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Dipole-exchange spin waves in magnetic thin films at zero and finite temperature:
Theory and simulations
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The excitation spectra in a stacked square lattice of dipole-exchange coupled classical spins is studied using
both standard linearized spin-wave theory and the direct integration of the torque equation. A detailed comparison
of the two methods is presented for the case of small-amplitude spin-wave modes. The spin-wave frequencies
obtained from the time-dependent correlation functions calculated by integrating the equation of motion are shown
to be in excellent agreement with the results obtained from linearized spin-wave theory for both single-layer
and multilayer films. Applying the numerical integration method, the finite-temperature correlation function is
calculated using Monte Carlo spin dynamics for the case of a single-layer, dipole-exchange coupled system. Values
for the frequencies, amplitudes, and decay constant of the spin-wave modes at finite temperature are calculated
from a spectral analysis of the finite-temperature correlation function. It is shown that thermal fluctuations give
rise to a softening of the spin-wave frequencies and an intrinsic damping of the spin-wave oscillations.
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I. INTRODUCTION

The dynamical properties of magnetic thin films have
attracted increasing interest recently as a means to probe
fundamental aspects of magnetic interactions and their inter-
play with geometrical effects, and also because they provide
the foundations for promising applications in spintronics and
data storage.1–5 Spin waves contribute significantly to the
thermal noise in magnetic sensors,6 and opportunities for noise
reduction through design engineering can be enhanced through
further understanding of magnetic excitations. The calculation
of spin-wave dynamics in constrained geometries, such as
magnetic thin films, is complicated by dipolar interactions,
which can play a significant role in determining both the
nature of the equilibrium spin configuration7,8 as well as
the dynamics.9–13 The anisotropic and long-range character
of the dipole interaction introduces a substantial level of
complexity into both theoretical and numerical calculations
and can combine with the typically stronger but more localized
exchange interaction to generate equilibrium, inhomogeneous
spin structures, and nontrivial excitations.

The significance of the dipolar interactions in determining
the dynamical properties of magnetic thin films was illustrated
in an early paper by Damon and Eshbach,9 who calculated
the characteristic modes of a magnetic thin film in the
magnetostatic limit and found that the nature of the modes
changes from bulk to surface with increasing frequency. These
surface excitations are typically referred to as Damon-Eshbach
(DE) modes. Later work by Benson and Mills10 examined
the case of a dipole-exchange system consisting of a stacked
square lattice, which included both the dipole and exchange
interactions. Solving the linearized equation of motion for the
system, they obtained the eigenvalue solutions corresponding
to the spin-wave modes for 50–100 layers. From the form
of the eigenvectors, they were able to identify both surface
and bulk modes. However, Benson and Mills were unable
to find any evidence of the magnetostatic modes predicted
by Damon and Eshbach. This apparent discrepancy between

the predictions of Damon and Eshbach and the lattice model
calculations of Benson and Mills were addressed in the later
work of Erickson and Mills.12 Extending the earlier work of
Benson and Mills, their calculations revealed a crossover from
a single DE-like surface mode at long wavelength to a pair
of exchange-dominated surface modes as the wave number
increased. In particular, they were able to show that, due to the
effects of the exchange interaction, the frequency of the DE
surface mode fell below the bulk modes for q = 0, but rose
rapidly with increasing wave vector, mixing strongly with the
bulk modes to form a band of exchange-dominated bulk modes
and two surface modes at large wave number. The results of
the Benson and Mills calculations were also shown to be in
good agreement with earlier Brillouin scattering experiments
on ultrathin magnetic layers composed of a only a few atomic
layers.14

The formalism developed by Benson and Mills has been ex-
tended to more complex structures, including nanospheres,15

nanowires,16 and stripes,17 and it has been applied with some
success in analyzing and interpreting spectra obtained from
Brillouin scattering experiments.18,19 However, subsequent
theoretical calculations of spin-wave spectra in constrained ge-
ometries have largely been limited to zero or low temperature
and in highly symmetric systems,20 or they have not included
dipole effects at finite temperature.21 An alternative approach
to calculating spin-wave spectra at finite temperature is Monte
Carlo spin dynamics, which combines the numerical integra-
tion of the equations of motion with initial states generated
from Monte Carlo simulations. This technique has been used
extensively to study the finite-temperature spin dynamics in a
variety of two-22–26 and three-dimensional27–30 systems. The
results obtained from Monte Carlo spin dynamics compares
well with both experimental and theoretical results.26,30,31 A
key feature of Monte Carlo spin dynamics is that it requires
averaging over a large number of trajectories generated from
an ensemble of initial states. Thus while the method is
computationally very demanding, it is capable of producing
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reliable results to a high degree of precision for complex
systems that are not predicated on the assumptions that limit
the range and applicability of many theoretical approaches.
Monte Carlo spin dynamics also serves as a useful bridge
between the atomistic models of magnetic systems and the
more phenomenological micromagnetics32 approach that is
used extensively to study problems in magnetism that are of a
more applied nature, a distinction that becomes more blurred
with the increasing importance of nanotechnology in magnetic
device applications.

In this paper, we study the spin-wave excitations in
magnetic thin films by numerically integrating the equations
of motion for a two-dimensional system of dipole-exchange
coupled classical spins in an applied external field aligned
parallel to the plane of the film. Results are presented for both
zero temperature and finite temperature using Monte Carlo
spin dynamics. The paper consists of three main parts. In
Sec. II A, a detailed formulation of linear spin-wave theory is
presented and the form of the dynamic spin-spin correlation
function for a two-dimensional system of dipole-exchange
spins is calculated for small-amplitude spin-wave oscillations.
The specific form of the dynamic spin-spin correlation
function is key to properly identifying and calculating the
properties of the finite-temperature spin waves from Monte
Carlo spin dynamics. In Sec. II B, we compare the spin-wave
spectra calculated from the linear spin-wave theory using
the formalism developed in Sec. II A with the results obtained
by numerical integration of the equations of motion. Results
obtained for the single-layer and five-layer cases using both
methods are presented for both dipole and dipole-exchange
coupled systems and are shown to be in very good agreement.
In Sec. III, the numerical integration technique used in Sec. II B
is combined with the results from Monte Carlo simulations to
compute the finite-temperature dynamic correlation function
using Monte Carlo spin dynamics. Based on the form of the
correlation function calculated in Sec. II A, the frequency,
decay constant, and amplitude of the finite-temperature spin-
wave modes are calculated. Results are presented for several
wave numbers and temperatures. We close the paper with
a discussion of the results. It is important to note that the
calculations described in the present work do not include any
explicit damping, and that the decay in the spin-wave modes
observed in the finite-temperature results arises entirely as a
result of the thermal fluctuations.

