by
Tomita (see Fig. 13 of Ref. [23]) and calculating the energy
of the system, we find that the energy per spin, E/spin ≈
−1.6, to be greater than the energy per spin for our ground
state, E/spin = −2.38895. It is curious that the energy of
−1.6 corresponds to a T above the transition, but this only
further suggests that the state with disordered spins between
ferromagnetic chains is not the ground state. We note that the
transition temperature found by Tomita is essentially the same
as ours (TN � 0.43, as shown in the next section).

Because the magnetic dipole interaction is a long-range
interaction, it is of interest to study how the ground-state
structure evolves as a function of the range of interaction.
By considering a finite-size model of three spins belonging
to a central cluster on a kagome lattice, as in Fig. 4, we
can study the effect of the range of the interaction on the
ground state of the system. For simplicity, we have assumed
that the ground state is a three-sublattice system so that all
spins belonging to a sublattice have the same orientation.
Only interactions between the central spins and their neighbors
are considered, as shown in Fig. 4. That is, the spins outside
of the central cluster do not interact with each other. The
range of interaction is varied at each step, and the energy
is minimized numerically in three variables, θA,θB , and θC ,
the angles of spin orientation for sublattices A,B, and C,

FIG. 3. (Color online) Diagram depicting domains 3 (black ar-
rows) and 6 (red arrows) and the domain wall (blue) formed by the
mixture of these states. Sublattice sites are colored blue (A), red (B),
and green (C). The spins separating the two states form the domain
wall with an orientation that is the average of the orientations of the
spins on sublattice C (green sites) from states 3 and 6.
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FIG. 4. (Color online) Visualization of the finite-size model.
Spins belonging to a central cluster (denoted by red, blue, and green
lattice sites) interact only with their neighbors within the range of
interaction.

respectively. The plot of the sublattice angles as a function
of the range of interaction shown in Fig. 5 indicates that
the underlying physics of the magnetic dipole interaction is
captured after the range includes the second-nearest neighbors
of the central spins. Interestingly, when the range includes only
the nearest neighbors, we retrieve a result that is similar to the
q = 0 ground state of the exchange-only kagome lattice [17].
That is, the nearest-neighbor dipolar interaction gives a 120◦
spin structure with the total magnetization on a triangle equal
to zero coupled with the shape anisotropy as all the angles
point along lattice vectors. Note that in this model, the spins
in the central cluster interact with each other twice. This
double counting reflects the Ewald summations used in our
simulations to calculate the correct energy per particle of the
infinite periodic system.

IV. SIMULATION RESULTS

Results from using Metropolis MC simulations at finite
temperatures are described here. All quantities calculated are
averaged over 106 MC steps (with the initial 10% discarded for
thermalization) unless otherwise specified and are calculated
for different lattice sizes L × L with N = 3L2/4 spins. Here,
L represents the number of points along an edge of the under-
lying triangular lattice, with one-quarter of the sites removed.

θA

θB

θC

2 4 6 8 10 12

−50

0

50

100

150

r

θ

FIG. 5. (Color online) Sublattice angles as a function of the range
of interaction. The angles slowly converge as the range of interaction
is increased. The ground state is nearly realized after including up to
only second-nearest neighbors.

FIG. 6. (Color online) Energy as a function of temperature for
different lattice sizes L from MC cooling simulations.

A single MC step refers to N individual Metropolis spin update
attempts. Periodic boundary conditions are used. Simulations
versus temperature are done three different ways [13]: (i) as
cooling runs with an initial random spin configuration and
then using the final configuration of the previous temperature
as the initial configuration of the next lower value of T ,
(ii) heating runs with the initial configuration being one of the
six ground states, and, finally, (iii) independent temperature
runs where a random initial configuration is used at each
value of T . Results for the energy calculated from cooling
simulations with �T ≈ 0.01 are shown in Fig. 6 for L = 18
and 24, showing little impact of system size. There is a small
inflection in the energy at T ≈ 0.4, indicating the possibility
of a phase transition.

To determine if the inflection in the energy corresponds to a
phase transition, the specific heat (per spin) as a function of the
temperature is calculated from cooling runs. Figure 7 shows a
peak at T ≈ 0.43, consistent with Tomita [23], with a relatively
weak dependence on system size that may be indicative of a
continuous phase transition.

In classical spin systems, the total ferromagnetic magneti-
zation,

Mf = 1

N

〈∣∣∣∣∣
∑

i

�Si

∣∣∣∣∣
〉
, (2)

FIG. 7. (Color online) Specific heat vs temperature for different
lattice sizes L from MC cooling simulations.
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FIG. 8. (Color online) Total ferromagnetic magnetization Mf as
a function of temperature for various lattice sizes from cooling runs.

is a useful quantity to consider as it can offer insight into
the order of the system. If Mf = 0, the system is completely
disordered with no net magnetization, while if Mf = 1
the system is in a ferromagnetic phase with all the spins
aligned along the same orientation. Figure 8 shows the total
ferromagnetic magnetization from cooling runs and indicates
that the system is in a disordered phase at temperatures
above TN . At low temperatures, the results suggest that the
system is in a state that exhibits order with some deviations
from fully ferromagnetic order. This is expected from the
analysis presented in Sec. III as low-temperature states are
composed of a mixture of ground states which are not totally
ferromagnetic; that is, Mf �= 1 for a pure ground state. In
fact, for a pure ground state, Mf = 0.8700, which is greater
than the value found for an equal mixture of two domains, for
which Mf = 0.8700 cos 30◦ = 0.7534 (since the macrospin
angles in the two domains are separated by 60◦, as discussed
in Sec. III).

