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I. INTRODUCTION

Currently there is considerable interest, both theoretical
and experimental, on the influence of surfaces on the static
and dynamic properties of magnetic materials in reduced di-
mensions. The magnetic properties of atoms located at sur-
faces or interfaces can be considerably different from those
of atoms within the bulk of the material and interesting new
physical phenomena can emerge.1,2 Understanding the sur-
face properties of magnetic materials is essential for the de-
velopment of higher density magnetic storage devices and
magnetic sensors that are based on multilayer thin film tech-
nology. Numerous experimental techniques including inelas-
tic light scattering and spin-wave resonance have been em-
ployed for many years to investigate the properties of long-
wavelength spin waves near surfaces.3,4 More recently, spin-
wave dispersion in ultrathin ferromagnetic films has been
measured up to the edge of the surface Brillouin zone using
spin-polarized electron energy loss spectroscopy
�SPEELS�.5,6 The theory of surface spin waves in semi-
infinite ferromagnets and antiferromagnets �with a single sur-
face� has been investigated by several authors.7–11 Theoreti-
cal techniques developed for semi-infinite systems have been
generalized to investigate the spin dynamics in magnetic thin
films.12,13 The effects of magnetically frustrated surfaces on
thin films have recently been investigated using Monte Carlo
simulations and Green function techniques.14 The properties
of magnetic excitations at the surface of a geometrically frus-
trated lattice are investigated here using a spin operator for-
malism.

Magnetically frustrated spin systems are typically charac-
terized with a highly degenerate ground state and are known
to exhibit novel physical phenomena.15,16 In the present work
the effect of surfaces on the excitation spectrum of a stacked
triangular antiferromagnet with easy-plane anisotropy is ex-
amined. The spin-wave dispersion relation is obtained for a
semi-infinite system and the calculations are generalized to
investigate the excitation spectra in finite-thickness lattices.
Geometrical frustration within any particular layer is due to
the triangular arrangement of antiferromagnetically coupled
spins and results in a three-sublattice 120° magnetic order.

Simple hexagonal stacking of layers results in no interlayer
frustration. In the present work we consider ferromagnetic
interaction between the interlayer spins. The technique may
be readily extended to the antiferromagnetic case and to frus-
trated systems with easy-axis anisotropy. Some comments
concerning the extension of the model to other magnetically
frustrated spin systems are given later.

Linearized spin-wave theory was applied to a 2D triangu-
lar antiferromagnet with easy-plane anisotropy using a boson
representation for the spin operators.17 A recent application
of the 2D model has been successful for analyzing the spin
dynamics in the hexagonal magnetoelectic compound
HoMnO3.18 Neutron scattering techniques have been em-
ployed to investigate the magnetic order and properties of
bulk excitations in many frustrated systems.19,20 The bulk
spin wave dispersion relation has been calculated using a
wide variety of theoretical techniques.21–24 Surface modes in
a frustrated system are inherently different than the previ-
ously studied cases because the surface will contain spins
belonging to all three sublattices, whereas in ferromagnets
�or simple cubic antiferromagnets� the surface contains spins
belonging to only one �two� sublattice. In this study, surface
and bulk dispersion relations are deduced using an operator
equation of motion formalism. The equations of motion for
the spin operators at each crystal site are formulated and the
system of coupled equations is expressed in matrix form.
Spin-wave modes are obtained by solving a determinantal
condition. The approach used here extends the matrix inver-
sion technique employed earlier for spin waves in two-
sublattice antiferromagnetics.11,13,25

In Sec. II the microscopic Hamiltonian is described and
the spin-wave dispersion relation for an infinite stacked tri-
angular antiferromagnet is derived. In Sec. III the surface
and bulk spin-wave spectra are obtained for a semi-infinite
system, and in Sec. IV the approach is generalized to inves-
tigate excitations in frustrated thin films. Section V contains
further discussions and the conclusions of our work.