II. SMALL-AMPLITUDE SPIN WAVES IN
FERROMAGNETIC FILMS

In this section, we compare the properties of small-
amplitude spin-wave oscillations for a stacked two-
dimensional square lattice of dipole-exchange coupled clas-
sical spins calculated by two methods: linearized spin-wave
theory and numerical integration of the equation of motion.
The principal purpose of this section is to demonstrate that,
with sufficient care, it is possible to obtain results from
both methods that are in very good agreement. This work
also serves as an important prelude to the finite-temperature
results obtained using Monte Carlo spin dynamics that are
presented in the following section, as well as more complicated

systems that cannot be easily treated analytically, even in the
small-amplitude approximation.

We consider a model system composed of L square lattices
with lattice constant a, stacked so that the vertices in adjacent
layers are aligned along a common axis, perpendicular to the
plane of the film. For simplicity, we consider the spacing
between layers to be equal to the lattice constant a. A classical
spin vector of magnitude S is located at each of the vertices
with a uniform field of magnitude H applied along one of
the lattice axes. The coordinates are defined such that x and
z lie in the plane along the axes of the lattice, with the z axis
directed along the direction of the applied field. The coordinate
y is perpendicular to the plane. The specifics of the model
are then defined in terms of the energy for a particular spin
configuration, which is given by

E = −h
∑

i

Sz
i −

∑
〈ij〉

Jij
�Si · �Sj + 1

2
g

∑
i �=j

∑
α,β

D
αβ

ij Sα
i S

β

j .

(1)

Here Jij is the exchange coupling between sites i and j , and
h = gLμBH represents the field applied along the z axis. The
last term in Eq. (1) represents the long-range dipole-dipole
interactions with the dipolar tensor defined as

D
αβ

ij = |Rij |2δαβ − 3Rα
ijR

β

ij

|Rij |5 , (2)

where α,β = x,y,z, �Rij = (�rj − �ri)/a is a vector joining sites
i and j measured in units of the lattice constant a, and
g = g2

Lμ2
B/a3, where gL is the Landé factor and μB is the Bohr

magneton. The model can be readily generalized to consider
other lattice structures and geometries, including simple
antiferromagnetic structures,33,34 as well as other types of
anisotropic interactions, such as axial anisotropy, anisotropic
exchange, and the Dzyaloshinkii-Moryia interaction.

Within the classical formalism, the evolution of the spin
vectors may be calculated from the torque equation given by

d �Si

dt
= −�Si × �hi, (3)

where the effective field �hi is defined from the expression for
energy given in Eq. (1) as

hα
i = − ∂E

∂Sα
i

= hδzα +
∑

j

Jij S
α
j − g

∑
j �=i

D
αβ

ij S
β

j . (4)

These classical equations of motion reproduce results from
a quantum-mechanical formalism, based on the operator
equation of motion, in the case of large spin number S.35

A. Linearized spin-wave theory

In this model, we assume that the applied field is sufficiently
strong such that the spins are ferromagnetically aligned in
the direction of the field. For the case of small-amplitude
oscillations, we may therefore assume that Sz

j ≈ S and that
Sx

j � S and S
y

j � S. Retaining only the terms linear in the
transverse spin components in the equation of motion defined
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by Eqs. (3) and (4), we obtain the linearized equations of
motion,

d

dt
Sx

j = −h0S
y

j − S
∑

i

(
Jij − gD

yy

ij

)
S

y

i + gS
∑

i

D
xy

ij Sx
i ,

(5)
d

dt
S

y

j = h0S
x
j + S

∑
i

(
Jij − gDxx

ij

)
Sx

i − gS
∑

i

D
xy

ij S
y

i ,

(6)

where h0 is the static effective field along the z axis,

h0 = h + S
∑

i

Jij − gS
∑

i

Dzz
ij . (7)

We define the Fourier components

S+
j ≡ Sx

j + iS
y

j = 1√
N

∑
�q

S+
l (�q)ei �q·�rj , (8)

S−
j ≡ Sx

j − iS
y

j = 1√
N

∑
�q

S−
l (�q)e−i �q·�rj , (9)

together with

Jij ≡ 1

N

∑
�q

Jll′ (�q)ei �q·�rij , (10)

D
αβ

ij ≡ 1

N

∑
�q

D
αβ

ll′ (�q)ei �q·�rij , (11)

where l = 1, . . . ,L denotes the layer on which the spin �Sj

resides and �q = (qx,qz) is the two-dimensional wave vector in
the plane of the film. The linearized equations of motion may
be written in matrix form as

−gi∂t

(
S+(�q,t)

S−(−�q,t)

)
=

(
A(�q) B(�q)
B†(�q) A(�q)

) (
S+(�q,t)

S−(−�q,t)

)
,

(12)

where A(�q) and B(�q) are L × L matrices with elements All′(�q)
and Bll′(�q) given by

All′ = h0δll′ − S
(
Jll′ (�q) + g

2
Dzz

ll′ (�q)
)

, (13)

Bll′ = gS

2

[
Dxx

ll′ (�q) − D
yy

ll′ (�q) + 2iD
xy

ll′ (�q)
]
. (14)

S+(�q,t) and S−(�q,t) are L-component column matrices with
components given by S+

l (�q,t) and S−
l (�q,t), respectively, and g

is defined as the 2L × 2L matrix,

g =
(

I 0
0 − I

)
. (15)

The spin-wave modes correspond to solutions of the form(
S+(�q,t)

S−(−�q,t)

)
= w(�q)ei�t . (16)

It can be readily shown that, for each �q vector, there are 2L

such linearly independent solutions that satisfy the eigenvalue
equation

g
(

A(�q) B(�q)
B†(�q) A(�q)

