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Spin waves in the anisotropic fcc kagome antiferromagnet
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Classical spin-wave calculations demonstrate that the macroscopic continuous degeneracy associated with
the two-dimensional kagome Heisenberg spin lattice persists in the case of the stacked fcc structure, giving
rise to zero-energy modes in three dimensions. The addition of an effective local cubic anisotropy is shown to
remove this continuous degeneracy and introduce a gap in the spectrum as well as modify the inelastic scattering
function S(q,ω). This scenario supports earlier Monte Carlo simulations which indicate that the phase transition
to long-range q = 0 magnetic order is driven to be discontinuous by critical fluctuations associated with the large
degeneracy in the absence of anisotropy but becomes continuous with the addition of anisotropy. The results
are relevant to Ir-Mn alloys, which are widely used in the magnetic storage industry in thin-film form as the
antiferromagnetic pinning layer in spin-valve structures.
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I. INTRODUCTION

The classical Heisenberg model on an isolated two-
dimensional (2D) kagome layer with nearest-neighbor anti-
ferromagnetic exchange interactions is an example of a fully
frustrated magnetic system with a macroscopically degenerate
ground state of 120◦ spin structures on corner-sharing tri-
angles, known as q = 0 magnetic order [1]. This extensive
degeneracy is accompanied by the presence of zero-energy
spin-wave excitations which can take the system from one
ground state to another [2,3]. Evidence for such a mode
through inelastic neutron scattering experiments has been
reported in a system with weakly coupled kagome layers [4].
(More exotic ground states have also been predicted to occur
in the 2D kagome spin lattice when quantum effects are
important [5].) Zero-energy (classical) modes also occur in
the stacked triangular lattice antiferromagnet where the inter-
layer exchange coupling J ′ differs from the intralayer interac-
tion J (a model of the magnetism in solid oxygen) [6,7]. In this
case of rhombohedral symmetry, the degeneracy is associated
with ground-state helimagnetism and occurs if |J ′| < 3|J |.
For this system, degenerate modes occur along lines in
reciprocal space that are dependent on the value of J ′. Similar
macroscopic degeneracies are found in spin-ice materials
[8–11] and can often be lifted by thermal or quantum fluc-
tuations through the mechanism of order by disorder in which
states are selected from the ground-state manifold by entropic
forces [12,13]. Such degeneracies can also be removed with
the addition of further neighbor interactions or magnetic
anisotropies [4,6,14].

Monte Carlo simulations have recently been reported on
three-dimensional (3D) kagome Heisenberg and XY spin
systems composed of stacked layers with fcc symmetry (see
Fig. 1) [15]. The results suggest that continuous macroscopic
degeneracy associated with the 2D system persists in this 3D
spin lattice. The degeneracy in the 3D system does not yield a
finite ground-state entropy but scales with the linear size of the
system. In the absence of anisotropy, the 3D system exhibits
a finite-temperature phase transition that is weakly first order,
speculated to be driven so by critical fluctuations associated
with the large degree of degeneracy. With the addition of a

local cubic anisotropy [16,17], the nature of the transition
becomes continuous, a phenomenon also reported in spin-ice
materials [9].

The magnetic properties of Ir-Mn alloys have attracted
a great deal of interest due to their widespread use as the
antiferromagnetic pinning layer in spin-valve devices for mag-
netic recording [19–21]. Ordered IrMn3, and sister compounds
RhMn3 and PtMn3, adopts the CuAu3 crystal structure [22]
with magnetic Mn ions on cube faces and nonmagnetic (Ir)
ions occupying cube corners. The high Néel temperature
of IrMn3 (TN = 960 K) makes it particularly useful for
applications that require robustness to thermal fluctuations
at device operating temperatures. Despite extensive study of
their magnetic structures spanning many decades, including
a seminal neutron diffraction work identifying the 120◦ spin
structure, [18] the connection to the kagome structure was
not realized until recently [15]. This has inspired a new
study of IrMn3 as a possible candidate for observing the
anomalous Hall effect in zero applied magnetic field [23].
A recent neutron diffraction study of single-crystal IrMn3

shows that the q = 0 spin structure remains for thin films and
emphasizes the importance of this frustrated magnetic ordering
on the exchange-bias phenomena in this compound [24].
This relationship, and the importance of anisotropy, has
also been revealed in recent electronic structure calculations
and micromagnetic simulations on IrMn3/Co bilayer thin
films [25].