Based on the results in Sec. III, we expect that each
sublattice is fully ordered in the ground state. Therefore, we
calculate the sublattice magnetization order parameter,

Mγ = 3

N

〈∣∣∣∣∑
k⊂γ

�Sk

∣∣∣∣
〉
, (3)

where γ represents sublattice A, B, or C and k runs over
all N/3 spins of the sublattice, as well as the total sublattice
magnetization order parameter,

Mt = 1

N

〈∑
γ

∣∣∣∣ ∑
k⊂γ

�Sk

∣∣∣∣
〉
. (4)

When the value of this total sublattice magnetization is 1,
the system has three ferromagnetically ordered sublattices as
seen in the ground states defined in Sec. III. However, at
low temperatures the presence of mixtures of ground states
separated by domain walls will reduce the value of Mt from
unity to a value that depends on the number of spins that belong
to each domain present. Figure 9 confirms this prediction as the
total sublattice magnetization is not equal to unity at very low
temperatures. For a state consisting of an equal number of spins
belonging to each domain, Mt = 0.7757. An equal amount of
each phase is favored entropically and will be realized if the

FIG. 9. (Color online) Total sublattice magnetization as a func-
tion from cooling runs. Small fluctuations at T ≈ 0.3 correspond to
the system “deciding” which combination of domains will be present
at low T .

energetic penalty of having domain walls is small. In Fig. 9,
Mt tends to approximately 0.78, which is slightly higher than
if there were an equal number of spins belonging to each
domain. This is expected as the domain with more spins will
contribute more to the magnetization, bringing the value closer
to the pure-ground-state value of unity. Owing to the small
energetic penalty of forming domain walls, the ground state is
not realized as the appearance of a second domain will occur
even at the lowest of T . The energy difference between a pure
ground state of size L = 12 and one with a single row of a
complementary domain is �E = 0.38 (�E/spin ≈ 4 × 10−3

and �E scales linearly with L). This excess energy is so small
that mixtures of states are inevitable in an ergodic system. By
contrast, a single row of a noncomplementary domain (e.g.,
state 2 with a row of state 1) yields an energetic penalty two
orders of magnitude higher.

In both Figs. 8 and 9, there exists a common feature
at T ≈ 0.27 where the magnetization parameters appear to
fluctuate. Because these fluctuations are present for only a
narrow region of temperatures, we examine the possibility
that they are associated with an onset of a reduction in thermal-
fluctuation-induced switching between degenerate spin states.
We note that there is no discernible feature at this temperature
region in the specific heat.

Figure 10 shows that the sublattice ferromagnetic magneti-
zations for each sublattice of the system have large fluctuations
in the region where the features are present in Figs. 8 and 9.

By examining the spin structure in this temperature region
(Fig. 11) the large fluctuations can be explained by the system
changing which state pairs are present. In Fig. 11(a), a snapshot
of the MC results at a higher temperature, T = 0.3176, shows
states 3 and 6 are present, while at T = 0.2067, shown in
Fig. 11(b), states 1 and 5 are present. For T � 0.3, the energy
required to change states is low enough to allow for large
fluctuations between spin configurations. Once the system is
cooled to a sufficiently low temperature, the energy required
to change from one pair of states to a different pair becomes
large enough that the probability of the system changing
states becomes very small. At this temperature, T � 0.2, the
system becomes “frozen” into a configuration that consists of
a particular pair of states.
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FIG. 10. (Color online) Total ferromagnetic magnetization for
individual sublattices A, B, and C from cooling runs with L = 18.
Large fluctuations correspond to the system changing state mixtures
until the system becomes “frozen” into a combination of states.

We see from Fig. 11 that at low T , the domains take the form
of system-spanning rows of macrospins that point in the same
direction. Rows of the complementary state run in between.
We see typically six domain walls. The maximum number of
walls is nine (L/2), for the case of alternating single rows.
In Fig. 11(a), the higher T introduces disorder, both in terms
of the variation of macrospin direction within domains and
in terms of the completeness of the domain rows. The gray

(a) T=0.3176 (b) T=0.2067

FIG. 11. (Color online) Snapshots of the spin structure in the
region where fluctuations in the magnetization order parameters are
present (see Fig. 10). Below the snapshots, we have included diagrams
with colored triangles used to easily identify which states are present.
Each state has an associated color: state 1, magenta; state 2, yellow;
state 3, red; state 4, green; state 5, blue; state 6, orange. The color
of each triangle is calculated using the orientation of a macrospin
θM as a variable in a continuous “color function” that associates
a red/green/blue value with θM . (a) States 3 and 6 are present.
(b) States 1 and 5 are present. Gray shading is a guide to the eye
for picking out one of the states present; see text for details.