)
w±

ν (�q) = ±�ν(�q)w±
ν (�q) (17)

with ν = 1, . . . ,L. Defining the 2L × 2L matrix W as

W(�q) = (w+
1 (�q) · · · w+

L (�q),w−
1 (�q) · · · w−

L (�q)), (18)

it can be shown that the eigenvectors may be normalized such
that

W†(�q)gW(�q) = g (19)

and that the general solution to equation (12) may be written as(
S+(�q,t)

S−(−�q,t)

)
=

√
2W(�q)

(
c(�q)ei�(�q)t

c∗(−�q)e−i�(�q)t

)
, (20)

where �μν(�q) ≡ δμν�ν and c(�q) and c∗(�q) are two L-column
vectors that define the spin-wave amplitudes and which are
determined from the initial spin configuration as(

c(�q)
c∗(−�q)

)
= 1√

2
gW†(�q)g

(
S+(�q,t = 0)

S−(−�q,t = 0)

)
. (21)

The spin-wave amplitudes cν(�q) and c∗
ν (�q) are the classical

counterparts of magnon annihilation and creation operators
in quantum-mechanical spin-wave theory. The transverse
components of spin vectors, in the linear regime, may be
expressed as a linear combination of the spin wave modes as

Sx
l (�q,t) =

L∑
ν=1

[
�l,νe

i�ν t c∗
ν (�q) + �∗

l,νe
−i�ν t cν(−�q)

]
, (22)

S
y

l (�q,t) =
L∑

ν=1

[
	l,νe

i�ν t c∗
ν (�q) + 	∗

l,νe
−i�ν t cν(−�q)

]
, (23)

where

�lν = 1√
2

(w+
lν + w−

lν), (24)

	lν = 1√
2

(w+
lν − w−

lν). (25)

Expanding the energy given by Eq. (1) in powers of c(�q)
and c∗(�q), we obtain

E = E0 + 1

2

∑
�q

(
c(�q)

c∗(−�q)

)† (
�(�q) 0
0 �(−�q)

)

×
(

c(�q)
c∗(−�q)

)
+ · · · (26)

= E0 +
∑

�q

∑
ν

�ν(�q)c∗
ν (�q)cν(�q) + · · · , (27)

where E0 denotes the ground-state energy of the system and
the ellipses denote the higher-order terms in c(�q) and c∗(�q).

Accurately calculating the matrix elements for A(�q) and
B(�q) requires considerable care due to the slow convergence of
the dipolar sums in the terms D

αβ

ij . Calculations are performed
using the methods described in Refs. 36 and 37. Results
obtained from linearized spin-wave theory for several systems
are presented in the next section.

B. Numerical integration of the equations of motion

In addition to solving the eigenvalue equation, (17), from
linearized spin-wave theory, the spectra for small amplitude
spin waves can also be calculated from a spectral analysis
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FIG. 1. Spin-wave frequency spectrum plotted as a function of the reduced wave number qa for a ferromagnetic film composed of N = 1
layer for the (a) the pure dipolar case with J = 0.0, g = 0.3, and h = 0.5 and for (b) a dipole-exchange system with J = 1.0, g = 0.2, and
h = 0.15 for qx = q and qz = q. Solid lines are the results from linearized spin-wave theory and the circles are from the numerical integration
of the equations of motion. In both cases, the black line (top) denotes the DE modes [�q = (q,0)] while the gray line (bottom) denotes the BV
modes [�q = (0,q)].

of Sα
l (�q,t) obtained by numerically integrating the equations

of motion given by Eqs. (3) and (4). For this we consider a
stacked lattice consisting of spins located on the vertices of L

layers of a d × d square lattice, with S = 1 and Jij = J > 0
for nearest-neighbor spins and zero otherwise. We assume
periodic boundary conditions in the x and z directions. Again,
because of the slow convergence of the dipolar sums, care has
to be taken in accurately calculating the dipolar contribution to
the effective field. Also, in the absence of explicit damping, it is
important that the integration procedure satisfies the constraint
| �Si(t)| = S. In the present work, the equation of motion for the
spins is expressed in terms of quaternions and solved using a
fourth-order Runge-Kutta algorithm. Details of the integration
method are provided in Appendix A.

The spin-wave frequencies were calculated by generating
a random initial state in which the polar angle of the spins
is normally distributed about the z axis with variance σ

and the azimuthal angle is uniformly distributed over the
range 0 < φ < π . Since we wish to consider small-amplitude
oscillations, the variance of the normal distribution satisfies
the constraint σ 2 � 1 in order that nonlinear effects are
negligible. Sx(�q,t) and Sy(�q,t) are then calculated over some
finite-time domain 0 � t � tmax by directly integrating the
equations of motion using this perturbed state as the initial spin
configuration. The spin-wave frequencies are then evaluated
by determining the peaks in the power spectrum of Sx(�q,ω)
and Sy(�q,ω). Each of the runs was performed using an initial
spin configuration with σ 2 = 5.77 × 10−5 and an integration
time step and run time given by �t = 5.0 × 10−4 with
tmax = 505.0, respectively. Data were recorded to disk every 20
time steps (20 × �t = 1.0 × 10−2). In addition to the results
presented here, numerous other runs were performed and it
was determined that, provided the constraint on the variance
σ 2 � 1 was satisfied, the resultant spin-wave spectra did not
appear to depend on the initial conditions.

Dispersion curves for the single-layer case calculated from
Eq. (17) and from the numerical integration of the equations
of motion are presented in Fig. 1 for two sets of parameters.
In Fig. 1(a), data are presented for the pure dipolar case
with J = 0.0, g = 0.3, and h = 0.5. The dispersion curves
for �q = (q,0) and �q = (0,q) illustrate the magnetostatic DE9

modes and the backward volume (BV) modes, respectively,
for the single-layer case. The DE mode is characterized by a
rapid increase in frequency at long wavelength that saturates
at short wavelengths. The BV mode, on the other hand, shows
a monotonic decrease with increasing wave number with a
well-defined minima at the zone boundary, qz = π/a reflecting
the antiferromagnetic nature of the dipolar interaction.