II. HAMILTONIAN

The hexagonal lattice is characterized by the following
spin Hamiltonian:
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H = �
�i,j�

Ji,j�Si · S j + �Si
zSj

z� − �
�i,i��

Ji,i�
� �Si · Si� + ��Si

zSi�
z �

+ �
i

Di�Si
z�2, �1�

where Ji,j �0 represents the intralayer antiferromagnetic ex-
change between sites on different sublattices while Ji,i�

� �0
represents the ferromagnetic interlayer coupling between
sites on the same sublattice. Here, nearest-neighbor cou-
plings only are included. The effect of anisotropic exchange
is accounted for through the parameters � and ��. The pa-
rameter Di describes the strength of the single-ion aniso-
tropy, and here it is assumed that Di�0 so that the spins lie
in the planes perpendicular to the c axis. The 120° spin con-
figuration of the classical ground state of this model is de-
picted schematically in Fig. 1.

Following the approach used in previous studies, the lat-
tice is divided into three sublattices A, B, and C, and sites on
each sublattice are denoted with indices l, m, and n, respec-
tively. Next, the Hamiltonian �1� is transformed to a local
coordinate system such that the new z axis for each sublattice
is in the direction of the spin alignment shown in Fig. 1. The
transformation for sites on the different sublattices may be
written as

�Sl
x,Sl

y,Sl
z� → �Sl

x�,Sl
z�,− Sl

y�� ,

�Sm
x ,Sm

y ,Sm
z � → �Sm

x� cos � − Sm
z� sin �,Sm

x� sin � + Sm
z� cos �,

− Sm
y�� ,

�Sn
x,Sn

y,Sn
z� → �Sn

x� cos � + Sn
z� sin �,− Sn

x� sin � + Sn
z� cos �,

− Sn
y�� , �2�

with �=2� /3. The bulk spin-wave dispersion relation may
be obtained by forming the equation of motion for the op-
erators Si

± using

i
dSi

±

dt
= �Si

±,H� with i = l,m,n , �3�

where Si
± represent local spin deviation operators for sites on

each sublattice defined as Si
±=Si

x�± iSi
y� and H is the trans-

formed Hamiltonian. The exchange terms on the right-hand
side �rhs� of Eq. �3� involve the product of operators at dif-
ferent sites which are decoupled using the random-phase ap-
proximation �RPA�. In the low-temperature limit �T�TN� we

assume �Si
z��=S, where S is the spin quantum number. The

terms arising from the single-ion anisotropy involve the
product of operators at the same site and are decoupled using

�Si
±Si

z�+Si
z�Si

±�→2SpSi
± where p= �1− �2S�−1�.

The resulting homogeneous set of equations are trans-
formed to a wave-vector representation and expressed in ma-
trix form as Ab=0, where A is a block-circulant matrix that
may be written as

A = � Ã B̃ B̃*

B̃* Ã B̃

B̃ B̃* Ã
	 �4�

and b= �SA
+�k� ,SA

−�−k� ,SB
+�k� ,SB

−�−k� ,SC
+�k� ,SC

−�−k��T. The
elements SA

+�k� and SA
−�−k� denote the Fourier amplitudes of

the spin operators Sl
+ and Sl

−, respectively. The 2�2 matrices

Ã and B̃ in Eq. �4� are defined as

Ã = 
E + 	 


− 
 E − 	
� and B̃ = 
 � �

− � − �
� �5�

where

	 = 2S cos �J�0� − pSD − SJ��0� + S�2 + ���J��kz�/2,


 = pSD − S��J��kz�/2,

� = − S�1/2 + ��J�k��/2,

� = S�3/2 + ��J�k��/2. �6�

The exchange integrals J�k�� and J��kz� are defined as

J�k�� = J„2 cos�ky

3a/2�exp�− ikxa/2� + exp�ikxa�… ,

J��kz� = 2J� cos�kzc� , �7�

with a and c denoting the lattice constants. In writing Eqs.
�4� and �5� we have assumed the usual time dependence
exp�−iEt�, where E is the mode energy. Bulk spin-wave
modes correspond to solutions of the determinantal condition
det A=0. The matrix A can be block diagonalized using the
unitary transformation A=UDU† where

FIG. 1. Planar view of the 120° Néel structure in a frustrated
antiferromagnetic. The dark, striped, and shaded spins refer to sites
on sublattices A, B, and C, respectively. The global coordinate sys-
tem is also shown, where the z axis corresponds to the hexagonal c
axis.
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D = �
̃�0� 0 0

