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We carry out molecular dynamics (MD) and Monte Carlo (MC) simulations to characterize nucleation
in liquid clusters of 600 Lennard-Jones particles over a broad range of temperatures. We use the
formalism of mean first-passage times to determine the rate and find that Classical Nucleation Theory
(CNT) predicts the rate quite well, even when employing simple modelling of crystallite shape,
chemical potential, surface tension, and particle attachment rate, down to the temperature where
the droplet loses metastability and crystallization proceeds through growth-limited nucleation in an
unequilibrated liquid. Below this crossover temperature, the nucleation rate is still predicted when
MC simulations are used to directly calculate quantities required by CNT. Discrepancy in critical
embryo sizes obtained from MD and MC arises when twinned structures with five-fold symmetry
provide a competing free energy pathway out of the critical region. We find that crystallization
begins with hcp-fcc stacked precritical nuclei and differentiation to various end structures occurs
when these embryos become critical. We confirm that using the largest embryo in the system as a
reaction coordinate is useful in determining the onset of growth-limited nucleation and show that it
gives the same free energy barriers as the full cluster size distribution once the proper reference state
is identified. We find that the bulk melting temperature controls the rate, even though the solid-liquid
coexistence temperature for the droplet is significantly lower. The value of surface tension that
renders close agreement between CNT and direct rate determination is significantly lower than what
is expected for the bulk system. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4915917]

I. INTRODUCTION

Nanotechnology has garnered much interest in the last
few decades because of the wide range of applications that
come out of it. Nanoclusters, small clusters comprising tens
to millions of atoms, are used in a variety of settings, such as
tuning the optical1–3 and electronic properties of materials,2,4

biolabeling and imaging,5 catalysis,6,7 and chemical sensing.8

The various structures to which nanoclusters solidify, as well as
their surface properties, bear a strong impact on their function.9

Much attention has been paid to the size dependence of
nanocluster structure. Experimental work on argon clusters
showed that for fewer than 50 atoms, polyicosahedral structure
emerges,10 for larger particles up to 750 atoms multilayer
icosahedra are formed, while beyond this size the structure
becomes fcc.11 Simulations with the Lennard-Jones (LJ)
potential, a reasonable model for noble gases, as well as
exhaustive searches of ground state structures confirmed
this picture.12–14 LJ simulations generally reveal rather rich
behavior, especially at finite temperature T , in terms of local
and global structures, transformations, size dependence, and
role of the surface.15–24 Our interest is how various structures
form out of the liquid state on cooling.

Freezing of a liquid generally occurs through the process
of nucleation. This is accomplished when one of the embryonic
crystallites that appear as structural fluctuations in the liquid
reaches a sufficient size to overcome the crystal-liquid surface
tension that tends to shrink and eliminate small crystalline

embryos. Classical Nucleation Theory (CNT) forms the
basis of understanding the process qualitatively and provides
quantitative predictions for the rate of nucleation. Central to
CNT is∆G(n), the reversible work required to form an embryo
of size n particles of the stable phase within the metastable
bulk.25 However, the predicted rate is highly sensitive to this
work, and therefore to such considerations as the shape of the
embryos, the nature of the interface, and to the potentially T
and curvature dependent surface tension.

The freezing of nanodroplets, i.e., nanoclusters in their
liquid form, is complicated by the fact that such small systems
can often freeze into more than one structure, for example
icosahedral, decahedral or bulk-like fcc and hcp structures.
Hence the nucleation process is potentially competitive in
nanodroplets.26 One wonders at what point during the freezing
process does differentiation between structures occur and
whether CNT provides a reasonable description of the rate
at all. These are unresolved questions and their answers are
likely system specific.

One study employing simulations of gold nanoparticles
found that at sufficient supercooling, CNT predicted a constant
or decreasing freezing rate with further supercooling while
direct simulations saw the reverse, namely an increasing rate
with further cooling.27 This peculiar result is connected to
broader questions regarding the choice of reaction coordinate
in describing the nucleation process and the resulting free en-
ergy landscape, the description of nucleation when barriers are
low, and the approach to a possible spinodal-like end to liquid
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metastability.28 Spinodal-like nucleation has been suggested
to occur for bulk LJ,29 but this idea has been challenged.30,31

In the present study, we use molecular dynamics (MD)
simulations to determine the freezing rate of a droplet
consisting of 600 LJ particles. We press into service the
mean first-passage time (MFPT) formalism of Reguera and
co-workers32–34 to determine the rate and critical cluster sizes
over a broad range of T . While generally for nanodroplets, the
surface may play a large role in determining the rate, since
a large fraction of particles is near or at the surface of the
droplet, crystallization for the present system occurs within
the interior.35 We thus expect CNT as formulated for bulk
liquids to hold without the modifications often employed to
describe nucleation occurring on the surface.36

The previous study of this system35 also revealed that
several competing structures, some based on fcc tetrahedra of
different sizes, exist as basins within the free energy landscape
of the system. However, as the free energy was calculated as a
function of global measures of surface and bulk crystallinity,
little light was shed on the question of how these different
structures arise.