Dispersion curves are presented for a dipole-exchange
system with J = 1.0, g = 0.2, and h = 0.15 in Fig. 1(b).
Comparing the dispersion curves in Fig. 1(a) with those
in Fig. 1(b), we see that in the long-wavelength limit, the
spin-wave frequencies are dominated by the long-range dipolar
interaction and are independent of the exchange interaction
for q = 0. As q increases, the ferromagnetic nature of the
exchange interaction starts to play a more important role,
and the DE mode no longer saturates but increases with
increasing q, while the minima in the BV mode has shifted
away from zone boundary toward the zone center at qa ≈
0.196. Of particular interest for the present work is the good
agreement between the spin-wave frequencies obtained from
the eigenvalue equation and that obtained from the numerical
integration of the equations of motion.

Results for the five-layer case are presented in Fig. 2
for two sets of parameters. Dispersion curves for the dipole
case, with J = 0.0, g = 0.3, and h = 0.5, are presented in
Figs. 2(a), �q = (q,0), and 2(b), �q = (0,q), with spin-wave
frequencies calculated from both the eigenvalue equation (17)
and the numerical integration of the equations of motion. The
dispersion curves clearly show the very prominent DE surface
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FIG. 2. Spin-wave frequency spectrum for a thin film composed of N = 5 layers plotted as a function of the reduced wave number qa for
the dipole system with parameters J = 0.0, g = 0.3, and h = 0.5 for (a) �q = (q,0) and (b) �q = (0,q) and the dipole-exchange system with
J = 1.0, g = 1.0, and h = 0.3 for (c) �q = (q,0) and (d) �q = (0,q). Solid lines are the results from linearized spin-wave theory, and the circles
are from the numerical integration of the equations of motion.

mode together with the four bulk modes, each corresponding
to a distinct standing-wave pattern in the z direction. The DE
surface mode has the highest frequency at q = 0 and rises
rapidly with increasing wave number. The data also show
a considerable degree of mixing between the bulk modes.
The corresponding data for qz = q, presented in Fig. 2(b),
show that the spin-wave frequencies decrease with increasing
wave number, similar to the single-layer BV mode, with
each having a minima at q = π/a. As with the BV mode
in the single-layer case, this reflects the antiferromagnetic
character of the dipolar interaction. The dispersion curves
presented in Figs. 2(a) and 2(b) for the dipolar coupled system
show a considerable degree of mixing with nearly degenerate
frequencies over significant portions of the different branches.
This quasidegeneracy of the spin-wave modes makes it difficult
to extract distinct frequencies from the time series generated
from numerical integration of the torque equation.

The effects of the exchange interaction on the dispersion
curves can be seen in Figs. 2(c) and 2(d), where the frequencies
for each of the five spin-wave modes calculated from the

eigenvalue equation (17), and from the numerical integration
of the equations of motion, are presented for a dipole-exchange
system with J = 1.0, g = 1.0, and h = 0.3. Like the dipole
case, the data in Fig. 2(a) show a very prominent DE surface
mode together with four bulk modes, each corresponding to a
distinct standing-wave pattern in the z direction. However, a
comparison between the dispersion curves shown in Figs. 2(a)
and 2(c) demonstrates that the exchange interaction signifi-
cantly modifies the q = 0 frequencies, with the DE surface
mode frequency now below that of the four bulk modes. As
the wave number increases, the DE surface mode frequency
increases rapidly and mixes strongly with the bulk modes,
to the extent that the DE mode and the four bulk spin-wave
modes combine to form a band of exchange-dominated modes
at larger q values, as discussed in the Introduction.

The corresponding data for qz = q, presented in Fig. 2(d),
show that the ferromagnetic exchange compensates the anti-
ferromagnetic dipolar interaction raising the frequencies from
the values shown in Fig. 2(b) for the dipole case, such that
all but the lowest mode increases with increasing q. For this
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particular choice of parameters, the dipolar and exchange
interactions combine to produce dispersion curves that are
relatively flat. Again an important aspect of this comparison is
the good agreement between the results of the linear spin-wave
theory and those obtained from the numerical integration of
the equations of motion.

Like the spin-wave spectra, the eigenvectors w±
ν defined by

Eq. (17) are also strongly modified by the dipolar interaction,
particularly at long wavelength, and can reveal important
information about the structure of the spin waves in the case of
multilayer lattices. To determine the spin-wave eigenfunctions
from the numerical integration of the equations of motion,
we define the dynamic correlation functions Cxx

l (�q,t) and
C

yy

l (�q,t), which may be expressed in terms of the spin-wave
eigenvectors, frequencies, and amplitudes as

Cxx
l (�q,t) ≡ lim

T →∞
1

T

∫ T

0
Sx

l (�q,t ′)Sx
l (�q,t ′ + t)dt ′

= 2
L∑

ν=1

|�l,ν |2|cν(�q)|2 cos(�ν(�q)t), (28)

C
yy

l (�q,t) ≡ lim
T →∞

1

T

∫ T

0
S

y

l (�q,t ′)Sy

l (�q,t ′ + t)dt ′

= 2
L∑

ν=1

|	l,ν |2|cν(�q)|2 cos(�ν(�q)t) (29)

together with the corresponding Fourier transforms

Cxx
l (�q,ω) ≡ 1

2π

∫ ∞

0
Cxx

l (�q,t)eiωtdt = lim
δ→0+

L∑
ν=1

|�l,ν |2|cν(�q)|2

×
(

1

ω − �ν (�q) + iδ
+ 1

ω + �ν(�q) + iδ

)
,

(30)

C
yy

l (�q,ω) ≡ 1

2π

∫ ∞

0
Cxx

l (�q,t)eiωtdt = lim
δ→0+

L∑
ν=1

|	l,ν |2|cν(�q)|2

×
(

1

ω − �ν(�q) + iδ
+ 1

ω + �ν(�q) + iδ

)
.

(31)

Thus we see that the quantities |�l,ν |2|cν(�q)|2 and
|	l,ν |2|cν(�q)|2 may be readily obtained from Cxx

l (�q,ω) and
C

yy

l (�q,ω), respectively.
To determine the amplitude of the spin-wave modes, we

consider the dynamic correlation function D(�q,t) defined as

D(�q,t) ≡ lim
T →∞

1

T

∫ T

0

∑
l

[
S

y

l (�q,t ′)Sx
l (�q,t ′ + t)

− Sx
l (�q,t ′)Sy

l (�q,t ′ + t)
]
dt ′

= 2
∑

ν

|cν(�q)|2 sin[�ν(�q)t] (32)

together with the corresponding Fourier transform

D(�q,ω) ≡ 1

2π

∫ ∞

0
D(�q,t)eiωtdt = lim

δ→0+

L∑
ν=1

×
( |cν(�q)|2

ω−�ν(�q) + iδ
− |cν(�q)|2

ω + �ν(�q) + iδ

)
. (33)

FIG. 3. Average energy and magnetization per spin calculated
from Monte Carlo simulations for a 64 × 64 ferromagnetic lattice
with J = 1.0, g = 0.2, and h = 0.15.