In the present work we examine the spin-wave excitations
as well as the scattering intensity function S(q,ω) of a
model Hamiltonian with unequal intraplane and interplane
antiferromagnetic exchange interactions including local cubic
anisotropy. It is shown that the addition of interplane exchange
and anisotropy either reduces or removes the macroscopic
degeneracy associated with the 2D kagome system and that this
behavior is related to the reduction or removal of the number of
zero-energy modes in the excitation spectrum. In addition, the
impact of anisotropy on the elastic scattering is also examined.
The results provide guidance for the potential observation of
these effects through elastic and inelastic neutron diffraction
measurements of IrMn3 and its sister compounds.
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FIG. 1. (Color online) (a) The fcc lattice is divided into four
cubic sublattices, labeled A,B,C, and D, each with lattice constant a.
The D sites (spheres) are nonmagnetic, whereas the remaining three
sublattices (arrows) are magnetic. (b) The A,B, and C sites form a
set of kagome lattices stacked along the (111) direction. Adapted
from Ref. [18].

II. MODEL

The magnetic ions form an fcc lattice with one of the four
cubic sublattices replaced by nonmagnetic sites as shown in
Fig. 1. The three remaining sublattices form stacked kagome
layers parallel to the [111] directions and are labeled A, B,
and C. Each magnetic site has four nearest neighbors (NNs)
in the (111) planes and two NNs in each of the planes above
and below. We consider NN exchange interactions as well as
a local cubic anisotropy described by the Hamiltonian

H= J

intraplane∑
i<j

Si · Sj + J ′
interplane∑

i<j

Si · Sj − K
∑

γ

∑
l⊂γ

(Sl · nγ )2,

(1)

where J > 0 is the antiferromagnetic coupling to the four
in-plane NNs, J ′ � 0 couples the four out-of-plane NN spins,
and the anisotropy K � 0 has a different easy direction for
each of the three sublattices. Here, γ represents sublattices A,
B, and C, l is summed over the N

3 spins of sublattice γ , Si are
unit classical Heisenberg spin vectors at each site, and nγ are
unit vectors in the cube axis directions, nA = x̂, nB = ŷ, and

nC = ẑ. Electronic structure calculations [17] have been used
to estimate K/J ≈ 0.1 in the case of IrMn3.

For zero anisotropy, the ground state is a planar configura-
tion with the sum of the spins on each elementary triangle SA +
SB + SC = 0. For decoupled kagome planes (J ′ = 0) there
is an extensive ground-state degeneracy which includes both
periodic and nonperiodic ground states. Previous spin-wave
calculations at zero temperature for the q = 0 and

√
3×√

3
periodic ground states find zero-energy dispersionless modes
which are related to the macroscopic degeneracy [2]. The
decoupled kagome planes do not order at a finite temperature
but are believed to select a planar arrangement of the spins as
T → 0, and spin dynamic simulations indicate strong

√
3×√

3
spin correlations at low T [3,26]. For coupled planes (J ′ > 0),
there is a finite-temperature phase transition to the q = 0 state
which is weakly first order [15]. The ground-state degeneracy
is no longer extensive, but there are continuous rotations of
two of the three sublattices which do not change the energy
and correspond to local modes. When the cubic anisotropy
is added, particular spin planes are selected, and all of the
macroscopic degeneracy is removed with the phase transition
changing from first order to second order.