This paper is organized as follows. In Sec. II, we review
and discuss some aspects of CNT and MFPT, while we
provide details of our simulations in Sec. III. We report
our results in Sec. IV, including a determination of the
liquid-solid coexistence temperature, the freezing rate as
a function of T from MD simulations, modelling the T
dependence of the rate through CNT, determining the free
energy of crystallite formation, and an analysis of critical
nuclei structure. Section V provides a discussion of our results
before summarizing our conclusions in Sec. VI.

II. CNT, MFPT AND THE LOW BARRIER REGIME

A. CNT

According to CNT,25,37 the rate of nucleation J, that is to
say the number of crystalline embryos that cross the critical
size threshold and start to grow per unit time in the steady-state,
is given by

JCNT = NpZ f +crit exp (−β∆G∗) , (1)

where Np is the number of molecules in the system, the

Zeldovich factor is Z =
(

β
2π

����
∂2∆G(n∗)

∂n2

����

)1/2
, β = (kBT)−1 with

kB the Boltzmann constant,∆G∗ = ∆G(n∗), the minimum work
required to form an embryo of critical size n∗, and f +crit is the
attachment rate of molecules to an embryo of size n∗. We note
that, at variance with Eq. (1), the rate is often stated in terms of
the number of nucleation events per unit time per unit volume.
Here, we have absorbed the volume of the system into JCNT.

The reversible work required to assemble an embryo of
size n is related to the distribution of embryo sizes in the
system37

β∆G(n) = −ln


N(n)
Nt


≈ −ln


N(n)
Np


, (2)

where N(n) is the equilibrium number of embryos of size
n in the system and Nt =

h
i=0 N(i) is the total number of

embryos (including liquid-like particles) in the system and
is approximated by Np since we assume that the system is
dominated by liquid-like particles, and h is a constraint on
the largest embryo size that is necessary to formally define
the metastable equilibrium state. N(0) refers to the number
of liquid-like particles in the system, while N(1) refers to the
number of particles that are themselves crystal-like, but the
neighbor of which are liquid-like. Because of surface tension γ
between liquid and crystal, ∆G(n) is initially positively sloped
and possesses a maximum at n∗.

The simplest model for the work of crystallite formation
is25,37

β∆G(n) = −β∆µ n + βγA n2/3, (3)

where ∆µ = µL − µS is the difference between the chemical
potentials for the bulk phase µL and the embryo phase µS, with
∆µ > 0, and A is a shape-dependent proportionality constant
that assumes that embryos are compact, i.e., for an embryo of
volume∼n, the surface area should be S = An2/3. For spherical
embryos, A =

3√
36πv2, where v is the volume per particle in

the embryonic phase. Within this model, β∆G∗ = 4
27

(βAγ)3
(β∆µ)2 ,

n∗ = 8
27

(βAγ)3
(β∆µ)3 , and Z = 3

4
√
π

(β∆µ)2
(βAγ)3/2 .

The simplest model for the T-dependence of JCNT is
obtained by combining Eqs. (1) and (3), along with assuming
γ and A constant. By further assuming a constant enthalpy
difference ∆H between the liquid and crystal phases as T
decreases at constant pressure p, one obtains

β∆µ =
∆H

NpkB

Tm − T
TTm

, (4)

where Tm is the melting temperature of the bulk crystal, and at
which point JCNT is zero. Additionally, one assumes a simple
Arrhenius T dependence of the critical attachment rate

f +crit = f0 exp
(
−C

T

)
, (5)

where kBC is an activation free energy. Combining all these
approximations results in38,39

JCNT(T) = λ (Tm − T)2
√

T
exp


−C

T
− B

T(Tm − T)2

, (6)

which predicts a maximum rate to occur even in the absence
of considerable slowing down of dynamics. The simple
modelling employed implies that the barrier to nucleation is

β∆G∗ =
B

T(Tm − T)2 , (7)

and therefore has a minimum atTm/3, which tends to maximize
the rate, before diverging as T approaches zero. In terms of
the physical quantities ∆H , Tm, f0, A, and γ, the parameters λ
and B in the model are given by

λ = f0Np
3

4
√
πkB

1

(Aγ)3/2

(
∆H
Np

)2 1
T2
m

, (8)

B =
4
27

(Aγ)3
kB

(
Np

∆H

)2

T2
m. (9)

The quantities λ, Tm, B, and C can, in principal, be obtained
through fitting the rate as a function of T with Eq. (6).
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B. nmax as the order parameter

In the present work, as is now common in simulation
studies of nucleation, we employ the size of the largest embryo
in the system nmax as a reaction coordinate. Once an embryo
definition is set, every system configuration can be uniquely
assigned a value of nmax, and hence the configurational part of
a restricted partition function can be defined through27

Q(nmax) =


c∈nmax

exp (−βUc) , (10)

where Uc is the potential energy of configuration c, restricted
to those configurations that have a largest embryo of size nmax.
We can then further define the free energy40

β∆F(n) = −ln

Q(n)
Qliq


, (11)

where we have dropped the subscript on n for notational
convenience and Qliq is the partition function of the metastable
liquid, defined as