The correlation D(�q,ω) is an extremely useful quantity as
it provides a method to determine the spin-wave amplitudes
|cν(�q)|2 that does not rely on the specific nature of the
eigenvectors �l,ν and 	l,ν . This property of the correlation
function D(�q,ω) is a direct consequence of the orthonormality
of the eigenvectors expressed by Eq. (19).

III. FINITE-TEMPERATURE SPIN WAVES

In this section, we apply the numerical integration methods
described in the previous section to examine finite-temperature
spin waves in a single ferromagnetic layer using Monte Carlo
spin dynamics. We choose a system with J = 1.0, g = 0.2, and
h = 0.15. The calculations are carried out on a square 64 × 64
lattice with S = 1. The magnetization and the energy of the
system, calculated as a function of temperature from Monte
Carlo simulations, are shown in Fig. 3. In each simulation,
the system was initialized in the ground state with the spins
aligned along the direction of the applied field. The system
was then equilibrated for 2 × 103 Monte Carlo steps (MCS)
before any data were recorded. The simulations were then
run for a further 200 × 103 MCS with the net magnetization
and energy recorded every 100 MCS and spin configurations
recorded every 103 MCS.

To evaluate the spin-wave dispersion curve at a given
temperature T , the time series Sx(�q,t) and Sy(�q,t) were
calculated by numerically integrating the equation of motion,
using as an initial state one of the spin configurations generated
from the Monte Carlo simulation. The integrations were
performed using a second-order Runge-Kutta algorithm with
�t = 1.0 × 10−3 and Sx(�q,t) and Sy(�q,t) were recorded every
100 time steps for 0 � t � 5000 for both {qx = q, qy = 0}
and {qx = 0, qy = q}. Three sample time series are shown in
Fig. 4. The data clearly show the variation in the amplitude
due to the thermal fluctuations. Less obvious is the variation in
the phase constant of the oscillations arising from the thermal
fluctuations. The effect of the variation in the phase constant
may be observed in the correlation function D(�q,t), defined
by Eq. (32). The correlation function calculated for the three
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FIG. 4. Fourier-transformed fields Sx(�q,t) (black) and Sy(�q,t) (gray) plotted as a function of time over the range 0 � t � 5000 for the
particular case qx = qz = 0. Each time series is calculated from a different initial spin configuration generated by Monte Carlo simulation.
Parameters are given by T = 0.6, J = 1.0, g = 0.2, and h = 0.15.

sample time series shown in Fig. 4 is presented in Fig. 5. The
correlation function D(�q,t) was calculated by padding the
finite time series Sα

l (�q,t) by defining Sα
l (�q,t + tmax) ≡

Sα
l (�q,t), with tmax = 5000. It can be readily shown that, be-

cause of the periodic nature of the padded time series, the corre-
lation function is also periodic with D(�q,t) = D(�q,tmax − t).

The data presented in Fig. 5 are plotted for the range 0 �
t � 2500. The variation in the amplitude of the correlation
functions shown in Fig. 5 reflects the drift in the phase constant
in the time-series data due to thermal fluctuations.

The spin-wave frequencies can be readily computed from
the peaks in the power spectrum of the Fourier transform

FIG. 5. Correlation function D(�q,t) defined by Eq. (32) plotted as a function of time over the range 0 � t � 2500, calculated for each of
the time series shown in Fig. 4. Parameters are given by T = 0.6, J = 1.0, g = 0.2, and h = 0.15.
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FIG. 6. Spin-wave frequencies plotted as a function of wave
number for J = 1, g = 0.2, and h = 0.15 for T = 0.0 and 0.6.
Solid lines represent the results from linear spin-wave theory
with the black (top) lines and gray (bottom) lines corresponding
to �q = (q,0) and (0,q), respectively. The open squares are the
data obtained from the numerical integration of the equations of
motion for T = 0, the dots are the results obtained from the numerical
integration of the equations of motion for T = 0.6, and the open
circles are the results obtained from the line-shape analysis of the
finite-temperature correlation function 〈D(�q,ω)〉. The dashed lines
are obtained by interpolating the finite T results and are simply
intended as a guide to the eye.

of the correlation function, D(�q,ω). The dispersion curves
calculated from a single time series are presented in Fig. 6,
together with corresponding zero-temperature results. The
finite-temperature spin-wave frequencies presented in Fig. 6
show a considerable degree of softening and scatter arising
from the interaction between the large-amplitude fluctuations
of the spin-wave modes.

The thermal average of the correlation function 〈D(�q,t)〉 is
given by

〈D(�q,t)〉 ≡ lim
T →∞

1

T

∫ T

0

∑
l

[〈Sy

l (�q,t ′)Sx
l (�q,t ′ − t)〉

−〈Sx
l (�q,t ′)Sy

l (�q,t ′ − t)〉]dt ′, (34)

where the brackets 〈· · ·〉 denote the the propagator averaged
over a canonical ensemble of initial states. Figure 7 shows the
propagator for three values of �q averaged over 200 distinct
initial states generated from the Monte Carlo simulations,
which clearly show the decay of the spin-wave oscillations.
To understand the origin of this decay, it is important to keep
in mind that our model does not include any explicit damping
and that the numerical integration procedure is such that each
of the 200 time series conserves energy to a high degree of
numerical precision. This intrinsic damping of the spin waves
arises as a consequence of the fact that the initial states used

FIG. 7. Finite-temperature correlation function 〈D(�q,t)〉, defined
by Eq. (32), plotted as a function of time for (a) �q = (0,0), (b) �q =
(π/2a,0), and (c) �q = (0,π/2a). Parameters are given by T = 0.6,
J = 1.0, g = 0.2, and h = 0.15.