0 
̃��� 0

0 0 
̃�− ��
	, U =

1

3�1 1 1

1 exp�i��1 exp�− i��1
1 exp�− i��1 exp�i��1

	 , �8�

and 1 is a 2�2 unit matrix. The elements of D are defined as 
̃���= Ã+ B̃ exp�i��+ B̃* exp�−i�� �for �=0, ±�� and the

spin-wave energies correspond to the solutions of det 
̃�0�=0, det 
̃���=0, and det 
̃�−��=0. After some straightforward
algebraic manipulations we write the bulk spin-wave energies as E1�k�=�k�0�, E2�k�=�k���, and E3�k�=�k�−��, where

�k��� = ± 
�	 + � exp�i�� + �* exp�− i���2 − �
 + � exp�i�� + �* exp�− i���2. �9�

In the appropriate limits, the spin-wave energies reduce to
previously obtained results.17,18 In Fig. 2 we plot the disper-
sion relations E1�k�, E2�k�, and E3�k� in the reduced and
extended zone schemes. It is worth noting that the single
mode E1�k� in an extended scheme will be equivalent to the
three modes in a reduced scheme. The energy gap at the zone
center for modes E2�k� and E3�k� �or equivalently for
E1�4� /3 ,0 ,0�� vanishes as D→0.

III. SEMI-INFINITE STACKED TRIANGULAR
ANTIFERROMAGNET

In this section the properties of surface spin waves in a
semi-infinite stacked triangular antiferromagnet are exam-
ined. The system considered has a �001� surface and is illus-
trated schematically in Fig. 3. Following the general ap-
proach used in previous works on semi-infinite systems,9,11

the layers are labeled using a positive index n�=1,2 ,3 , . . . �,
where the surface layer corresponds to n=1. The intralayer
exchange and single-ion anisotropy parameters at the surface
are allowed to differ from their respective bulk values. The
intralayer exchange Ji,j has the bulk value J everywhere ex-
cept when both spins are on the surface layer where it has the
value J1. Likewise, the magnitude of the anisotropy for spins
on interior bulk layers �n�1� is written as D whereas for
spins occupying sites at the surface it is D1.

The spin-wave dispersion relations are obtained by form-
ing the equations of motion for the operators Si

± �i= l ,m ,n�,
where i is a site within the semi-infinite medium. The equa-
tions of motion for sites on the surface layer �n=1� are dif-
ferent from those for interior bulk layers because sites at the
surface interact with fewer interlayer neighbors and also be-
cause of the modified exchange and anisotropy parameters.
In accordance with Bloch’s theorem and the translational
symmetry of the system in the xy plane, the equations of
motion for the various spin deviation operators are trans-
formed to a representation involving a two-dimensional
wave vector k� = �kx ,ky� which runs parallel to the surface
and a layer index n. For example, for the lth site on sublattice
A the wavelike solution for the spin operator is written as

Sl
± = SA,n

± �k��exp�i�k� · � − Et�� , �10�

where �= �x ,y� and the amplitudes SA,n
± �k�� depend on the z

coordinate through the layer index n. Similar expressions are

defined for sites on sublattices B and C. The compact nota-
tion SA,n

± �k���SA,n
± is used below. The system of finite differ-

ence equations connecting the Fourier amplitudes may be
expressed in supermatrix form as Mb=0, where M is an �
�� block tridiagonal matrix defined as

M =�
A1 � 0 0 0 ¯

� A � 0 0 ¯

0 � A � 0 ¯

] � � � � ¯

	 �11�

and each element represents a 6�6 matrix. The matrix ele-
ments of A are defined as in Eqs. �4�–�7� except now 	
=2S cos �J�0�− pSD−SJ��0� and 
= pSD. The matrix A1 has
the same form as A except the elements are defined by

	1 = 2S cos �J1�0� − pSD1 − SJ��0�/2,


1 = pSD1,

�1 = − S�1/2 + ��J1�k��/2,

�1 = S�3/2 + ��J1�k��/2. �12�

Also, the exchange dispersion J1�k�� is defined as in Eq. �7�
but with J→J1. The 6�6 matrix � is a block diagonal ma-
trix with each block given by

�̃ =
SJ��0�

4

2 + �� − ��

�� − 2 − ��
� . �13�

The infinite column vector b is defined as b
= �b1 ,b2 , . . . �T with bn= �SA,n

+ ,SA,n
− ,SB,n

+ ,SB,n
− ,SC,n

+ ,SC,n
− �T. As

in the bulk case, the equations may be partially decoupled by
applying the transformation U†Mi,jU to all the elements of
M. This results into three linearly independent sets of equa-
tions which may be written in matrix form as ���+���X�

=0 �for �=0, ±�� where
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�� =�
�̃−1
̃��� 1 0 0 0 ¯

1 �̃−1
̃��� 1 0 0 ¯

0 1 �̃−1
̃��� 1 0 ¯

] � � � � ¯

	 .