The effect of the cubic anisotropy can be studied by defining
α as the cosine of the angle between each sublattice spin and
its anisotropy axis [α = cos(Si · ni), i = A, B, C] and β as
the cosine of the angle with respect to the other two anisotropy
axes [β = cos(Si · nj ), i �= j ], where α2 + 2β2 = 1 for spins
of unit length. The ground-state energy per spin is given by

E/N = 2(J + J ′)(β2 − 2αβ) − Kα2 (2)

and is minimized when α has the value

α =
√

1/2 + 1/2
√

1 − 1/[1 + (K̃ + 1)2/8], (3)

where K̃ = K/(J + J ′) and β =
√

1−α2

2 using the positive
values of the square roots to give physical solutions. For K = 0,
α = 2β = 2/

√
6, which describes spins in the coplanar 120◦

spin structure which can have an arbitrary orientation with
respect to the crystal axes. However, when K > 0, the spins
are no longer coplanar and have a net moment per site directed
out of the (111) plane with magnitude (α − 2β)/

√
3. There are

eight possible ground states corresponding to the (111) planes
with the spins being lifted out of the plane, resulting in a net
magnetization along one of the [111] axes [16].

III. SPIN WAVES

In order to study the linearized spin-wave excitations, we
consider a single domain in which the net magnetization
is along the positive [111] direction. The spins Si on each
sublattice are transformed to local spin coordinates S̃i such that
S̃z

i = 1 in the ground state. We look for plane-wave solutions
involving the transverse spin components S̃i = S̃ei(k·ri−ωt), and
the linearized equations for the six transverse spin amplitudes
can be obtained through the standard torque equation [27] or
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other techniques [28], given by

− iω

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

S̃x
A

S̃x
B

S̃x
C

S̃
y

A

S̃
y

B

S̃
y

C

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 YAB −YAC X ZAB ZAC

−YAB 0 YBC ZAB X ZBC

YAC −YBC 0 ZAC ZBC X

W TAB TAC 0 YAB −YAC

TAB W TBC −YAB 0 YBC

TAC TBC W YAC −YBC 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

S̃x
A

S̃x
B

S̃x
C

S̃
y

A

S̃
y

B

S̃
y

C

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

where

X = 4(J + J ′)(β − 2α)β − 2Kα2,

W = 4(J + J ′)(2α − β)β + 2K(α2 − 2β2),

Yij = (β − α/2)λij ,
(5)

Zij = λij /2,

Tij = (2αβ + α2/2)λij ,

and

λAB = 2J cos

[
(kx − ky)

a

2

]
+ 2J ′ cos

[
(kx + ky)

a

2

]
,

λBC = 2J cos

[
(kx − kz)

a

2

]
+ 2J ′ cos

[
(kx + kz)

a

2

]
, (6)

λAC = 2J cos

[
(ky − kz)

a

2

]
+ 2J ′ cos

[
(ky + kz)

a

2

]
.

The wave-vector components kx,ky,kz are defined with respect
to the cubic axes with lattice constant a. The linearized
equations yield real eigenvalues ±ω1,±ω2,±ω3. In the general
case, these values must be obtained numerically, but analytic
results can be determined in special cases.

A. Zero anisotropy

For K = 0, the ground state is the planar spin configuration
with the three sublattices oriented at 120◦ with respect to each
other. In this case the problem can be reduced to finding the
eigenvalues ω2 of a 3×3 symmetric matrix⎛

⎝A1 B1 B2

B1 A2 B3

B2 B3 A3

⎞
⎠ , (7)

where

A1 = 4(J + J ′)2 − (
λ2

AB + λ2
AC

)/
2,

A2 = 4(J + J ′)2 − (
λ2

AB + λ2
BC

)/
2,

A3 = 4(J + J ′)2 − (
λ2

AC + λ2
BC

)/
2,

B1 = (J + J ′)λAB − λACλBC/2,

B2 = (J + J ′)λAC − λABλBC/2,

B3 = (J + J ′)λBC − λABλAC/2. (8)