174425-8



DIPOLE-EXCHANGE SPIN WAVES IN MAGNETIC THIN . . . PHYSICAL REVIEW B 83, 174425 (2011)

FIG. 8. Finite-temperature correlation function D(�q,ω), defined by Eq. (33), plotted as a function of ω for (a) �q = (0,0), (b) �q = (π/4a,0),
(c) �q = (π/2a,0), and (c) �q = (π/a,0). Points denote the data obtained from Monte Carlo spin dynamics and the lines show the fit to data
using Eq. (36). The parameters are given by T = 0.6, J = 1.0, g = 0.2, and h = 0.15.

to calculate the time series are statistically independent and
hence the drift in the phase constant due to thermal fluctuations
will essentially randomize the phase of the correlations at
long times. When we perform the ensemble average, this
randomization of the phase will result in a considerable degree
of cancellation at long times giving rise to the decrease in the
amplitude of the oscillations observed in Fig. 7.

Assuming that the thermal average of the correlation func-
tion has the form given by Eq. (32), with � and δ replaced by
the finite-temperature frequency and decay constant, we obtain

〈D(�q,t)〉 = 2〈|cν(�q)|2〉 sin(�(�q)t)e−�(�q)t . (35)

This yields a spectral function described by a double
Lorentzian with poles located at ω = ±�(�q) − i�(�q)

〈D(�q,ω)〉 = 〈|c(�q)|2〉
ω + �(�q) + i�(�q)

− 〈|c(�q)|2〉
ω − �(�q) + i�(�q)

.

(36)

The Fourier transform 〈D(�q,ω)〉 for four separate values of
�qx are presented in Fig. 8 for T = 0.6. Fitting the data to

the spectral function given by Eq. (36) yields estimates for
�(�q), �(�q), and 〈|c(�q)|2〉. The fitted spectral functions are
shown in Fig. 9 together with the simulation results. The good
agreement between the fit and the simulation data indicates
that, at T = 0.6, the form of the finite-temperature propagator
given by Eq. (35) is a good approximation and hence the finite-
temperature excitations may be described in terms of damped
spin-wave modes with a temperature-dependent frequency and
damping constant.

The finite-temperature correlation function 〈D(�q,ω)〉 has
been calculated for several temperatures: T = 0.2, 0.4, 0.6,
and 0.8, using the methods described above. The imaginary
part of 〈D(�q,ω)〉 is plotted in Fig. 10 for several values of
�q. The data show well-defined peaks that may be described
in terms of damped spin-wave modes with a renormalized
frequency � that decreases with increasing temperature and a
decay constant � that increases with increasing temperature.
Fitting the simulation results to the spectral function defined
by the imaginary part of Eq. (36) yields estimates of the
renormalized frequency, decay constant, and amplitude. The
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FIG. 9. The imaginary part of the finite-temperature correlation function D(�q,ω), defined by Eq. (33), plotted as a function of ω, for (a)
qx = nπ/8a with qz = 0 and (b) qz = nπ/8a with qx = 0, with T = 0.6, J = 1.0, g = 0.2, h = 0.15, and n = {0,1,2, . . . ,8}. Points denote
the data obtained from Monte Carlo spin dynamics and the lines show the fit to data using Eq. (36). The parameters are given by T = 0.6,
J = 1.0, g = 0.2, and h = 0.15

resultant line shapes are plotted together with the simulation
data in Fig. 10. The renormalized frequencies obtained from
the fit are plotted in Fig. 11 for each of the above temperatures,
together with the corresponding dispersion curves for T = 0.
The dispersion curves illustrate how the spin-wave frequencies
for �q = (q,0) and �q = (0,q) are renormalized by the thermal
fluctuations.

In the case of a system of purely exchange coupled
spins (g = 0) at T = 0 with Gilbert damping, the decay
constant, for small-amplitude spin waves, is proportional to
the frequency, with the proportionality constant equal to the
dimensionless damping constant α.38 The damping constant
α is an important parameter in the micromagnetic modeling
of magnetic materials. In Fig. 12, the ratio �/� is plotted
for T = 0.2, 0.4, 0.6, 0.8, and 1.0 over a range of �q values.
The data are plotted separately for the DE mode (qz = 0)
and the BV mode (qx = 0). The data show the ratio �/�

increases significantly with temperature and shows a marked
dependence on frequency. It is also interesting, but not perhaps
surprising, to note that the frequency dependence of the ratio
is different for the DE mode and the BV mode.

In Fig. 13, 〈|c(�q)|2〉/T is plotted as a function of �−1(�q).
We see that the data are well described by a straight

line passing close to the origin. This implies that, to a
good approximation, the spin-wave energy is uniformly
distributed across the spin-wave modes. For T = 0.2, a linear
regression yields the relationship |c|2/T = m/� + b with
m = 1.0147 ± 0.0135 and b = −0.003 881 8 ± 0.008 18, val-
ues that are consistent with the equipartition of energy
[〈|c(�q)|2〉�(�q) = T ] to within one standard deviation. The
values for the other temperatures are presented in Tabel I
and show the slope decreasing and a small but systematic
increase in the intercept with increasing temperature. The
decrease in the slope m from unity with increasing tem-
perature suggests that the nonlinear terms in the spin-wave
expansion of the energy, in addition to renormalizing the
frequency of the spin-wave modes, also renormalize the
spin-wave amplitudes.

From a computational perspective, it is important to note
that the calculation of the decay constant �(�q) and the
amplitude 〈|c(�q)|2〉 is considerably more computationally
demanding that the calculation of the spin-wave frequen-
cies due to the need to average over a sufficiently large
ensemble, in this case 200 independent time series, to obtain
accurate line shapes from the ensemble-averaged correlation
function.

TABLE I. Spin-wave amplitude |c(�q)|2/T = m/�(�q) + b.

T 0.2 0.4 0.6 0.8 1.0

m 1.015 ± 0.013 0.959 ± 0.010 0.849 ± 0.010 0.7574 ± 0.0044 0.6468 ± 0.0086
b −0.0039 ± 0.0082 −0.0091 ± 0.0061 0.0099 ± 0.0069 0.0202 ± 0.0031 0.0315 ± 0.0069
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FIG. 10. The imaginary part of the correlation function D(�q,ω), defined by Eq. (32), plotted as a function of ω, for T = 0.2 (right), 0.4,
0.6, 0.8 and 1.0 (left) for (a) qx = 0, (b) π/2a and (c) π/a with qz = 0 with J = 1.0, g = 0.2 and h = 0.15. The data illustrate the softening
of the frequency � and the increasing linewidth with increasing temperature and also show that, for 0.2 � T � 1.0, the line shapes are well
approximated by the double Lorentzian function given by Eq. (36).