�14�

The perturbation matrix �� has a single nonvanishing 2�2
element defined as

����m,m� = �̃−1
„
̃1��� − 
̃���…�m,1�m�,1, �15�

where 
̃1��� is defined as


̃1��� = Ã1 + B̃1 exp�i�� + B̃1
* exp�− i��

and the column vector is

X� = �X1
+���,X1

−���,X2
+���,X2

−���, . . . �T

with elements

Xn
±��� =

1

3

„SA,n
± + SB,n

± exp�− i�� + SC,n
± exp�i��… . �16�

Following the approach used in other surface studies,9,11 the
matrix �
�+��� may be written as ���I+G����, where I is
the unit supermatrix and G�=
�

−1. This decomposition is
particularly useful because the elements of G� may be ob-
tained analytically. The surface spin-wave modes correspond
to the solutions of the determinantal condition

det�I + G���� = 0. �17�

The elements of G� are constructed following the ap-
proach used for simple cubic antiferromagnets.11 The matrix

�̃−1
̃��� is first diagonalized using the transformation

Ṽ−1(�̃−1
̃���)Ṽ=diag��1 ,�2�. The elements of the superma-
trix G� may be written as

�G��m,m� = − Ṽ
 fm,m��x1� 0

0 fm,m��x2� �Ṽ−1 �18�

where

fm,m��xi� =
xi

m+m� − xi
�m−m��

xi − xi
−1 . �19�

The complex quantities x1 and x2 are defined as

− �xi + xi
−1� = �i with i = 1,2 �20�

and satisfy �x1��1 and �x2��1. Because of the simple form
of the perturbation matrix ��, Eq. �17� reduces to the deter-
minant of a 2�2 matrix. Substituting Eq. �15� and �18� into
Eq. �17�, the determinantal condition becomes

�I − Ṽ
x1 0

0 x2
�Ṽ−1�̃−1

„
̃1��� − 
̃���…� = 0. �21�

The surface spin-wave modes are obtained by solving Eq.
�21� along with the requirement that �x1��1 and �x2��1. The
bulk spin-waves correspond to �x1�= �x2�=1. Substituting x1
=exp�ikzc� �or x2=exp�ikzc�� in Eq. �20�, where kz is the
third wave-vector component, the bulk dispersion relation in
Eq. �9� may be obtained by solving for E. As in the bulk case
�see Fig. 2�, the spin-wave modes corresponding to the solu-
tions of Eq. �21� with �= ±� can be obtained from those
with �=0 by extending the range of wave vectors.

Figures 4 and 5 show the surface and bulk spin-wave
dispersion relations in the S=1 semi-infinite triangular anti-
ferromagnet vs �k�a�. Here, the single-ion anisotropy at the
surface is equal to the bulk value. In Fig. 4 the propagation

FIG. 2. The bulk spin-waves energies �in units of SJ� vs wave
vector �kxa ,0 ,0�. The results are obtained using J�=D=J with �
=��=0. The three modes E1�k�, E2�k�, and E3�k� are shown in a
reduced and extended zone scheme. The M-point corresponds to the
wave vector k= �2� /3 ,0 ,0�.

FIG. 3. Schematic view of a stacked triangular antiferromag-
netic with a �001� crystallographic surface.