If the interplane coupling J ′ is also zero, λij satisfy the
following relation for arbitrary values of the wave vector k:

λ2
AB + λ2

BC + λ2
AC = 4J 2 + λABλBCλAC/J. (9)

The characteristic cubic equation has a zero eigenvalue for all
k, and the remaining two eigenvalues are degenerate and given
by the following expressions:

ω1 = 0,

ω2,3 =
√

2J {sin[(kx − ky)a/2]2 + sin[(kx − kz)a/2]2

+ sin[(ky − kz)a/2]2}1/2, (10)

where the wave-vector components kx,ky,kz are defined with
respect to the cubic axes with lattice constant a. These
expressions agree with previous results [2] for the NN q = 0
kagome spin lattice when a = √

2 (corresponding to a NN
distance of unity). The dispersionless mode is related to the
local rotations of the spins from one ground state to another.
Note that for kx = ky = kz all three modes are dispersionless.
The latter case corresponds to the fact that the decoupled
kagome planes can have arbitrary uniform rotations with
respect to one another. For k along one of the cube axes,
Eq. (10) reduces to ω2 = ω3 = 2J | sin(ka/2)|.

When the interplane interaction J ′ > 0, the cubic charac-
teristic equation again factors if any two λij are equal, such
as when ky = kz. In this particular case we have A1 = A3 and
B1 = B3, and the eigenvalues are

ω2
1 = A1 − B2,

ω2
2,3 = A1 + A2 + B2

2
±

√
(A1 − A2 + B2)2 + 8B2

1

2
. (11)

Similar expressions can be obtained for kx = ky or kx = kz.
In general, all three modes are dispersive and nondegenerate
when J ′ > 0. However, there are two special cases where
degeneracy occurs and where zero-frequency modes are
present.

For kx = ky = kz, analysis shows that

ω2
1 = ω2

3 = [1 − cos(kxa)][4J ′2 + 6JJ ′ + 2J ′2 cos(kxa)],

ω2
2 = [1 − cos(kxa)][4J ′2 + 12JJ ′ + 8J ′2 cos(kxa)]. (12)

All three modes are dispersive due to the coupling between
kagome planes, and two are degenerate. However, note that
ω2 becomes a soft mode at the zone boundary kx = π/a

when J ′ = 3J . For values of the interplane coupling J ′ > 3J

the ground state is no longer the q = 0 kagome state but
rather corresponds to ferromagnetic kagome planes which are
ordered antiferromagnetically with respect to each other. In
this paper we restrict our considerations to J ′ < 3J .

In the second special case, ky = kz = 0, which corresponds
to spin waves propagating parallel to one of the cubic crystal
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axes, we have

ω1 = 0,

ω2 = ω3 = 2(J + J ′)| sin(ka/2)|, (13)

where k represents kx,ky , or kz. These expressions reduce to
the correct 2D result above when J ′ = 0. Hence, the coupling
of the planes stiffens the excitations for wave vectors along
the crystal axes but does not remove the zero-frequency
mode.

The zero mode can be understood from Fig. 1. The x = na

planes only have B sites, whereas the x = (n + 1/2)a planes
have both A and C sites, where n = 0,1,2, . . . . In the ground
state the A and C sublattices are at 120◦ to each other and to
the B sublattice. The entire plane of AC spins can be rotated
continuously about the direction of the B sublattice spins in
the planes on either side with no change in energy. In addition,
these rotations in each of the AC planes are independent and
correspond to a set of localized excitations for J + J ′ > 0.
When J ′ = 0, there are additional degeneracies which lead to
a zero-energy mode [2] for all k.