IV. DISCUSSIONS AND CONCLUSIONS

We have studied the properties of dipole-exchange spin
waves in a planar ferromagnetic, both in the small-amplitude
approximation and at finite temperature, where nonlinear
effects are not negligible. Small-amplitude oscillation spin-
wave dispersion curves were calculated for both single films
and multilayers using both linearized spin-wave theory and by

direct integration of the equations of motion. The results from
both methods were compared and shown to be in very good
agreement. The principal purpose of these calculations is to
demonstrate how the properties of dipole-exchange spin waves
in thin films could be calculated by direct numerical integration
of the equation of motion and that the results are consistent
with those obtained from linearized spin-wave theory. Both
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FIG. 11. Dispersion curves for T = 0.2, 0.4, 0.6, 0.8, and 1.0. Circular markers are calculated from simulation data, while lines for T = 0.2,
0.4, 0.8, and 1.0 are obtained by interpolation and are intended as a guide to the eye.

methodologies can be extended to include more complex
geometries, lattice structures (including antiferromagnetic
structures), and interactions. From a computational perspec-
tive, the two methods are complementary in the limit of small-
amplitude spin-wave excitations. While the formulation of the
linearized spin-wave theory of dipole-exchange spin waves
in complex geometries is mathematically more involved,
it imposes a relatively modest computational burden. By
contrast, the direct integration of the equations of motion,
while computationally more demanding, can be readily applied
to a wide range of complex geometries and interactions.

One obvious advantage of the numerical integration method
over the linearized spin-wave theory is that it is not limited to
small-amplitude oscillations and it is straightforward to apply
the methodology developed for small-amplitude spin-wave
modes to finite temperature using Monte Carlo spin dynamics.
Monte Carlo spin dynamics takes an ensemble of statistically
independent spin configurations generated from a Monte Carlo
simulation and calculates the time evolution of each of these
spin configurations by direct integration of the equation of
motion. The finite-temperature correlation functions are then
obtained by averaging the correlation function for each of
the trajectories over the entire ensemble. As discussed in the
Introduction, this method has been successfully applied to
study finite-temperature spin dynamics in a variety two- and
three-dimensional exchange coupled systems.

Monte Carlo spin dynamics was applied to a 64 × 64
square lattice with J = 1.0, g = 0.2, and h = 0.15 for several
temperatures T = 0.2, 0.4, 0.6, 0.8, and 1.0. Examples of the
time series for Sx(�q,t) and Sy(�q,t) for T = 0.6 are shown in
Fig. 4 together with the corresponding correlation function
D(�q,t) in Fig. 5. The dispersion curve calculated from the
peaks in D(�q,t) is presented for T = 0.6 together with the
corresponding dispersion curve for T = 0.0 in Fig. 6, and
they clearly show the expected softening of the spin-wave
frequencies. Accurately calculating the line shapes of the spin-
wave modes is somewhat more difficult than simply extracting
the frequencies, as this required averaging over a large number

of extended runs. The finite-temperature correlation function
〈D(�q,t)〉 and the corresponding Fourier transform 〈D(�q,ω)〉
for T = 0.6 are plotted in Figs. 7 and 8, respectively, for
several values of �q. The data for 〈D(�q,t)〉 that describe
an exponentially decaying spin-wave mode with 〈D(�q,ω)〉
approximated a double Lorentzian line shape, corresponding
to poles just below the real axis at ω = ±�(�q) − i�(�q).
As the calculations do not include any form of explicit
damping, the decay of the spin-wave mode observed in
〈D(�q,t)〉 may be entirely attributed to the effect of thermal
fluctuations.

A similar analysis of the time series obtained for the other
temperatures yields the dispersion curves shown in Fig. 11
and the line shapes obtained from the correlation function in
Fig. 10. The data show how the frequency and decay constants
change with temperature. Plots of the ratio �(�q)/�(�q) as a
function of q for both �q = (q,0) and �q = (0,q) are presented in
Fig. 12 for each of the temperatures studied. The data show that
the ratio is strongly temperature-dependent and demonstrates
a relatively weak dependence on q that is different for the
transverse �q = (q,0) and the longitudinal �q = (0,q) modes.
As pointed out in the text, this ratio is closely related to the
Gilbert damping constant used in the Landau-Lifshitz-Gilbert
(LLG) equation, however since the analysis does not include
any explicit damping, this plot gives some indication of
the significance of the intrinsic damping in dipole-exchange
coupled films at finite temperature.

The final graph (Fig. 13) shows the spin-wave amplitude
|c(�q)|2/T plotted as a function of 1/�(�q) for each of the
temperatures studied. The data suggest that while for the
temperatures studied the thermal energy is distributed evenly
across the various modes, the ratio |c(�q)|2�(�q)/T < 1 and
decreases with increasing temperature, implying that the spin-
wave amplitudes are renormalized by the thermal fluctuations.

The results presented in Sec. III indicate that, at least for
some of the lower temperatures studied, the spin-wave modes
are only weakly renormalized by the thermal fluctuations
and therefore should be amenable to analysis in terms
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FIG. 12. The ratio �/� plotted as a function of � plotted for
several temperatures. The points are obtained from the fit to the
results obtained from Monte Carlo spin dynamics for both �q = (q,0)
(squares) and �q = (0,q) (circles). The lines joining the markers are
simply a guide to the eye.

of finite-temperature perturbation theory.20 We have also
extended these calculations to include temperatures beyond
those presented in the present work. At higher temperatures,
the data show a broadening of the line shapes associated
with the spin-wave modes and the presence of a diffusive
mode associated with the longitudinal fluctuations. We are
currently analyzing these data and hope to obtain a systematic
description the temperature dependence of the excitation
spectra that can be compared with theoretical models.