MELOCHE, PINCIUC, AND PLUMER PHYSICAL REVIEW B 74, 094424 �2006�

094424-4



wave vector is taken along the �100� direction whereas in
Fig. 5 the wave vector is along the �010� direction. The
dashed lines correspond to localized surface modes for dif-
ferent assumed values of the intralayer exchange J1 at the
surface. The bulk spin waves appear as an effective con-
tinuum in these plots with the upper and lower edges corre-
sponding to kzc=� and kzc=0, respectively. All of the modes
are degenerate in magnitude and only the positive-frequency

solutions are shown. The case with J1=J �not shown� corre-
sponds to a surface branch that appears just below the lower
edge of the bulk region. The surface branches with J1�J
�curves C and D� are truncated modes and only exist at cer-
tain values of the wave vector k�. As in unfrustrated mag-
netic systems, the surface branches are found to be extremely
sensitive to the values of exchange and anisotropy param-
eters at the surface. The surface branches located near the
bulk continuum regions are deeply penetrating modes. In
contrast, surface modes that are far from the continuum re-
gions are more localized near the surface. The gapless spin-
wave excitation at k� =0 corresponds to the Goldstone mode.
This uniform mode reflects the fact that there is no cost in
energy in rotating the spin configuration depicted in Fig. 3
about the c axis.

The effect of the single-ion anisotropy on the surface
spin-wave energy is depicted in Fig. 6. The graph shows the
energy of the surface mode at k� = �4� /3 ,0� as a function of
the surface anisotropy D1 for different values of intralayer
exchange J1. The bulk exchange and anisotropy parameters
are J�=D=J=1.0 �with �=��=0� and the shaded area rep-
resents the lower edge of the bulk continuum. The energy
gap of the surface mode remains finite when D1=0 �for D
�0 and J��0� because of the coupling between the spins in
the surface layer and the interior bulk layers. The effects of
the bulk anisotropy D on the surface spin-wave modes at
k� = �4� /3 ,0� are canceled at the critical value D1

*�−0.62
and the system is effectively isotropic for these modes. Be-
low the critical value the ground state configuration with the
spins in the surface layers lying in the xy plane �as depicted
schematically in Fig. 3� becomes unstable. This is analogous
to the surface reorientation phase transition predicted in

FIG. 4. Spin-wave energy �in units of SJ� in a semi-infinite S
=1 frustrated antiferromagnet vs in-plane wave vector kxa. We set
J�=D1=D=J with �=��=0 and show results for different values of
intralayer exchange at the surface. The shaded area corresponds to
the bulk continuum whereas the dashed curves labeled A, B, C, and
D correspond to J1 /J=0.5, 0.75, 2.0, and 2.5, respectively. The
M-point corresponds to the zone-edge wave vector k� = �2� /3 ,0�.

FIG. 5. Same as Fig. 4 but with in-plane wave vector taken
along the y direction. The K-point corresponds to the zone-edge
wave vector k� = �0,2� /
3�. The parameters used are the same as in
Fig. 4.

FIG. 6. Energy of the surface mode �in units of SJ� at wave
vector k� = �4� /3 ,0� as a function of surface anisotropy D1. All of
the curves are obtained using J�=D=J=1.0 with �=��=0 and re-
sults are shown for different values of exchange J1. The curves
labeled A and B are as in Fig. 4 with J1=0.5 and 0.75, respectively,
whereas the filled circles correspond to J1=J. The energy gap van-
ishes for D1

*�−0.62. The inset shows the dependence of the critical
value of the surface anisotropy D1

* as a function of the bulk aniso-
tropy D.
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other anisotropic magnetic systems.26 The critical value of
the surface anisotropy D1 is found to be independent of the
surface exchange J1 �as shown in Fig. 6� but depends
strongly on the values of the bulk anisotropy D. The inset in
Fig. 6 shows the critical surface anisotropy vs the bulk an-
isotropy for the case of J�=J=1.0. In the absence of bulk
anisotropy �D=0� the critical value of the surface anisotropy
is D1

*=0, as expected.

IV. STACKED TRIANGULAR ANTIFERROMAGNETIC
THIN FILM

The properties of surface and bulk spin waves in stacked
triangular antiferromagnetic thin films may be investigated
by extending the results of the previous section. For a film
composed of N layers the system of finite difference equa-
tions may again be expressed in supermatrix form as Mb
=0 where M is now a 6N�6N block-tridiagonal matrix. As
in the semi-infinite case the surface parameters for the anti-
ferromagnetic exchange and single-ion anisotropy are al-
lowed to differ from the bulk values. For layer n=N, the
intralayer exchange is written as JN and the anisotropy as DN.