B. Effects of anisotropy

In the general case with K > 0, the spin-wave frequencies
can only be obtained numerically. The ground state is no
longer a planar configuration, the continuous degeneracies
are removed, and there are no zero modes. For values of k
along the cubic axes, the lowest mode is almost dispersionless,
while the other two modes have strong dispersion. In all other
wave-vector directions, all three modes have strong dispersion.
Figure 2 shows the spin-wave frequencies ω along the �X(100)
and �R(111) directions for different values of the interplane
coupling J ′ and the cubic anisotropy K . For K = 0, the effect
of J ′ is to stiffen the frequencies along �X and to remove
the zero modes along �R. For K > 0, the zero modes along
both �X and �R now have a substantial gap. Along the
�X direction, there is a low-frequency mode which is almost
dispersionless (similar to the mode reported in Ref. [4]). Based
on electronic structure calculations [17], the case K = 0.1J

with J ′ = J best represents IrMn3. As shown in the next
section, there is a strong dependence of the inelastic scattering
intensity on the wave vector.

At the zone center k = 0 we can obtain the leading behavior
of the three positive frequencies as a function of K ,

ω1 	 ω2 	
√

2(J + J ′)K,

ω3 	 2
√

2(J + J ′)K. (14)

Hence, all modes have a gap for K > 0, and although ω1,ω2 are
degenerate to leading order in K , they become nondegenerate
as K increases. At point R (kx = ky = kz = π/a) and with
J ′ = J , all three modes are degenerate for all K .

In our previous Monte Carlo simulations [16], the sublattice
magnetizations did not saturate at low T and displayed
evidence of degenerate spin configurations at T = 0 for values
of K/J smaller than ∼0.06. This behavior is consistent with
the presence of a small gap in the excitation spectrum. As K

increases, the gap increases, and the sublattices become fully
saturated as T = 0 is approached.

FIG. 2. (Color online) Spin-wave modes along the �X and �R

directions: (a) K = 0,J ′ = 0, (b) K = 0.1J,J ′ = 0, (c) K = 0,

J ′ = 0.1J , (d) K = 0.1J,J ′ = 0.1J , (e) K = 0,J ′ = J , and (f)
K = 0.1J,J ′ = J .

IV. NEUTRON SCATTERING

The effect of the cubic anisotropy can be studied using
elastic and inelastic magnetic neutron scattering. Here we
consider the case of a single magnetic domain at zero
temperature as above.

A. Elastic scattering

The elastic magnetic scattering intensity is proportional to
the quantity [29]

I (h,k,l) = |F (�κ)|2
∑

m,n=x,y,z

Smn(�κ)(δmn − κ̂mκ̂n), (15)

where F (�κ) is the magnetic form factor and Smn(�κ) is the
static magnetic structure factor, with �κ = 2π

a
(h,k,l) being the

scattering vector. For zero anisotropy, the spins have a 120◦
structure and lie in the (111) plane, but for K > 0 the spins
are nonplanar, and each has a component along the [111]
direction, leading to a nonzero magnetization [16]. The value
of I (h,k,l) depends on the direction of �κ with respect to the
[111] direction. For zero anisotropy, there are no contributions
from h,k,l when they are all even or all odd whereas for
K > 0 these terms become nonzero and are proportional to
the magnetization squared. However, these additional peaks
are very small compared to the principal peaks. Figure 3 shows

144403-4



SPIN WAVES IN THE ANISOTROPIC fcc KAGOME . . . PHYSICAL REVIEW B 90, 144403 (2014)

FIG. 3. (Color online) Elastic scattering showing several peaks
for K/J = 0,5 and J = J ′ = 1.

the elastic scattering intensity for K/J = 0 and K/J = 5
using values of the form factor for Mn ions. These results
would be appropriate for a powder sample as all marked peaks
correspond to a summation of the multiplicity for a given (hkl).
For K > 0, other peaks appear in the neutron diffraction, but
they would also likely be unobservable for K = 0.1J . A more

promising signature of anisotropy in IrMn3 may be through
inelastic magnetic scattering.

B. Inelastic scattering

Inelastic magnetic scattering is proportional to the dynamic
structure factor

S(q,ω) =
∑

m,n=x,y,z

Smn(q,ω)(δmn − q̂mq̂n), (16)

where Smn(q,ω) is the double Fourier transform of the
correlation function 〈Sm

i (0)Sn
j (t)〉 and can be calculated using

the above results for the dispersion relations along with
standard Green’s functions techniques [29].