In addition to spin-wave spectra, the ability to study
the nonlinear effects of large-amplitude excitation can be
applied to a number of other problems of interest related
to the dynamics of magnetic thin films. Such examples
include large-amplitude FMR studies39 and the nonlinear
amplification of spin waves,40 which have been the subject

FIG. 13. The ratio 〈|c(�q)|2〉/T plotted as a function of �(�q)−1

for several temperatures, together with the line of best fit for each
passing through the origin. The slope of the line is equal to the energy
per mode due the thermal fluctuations.

of recent experimental and theoretical interest. It would also
be instructive to compare the results of the Monte Carlo spin
dynamics with the corresponding results obtained using the
stochastic LLG equation, which would presumably combine
the effects of the intrinsic damping arising from the thermal
fluctuations with the explicit Gilbert damping. Identifying and
quantifying the contribution of intrinsic and explicit damping
to the excitation spectra in dipole-exchange magnetic thin films
would provide important insight into the parametrization and
application of finite-temperature micromagnetics.
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APPENDIX A: NUMERICAL INTEGRATION OF THE
EQUATIONS OF MOTION

The torque equation given by Eq. (3) describes the pre-
cession of the spin vector �Si about the effective field �hi with
an angular frequency ωi = hi . The solution of this system of
equations consists of two parts: (i) calculating the effective
fields {�hi} for a given spin configuration {�Si}, from which
(ii) we determine both the axis and angular frequency of the
resultant precession. These two tasks are coupled as both the
effective fields and the spin configuration must be determined
self-consistently. The evaluation of the effective field is
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complicated by the long-range character of the dipolar inter-
action, and although it represents a significant computational
task, it is nevertheless relatively straightforward.

In the simulations, we consider only spin configurations
that are periodic in both the x and the z directions such that

�S(�r + mdaî + ndak̂) = �S(�r) (A1)

and they are therefore completely specified in terms of the
set of Nd = L × d2 vectors { �Si}. The periodicity requirement
limits the range of �q values for which we can calculate the
spin-wave frequencies to the d2 set of reciprocal-lattice vectors
�q = 2πn/d. The dipolar contribution to the effective field may
be evaluated as a sum over equivalent lattice sites:

�hdip
i · êα

= g
∑

j

(
δαβ

r3
ij

− 3
rα
ij r

β

ij

r5
ij

)
S

β

j

= g

Nd∑
j

N/Nd∑
�R

(
δαβ

|�rij − �R|3 − 3

(
rα
ij − Rα

)(
r

β

ij − Rα
)

|�rij − �R|5

)
S

β

j

=
Nd∑
j

dαβ (�rij )Sβ

j . (A2)

The effective interaction dαβ(�rij ) defined as

dαβ(�rij ) =
N/Nd∑

�R

(
δαβ

|�rij − �R|3 − 3

(
rα
ij − Rα

)(
r

β

ij − Rα
)

|�rij − �R|5

)

(A3)

may be evaluated by a number of methods to improve
convergence, such as the Ewald summation technique.7

The periodic nature of the spin configuration allows us to
write the above expression in terms of the Fourier transforms
of the effective dipolar field and the spin configuration as

hα
n(�q) =

∑
βn′

d
αβ

nn′ (�q)Sβ

n′(�q). (A4)

Given that the effective fields can be calculated for a given
spin configuration, there are a number of methods that can
be used to integrate the resultant torque equation. However,
in selecting a particular integration scheme, it is important
that it preserve both the magnitude of the spin variables {�Si}
and the energy. One approach used to address this issue in
exchange coupled systems is based on the Suzuki-Trotter
decompositions of exponential operators.41 Because of the
long-range nature of the dipolar interaction, in the present
work we instead calculate the precession about the effective
field by means of a rotation using quaternions. The spin vectors
at time t + �t may be written in terms of their orientation at
time t as

�Si(t + �t) = �R(ĥi ,hi�t) · �Si(t), (A5)

where �R(ê,�θ ) denotes the rotation matrix describing a rota-
tion of angle �θ about an axis directed along the unit vector êi

and ĥi = �hi/hi . Here we have assumed that �t is sufficiently
small that the effective fields {�hi} may be assumed constant.

This ensures that the magnitude of the spin vector is con-
strained such that | �Si(t)| = S. It is computationally efficient to
describe the rotation given by Eq. (A5) using quaternions as
opposed to the three-dimensional rotation vector.42

A quaternion V and its conjugate V ∗ are defined as tuples
constructed from a scalar quantity u and a vector �v as

V = {u,�v},
V ∗ = {u, − �v}.

Quaternion algebra defines the product of two quaternions as

V1V2 = {u1u2 − �v1�v2,u1�v1 + u2�v2 + �v1 × �v1}.
If we embed a vector �v in a quaternion V as

V = {0,�v}, (A6)

then the vector �v′ defined by rotation of the vector �v by an
angle θ about an axis represented by the unit vector ê may be
expressed in terms of the product

V ′ = Z(ê,θ )VZ∗(ê,θ ), (A7)

where the quaternion quantity Z(�̂e,θ ) is defined as

Z(ê,θ ) = {cos(θ/2), sin(θ/2)ê} (A8)

and the rotated vector �v′ is given by the vector part of the
quaternion V ′ = {u′,�v′}. Since the scalar part of V ′ does not
need to be calculated, the evaluation of �v′ from �v requires two
fewer floating point multiplications per rotation than using the
explicit rotation matrix defined by Eq. (A5).

Equation (A5) may then be expressed in quaternion
notation as

Sit+�t = Zt
iS

t
iZ

t∗
i (A9)

with

St
i = {0,�Si(t)}, (A10)

Zt
i =

{
cos

(
hi(t)

2

)
,ĥi(t) sin

(
hi(t)

2

)}
, (A11)

St+�t
i = {u,�Si(t + �t)}, (A12)

where u is an uncomputed scalar.
Quaternions allow higher-order integration schemes to be

implemented succinctly. Noting thatZi may be computed from
Si , the second-order Runge-Kutta scheme may be expressed as

St+�t/2
i = Z̃t

iS
t
i Z̃

t∗
i , (A13)

St+�t
i = Zt+�t/2

i St
iZ

t+�t/2∗
i , (A14)

where Z̃t
i denotes the half-rotation form of Zt

i ,

Z̃t
i =

{
cos

(
hi(t)

4

)
,ĥi(t) sin

(
hi(t)

4

)}
. (A15)

Quaternion and rotation methods are, in general, better at
conserving energy than methods that treat the Cartesian
components separately.
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