Following an approach similar to that described in Sec. III
the transformation U†Mi,jU is first applied to the elements of
M. The resulting set of equations may be expressed as three
linearly independent matrix equations as ���+���X�=0
�for �=0, ±�� where �� is now a 2N�2N matrix with ele-
ments defined as in Eq. �14� and the column vector is X�

= �X1
+��� ,X1

−��� , . . . ,XN
+��� ,XN

−����T. The matrix �� describ-
ing the perturbation due to the surfaces of the thin film has
two nonvanishing 2�2 blocks at the ends of the leading
diagonal and may be written as

����m,m� = �̃−1
„
̃���� − 
̃���…�m,��m�,�, � = 1,N ,

�22�

where 
̃N���= ÃN+ B̃N exp���+ B̃N
* exp�−i��. The matrix el-

ements of ÃN �B̃N� are defined as in Eq. �12� but with the
modified exchange and anisotropy parameters at the surface
layer n=N. The elements of G� may be written as in Eq. �18�
but now with

fm,m��xi� =
xi

m+m� − xi
�m−m�� + xi

2N+2−�m+m�� − xi
2N+2−�m−m��

�1 − xi
2N+2��xi − xi

−1�
.

�23�

The complex parameters xi �i=1,2� are defined as in Eq.
�20� and satisfy �xi��1. The solution of Eq. �17� for a film
composed of N layers reduces to solving the 4�4 determi-
nantal condition

det�I + G���� = �I + �G��1,1����1,1 �G��1,N����N,N

�G��1,N����1,1 I + �G��1,1����N,N
�

= 0. �24�

The solutions of Eq. �24� will consist of surface modes
corresponding to �xi��1 and a set of quantized bulk modes
with �xi�=1 �i=1,2�. In the limit of N→� the elements of

the matrix �G��1,N vanish and the determinantal condition
�24� reduces to det(I+ �G��1,1����1,1)=0 and det(I
+ �G��1,1����N,N)=0. In the case of symmetric surfaces �J1

=JN and D1=DN� both determinantal conditions reduce to
Eq. �21� for the semi-infinite system and the surface modes
are degenerate, as expected. Also, it is easily verified that the
determinantal condition is invariant with respect to the inter-
change of exchange and anisotropy parameters at the sur-
faces �J1ÛJN and D1ÛDN�.

Figure 7 shows numerical results for the S=1 quasi-1D
hexagonal compound RbFeCl3 with ferromagnetic interplane
and antiferromagnetic intraplane exchange which exhibits
the 120° in-plane structure at T�1.95 K.27,28 The approxi-
mate values of the exchange and anisotropy parameters are
known from inelastic neutron scattering: J=0.068 meV, J�
=0.488 meV, �=��=−0.06, and D=1.7 meV. The exchange
and anisotropy parameters are assumed uniform throughout
the thickness of the material. For these parameter values
there is a single surface mode located just below the effective
bulk continuum. The splitting of the surface branch from the
bulk region can be enhanced with a small perturbation of
the surface parameters. The quasi-one-dimensionality of
RbFeCl3 results in bulk spin-waves having a weak depen-
dence on the in-plane wave vector k�.

In Fig. 8 the spin-wave modes for a thin film of RbFeCl3
composed of N=5 layers are shown. The solid lines show
results for a symmetric film with D1=DN=0.5D and J1=JN
=J. For these parameter values the surface modes are below
the effective bulk region. The dashed lines show the spin-
wave energies for the case of asymmetric surface anisotropy
parameters. Here, D1=0.25D, DN=0.5D and the intralayer
exchange is taken to be uniform throughout the thickness of
the film. The single-ion anisotropy is a site dependent quan-
tity that depends on the local crystalline electric field which
may be different near the surfaces of the film compared with

FIG. 7. Spin-wave energy vs kxa for RbFeCl3. The physical
parameters are given in the main text. The solid lines represent the
spin-wave branches for a thin film composed of N=8 layers and the
shaded area corresponds to the effective bulk continuum.
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the bulk. Magnetic films sandwiched between different non-
magnetic layers can create surface asymmetry. The asymme-
try in the film enhances the splitting between the surface
modes at larger wave vectors.