Figure 4 shows S(q,ω) calculated with the assumption of a
single magnetic (111) domain at fixed values of q along [100]
directions with J = J ′ = 1 for both K = 0 and K/J = 0.1.
We allow the wave vector to extend beyond the first zone
boundary for Figs. 4(a) and 4(b), but restrict it to be in the first
zone for Figs. 4(c) and 4(d). In Figs. 4(a) and 4(b), the intensity
is very large at wave vectors �κ = 2π

a
(h,k,l), corresponding to

the elastic peaks with h,k,l not being all even or odd, but the
scale is such that the smaller wave-vector modes [which can
be seen in Figs. 4(c) and 4(d)] are not visible due to the large
intensity near the elastic peaks located at �κ = 2π

a
(1,0,0). The

FIG. 4. (Color online) Relative magnitude of the inelastic scattering function S(q,ω) (side bar scale) assuming a single magnetic (111)
domain with J = J ′ = 1 with q ‖ [100]. (a) K = 0, (b) K/J = 0.1, (c) K = 0 over a smaller region than in (a), and (d) K/J = 0.1 over a
smaller region than in (b).
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flat mode is clearly visible in Fig. 4(d) on the smaller scale but
has an intensity that is much reduced from the other modes at
the zone boundary. Figure 4 can be compared with Figs. 2(e)
and 2(f), illustrating the appearance of the low-frequency mode
along �X and the splitting of the degeneracy of the higher-
frequency modes. While the [111] direction (�R) is not shown,
the intensity is on the order of a hundred times smaller than
the [100] direction.

Of particular note for all of the results shown in Fig. 4 is
that the intensity is expected to be relatively small in the first
Brillouin zone but is substantially larger in the second zone. On
comparing Figs. 4(a) and 4(c) with Figs. 4(b) and 4(d), the im-
pact of the anisotropy on the calculated spectrum is very strong.

V. SUMMARY AND CONCLUSIONS

The results of this work have demonstrated that the fcc
kagome antiferromagnet is an example of the relatively
rare phenomenon of macroscopic continuous degeneracy in
3D that gives rise to zero-energy spin-wave modes. Local
cubic anisotropy is found to remove this degeneracy and
introduce a gap in the spectrum. The lowest mode at small
K is almost dispersionless and has energy ω ∼ 2

√
JK when

J ′ = J , which is about 0.63J , assuming K/J ≈ 0.1. The
electronic structure calculations [17] on IrMn3 provide the
estimate J ∼ 40 meV, giving ω ∼ 25 meV. Anisotropy does
not have a significant effect for elastic neutron scattering
but induces a uniform magnetization in the [111] direction

which could be utilized to stabilize a single-domain sample
using field-cooling techniques to better facilitate observation
of these effects with inelastic neutron scattering experiments.
These results support earlier Monte Carlo simulations which
suggest that in the absence of anisotropy critical fluctuations
drive the phase transition to be discontinuous but that it
becomes continuous with the addition of anisotropy due to
the removal of degeneracies. The link between such removal
of degeneracy in geometrically frustrated spin systems through
anisotropic interactions, the nature of the phase transition to
long-range order, and magnetic excitations has recently been
established in the pyrochlore antiferromagnet Er2Ti2O7 [30].
Degeneracies are known to give rise to critical fluctuations
which can drive a phase transition that is continuous within
mean-field theory to be first order [31]. In the present system,
the introduction of an energy gap in the spin-wave spectrum
due to the addition of local cubic anisotropy suppresses the
low-energy excitations responsible for the critical fluctuations
near the Néel temperature. The model used in the present
work can also serve as the foundation for further study of
dynamic excitations associated with exchange bias phenomena
in bilayer thin films that use IrMn3.
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