FIG. 12. (Color online) Total ferromagnetic magnetization from
cooling, heating, and individual temperature simulations on lattice of
size L = 18.

shading around some of the triangles in Fig. 11 is a guide
to help pick out domains of one of the states; a triangle is
determined to be in a particular state by rounding the value of
its macrospin angle to the nearest increment of 60◦.

That two sublattice magnetizations are significantly less
than unity and one sublattice magnetization is nearly at unity
(as in Fig. 10) can be understood by considering Fig. 3, where
spins on sublattice C all nearly point in the same direction,
while for sublattice A (and B) the spins are offset by 96.3887◦
in the two domains, giving MA = MB = cos (96.3887/2) =
0.6666.

In Fig. 12, results are presented for cooling, heating,
and individual temperature simulations, showing the total
ferromagnetic magnetization as a function of temperature.
Because heating simulations start from a ground state, the
ferromagnetic magnetization is higher than that of a mixture of
domains which have spins with opposing magnetizations. As
the temperature is increased, fluctuations are introduced to the
ground-state spin orientations that lower the magnetization. At
T ≈ 0.2, the magnetization sharply drops to values consistent
with the cooling simulation results. Similar to the system
becoming frozen into a mixture of domains when it is cooled
to T ≈ 0.2, the system “melts” into a state composed of a
mixture of domains when it is heated to T ≈ 0.2.

Also shown in Fig. 12 are results from individual tem-
perature simulations which have been averaged over 107 MC
steps. The magnetization is in agreement with both cooling
and heating simulations for temperatures T > 0.2 but has a
large amount of noise for temperatures below T ≈ 0.2. This
noise results from the fact that at each temperature studied
the system has to be equilibrated from a randomly generated
initial state. Since the acceptance probability is proportional
to the Boltzmann factor, as the temperature is decreased, the
acceptance probability will decrease exponentially. Therefore,
at low temperatures the number of Monte Carlo steps required
to equilibrate the system increases greatly, which increases
the computational time required to perform a simulation that
yields good statistics.

Finally, Fig. 13 shows the magnetic susceptibility [14] as a
function of temperature for cooling and heating simulations.
Both simulations yield a peak at T ≈ 0.43, as expected
from previous results that identified a phase transition at this
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FIG. 13. (Color online) Magnetic susceptibility as a function of
temperature for cooling and heating simulations on a lattice of size
L = 18.

temperature. The results also identify features corresponding
to how the system changes as it is heated or cooled. From the
heating results, we see a small peak in the susceptibility at T ≈
0.2, where the system begins to form domain walls. Cooling
simulation results show that the susceptibility experiences
fluctuations at a temperature range close to T ≈ 0.3, which
results from the system reordering into mixtures of domains
during this range.

V. SUMMARY AND CONCLUSIONS

As a prelude to studies of magnetic thin-film geometries
which mimic spin-valve exchange bias structures and as a
complement to studies of magnetic nanostructures, classical
Heisenberg spins with only dipole-dipole interactions on the
two-dimensional kagome lattice have been studied to identify
the ground-state spin structures, degeneracies, and thermal
behavior of this geometrically frustrated lattice. In contrast
to the simple triangular lattice with edge-sharing triangles
which exhibits a ferromagnetic ground state, our EFM and
low-T MC simulations reveal that the corner-sharing kagome
structure leads to more complicated sixfold-degenerate spin
states. These have been characterized (see Table I) in terms
of three ferromagnetically ordered sublattices, and multistate

domain structures that result from the simulations have been
identified. Similarities and differences from the near-neighbor
antiferromagnetic exchange-only 120◦ spin structures of the
triangular and kagome lattices are described and result
from beyond-third-neighbor dipolar terms for which shape-
anisotropy effects become more important.

The thermal behavior of the system was studied through
cooling, heating, and individual temperature MC simulations.
Results suggest that the system undergoes a phase transition at
T ≈ 0.43, in agreement with previous MC simulations [23],
but the nature of the ordered state differs. Ferromagnetic and
sublattice magnetization order parameters calculated during
cooling simulations suggest that below the critical tempera-
ture, the system changes between mixtures of ground-state
domains with fluctuations present until a threshold temperature
T ≈ 0.2 is reached where the system becomes frozen into a
specific mixture of ground-state domains. Heating simulations
yield corroborating results in that the system has only one
domain present at low temperatures until it reaches T ≈ 0.2,
where the system readily changes into a mixture of domains
as reflected in Fig. 12. Our results are consistent with the
phase transition at TN being continuous. Further, it is possible
that its criticality is impacted by domain fluctuations and the
long-range nature of the dipole interaction [29–31].

Also of interest is to extend this analysis to study
dipole interactions on the three-dimensional fcc ABC-stacked
kagome systems [13]. Preliminary results [32] indicate a phase
transition to long-range order at TN ∼ 0.4 to a state with
a different spin structure from the two-dimensional kagome
system and also different from the ferromagnetic order in the
standard fcc lattice [33].

Noted added. Recently, we became aware of work that
shows sixfold-degenerate ground states similar to the ones
described here [34].
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