Another hexagonal system characterized with a strong fer-
romagnetic interlayer exchange and weak intralayer ex-
change is the S=1/2 compound CsCuCl3.15 A model similar
to the one used here has been previously employed to inves-
tigate the properties of spin waves in bulk CsCuCl3 �Ref. 29�
and the estimated parameter values are J=1.0 meV; J�
=5.5 meV; �=−0.054, ��=0.0. A weak Dzyaloshinsky-
Moriya interaction which is believed to be responsible for
the rotation of the triangular spin configuration between suc-
cessive planes in CsCuCl3 is neglected here. The terms in the
equations of motion involving the single-ion anisotropy �see
Eqs. �6� and �12�� will vanish for CsCuCl3 because p=0 for
S=1/2 systems. Numerical results for the spin-wave disper-
sion in a thin film of CsCuCl3 composed of 7 layers are
shown in Fig. 9. The solid lines represents the results using
uniform values of the exchange interaction throughout the
thickness of the film whereas the dashed lines are the results
using J1=JN=0.5J. The gap in the spectrum at k�

= �4� /3 ,0� is due to the anisotropic exchange parameter �.
The quasi-1D character of the system is evident from the
weak dependence of the spin-wave energies on the in-plane
wave vector. As in the previous cases the splitting between
the surface modes and the effective bulk region may be en-
hanced by allowing for modified values of the exchange cou-
pling in the surface layer.

V. CONCLUSIONS

A method to obtain magnetic dispersion relations for sur-
face and bulk spin waves in the stacked triangular antiferro-
magnet has been presented. The theory was developed for a

semi-infinite system and generalized to the case of a thin film
composed of a finite number of layers. The decoupling ap-
proximations used to linearized the equations of motion are
valid in the low-temperature limit T�TN, and therefore the
results are confined to this temperature regime. The calcula-
tions were carried out explicitly for the case of ferromagnetic
coupling between interlayer nearest neighbors and the theory
was applied to RbFeCl3 and CsCuCl3. The influence of
modified exchange and anisotropy parameters at the sur-
face�s� was investigated and it was found that surface spin
waves can be well- separated in frequency from bulk spin
waves with small differences between the surface parameters
compared to the bulk values. At the present time we are not
aware of any experimental studies concerning the magnetic
properties of atoms located near the surface of frustrated
magnetic materials. Appropriate experimental techniques to
test the theoretical predictions described in this paper may
include spin-polarized particles �such as SPEELS� and spin-
wave resonance.6,30 Inelastic light scattering may also be
suitable to investigate the spin-wave modes near the zone
center.

The formalism used here may be extended to investigate
the spin-wave properties for the case of antiferromagnetic
coupling between layers and applications can be made to a
wide variety of frustrated triangular antiferromagnets.15 For
such systems, a six sublattice model may be employed and
for the bulk spin waves 12 equations of motion are required
to obtain a closed set. For thin films with antiferromagnetic
interlayer coupling and �001� surfaces, the surface spin-wave
modes are expected to show distinct features depending on
whether the total number of layers is even or odd. The effect
of the inequivalence between sublattices on the characteris-
tics of surface spin waves has been investigated in simple
cubic antiferromagnetic films with �111� surfaces13 and meta-
magnetic thin films.25

From the theoretical standpoint there are various other
possible extensions of this work. It it well-known that the

FIG. 8. Spin-wave energy vs in-plane wave vector kxa for a thin
film of RbFeCl3 with N=5 layers. The solid lines correspond to
D1=DN=0.5D and for the dashed lines D1=0.25D, DN=0.5D. For
both sets of curves the exchange parameters are J1=JN=J.

FIG. 9. Spin-wave energy vs in-plane wave vector kxa �with
ky =0� for a thin film of CsCuCl3 with N=7 layers. The solid lines
correspond to surface exchange parameters J1=JN=J and the
dashed lines are the results with J1=JN=0.5J.
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characteristic properties of surface spin waves in ferromag-
nets and antiferromagnets depend strongly on the surface ori-
entation. In frustrated materials the effect of surface orienta-
tion on the properties of surface spin waves may be even
greater because of the quasi- one- and two-dimensionality
observed in these systems. Another possible extension would
be to carry out Green function calculations to extract the
spin-spin correlations functions. This typically involves solv-
ing inhomogeneous matrix equations9 as opposed to the op-
erator equation of motion technique employed here which
requires solving homogeneous equations. The correlation

functions can be used to determine the dynamic magnetic
response for a variety of frustrated magnetic materials and
compared to experimental results. Future applications of
these approaches will include thin films of stacked triangular
magnetoelectric RMnO3 compounds.31,32
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