Qliq =

n∗
F

n=0

Q(n), (12)

where n∗F is the (critical) cluster size at which β∆F(n)
possesses a local maximum, i.e., where Q(n) has a local
minimum. So defined, β∆F(n) is directly related to the
probability that the largest cluster in the system is of size
n, given that the system is in the metastable liquid, Pmax(n),

β∆F(n) = −lnPmax(n). (13)

That is, the normalization is such that

n∗
F

n=0

Pmax(n) = 1. (14)

For relatively large barrier heights, large embryos are rare,
i.e., there is only one large embryo in the system if there is
one at all. This implies the equality of the following three
quantities: the probability of there being an embryo of size n
in the system; the probability that the largest embryo is of size
n; and the average number of embryos of size n. This becomes
immediately obvious when constructing related histograms
during the simulations. In this regime, Pmax(n) = N(n) (and
both are small).

The transition state theory (TST) rate expression when
there is a free energy barrier present is

JTST = f +(n∗F)ZF exp [−β∆F∗] , (15)

where n∗F, the Zeldovich factor ZF =
�
β∆F ′′(n∗F)/(2π)

�1/2 and
f +(n∗F), the generalized diffusion coefficient at the critical
state, become equal to n∗, Z , and f +crit at sufficiently high
barriers, respectively, and β∆F∗ = β∆F(n∗F). f +crit in Eq. (1)
is the attachment rate of particles to an embryo of critical size,
while f +(n∗F) tracks changes in the size of the largest embryo at
critical size in the system. The two are the same so long as the
largest embryo in the system is the only embryo near the critical
size. Again, when barriers are high, the equalities n∗ = n∗F and
Pmax(n) = N(n) near n∗ imply that β∆G∗ = β∆F∗ + ln Np, and
this is consistent when comparing Eqs. (1) and (15). However,

there is no reason why this should hold when barriers become
low.

It is generally the case that ∆F(n) possesses a minimum
at nmin, the most likely largest embryo size. It is tempting to
formulate Eq. (15) in terms of the free energy difference

β∆F∗min = −ln


Pmax(n∗F)
Pmax(nmin)


= β∆F∗ − β∆F(nmin). (16)

This is incorrect in terms of rate prediction, as it fails to account
for the phase space available in the free energy basin around
nmin.40

The identification of ∆F∗min → 0 with a spinodal has been
shown to be incorrect,30 but it nonetheless marks the point
at which the liquid system ceases to possess a basin in the
free energy and has therefore lost formal metastability. For
bulk systems of finite size, this marks the point at which
phase change proceeds through the monotonic increase in size
of the largest embryo in the system with time, i.e., because
the system is large enough, it becomes probable that it
possesses an embryo of critical size as soon as diffusive
particle attachment allows. Phase transformation of the sample
thus proceeds through growth-limited nucleation.34 However,
the metastable phase has not lost inherent metastability as
work is still required to form an embryo. For systems
such as our nanodroplets, it is perhaps not meaningful to
distinguish between phase and system, but we nonetheless
expect that the loss of metastability occurring at ∆F∗min = 0 to
be actualized through a growth-limited nucleation mechanism
with a transformation rate given, at least approximately, by
Eq. (1). A true kinetic spinodal, i.e., a loss of stability on the
particle level, should occur when ∆G∗ vanishes.

C. MFPT

In recent times, Reguera and co-workers reformulated
the use of mean first-passage time from TST32–34,41 in order
to characterize the nucleation process in the regime where
nucleation times are accessible by direct MD simulations.
In this MFPT formalism, when the time to crystallize is
dominated by barrier crossing, the mean time at which the
largest crystalline embryo in the system first reaches size n is
given by

τ(n) = τJ
2
{1 + erf[ZF

√
π(n − n∗F)]}, (17)

where τJ = 1/J. Thus, calculating τ(n) from an ensemble of
simulations for which crystallization takes place yields good
estimates of J as well as Z and n∗.

Typically, as supercooling increases, the sigmoidal shape
of the MFPT becomes less well described by Eq. (17), and we
can instead estimate n∗F through32

∂2τ(n∗F)
∂n2 ≈ 0. (18)

III. MODEL AND SIMULATIONS

Our system consists of Np = 600 particles interacting
through the LJ pair potential, ULJ(r) = 4ϵ

�
σ
r

�12 −
�
σ
r

�6 ,
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simulated in the canonical ensemble. All reported quantities
are given in reduced dimensionless units, e.g., length is
rescaled by σ, energy by ϵ , time by


ϵ/(mσ2) (where m

is the mass of a particle), temperature by ϵ/kB, and pressure
by ϵ/σ3. We use a cubic simulation box of side length L = 30
and employ a potential cutoff of Rc = 14.999 99. For the range
of T we consider, the system consists of a single condensed
droplet with a few particles at most detaching themselves from
the droplet into the surrounding gas phase. The finite size and
periodic boundaries ensure that these particles can return to the
droplet and that the droplet does not evaporate. The box size is
sufficiently large to ensure that particles within the droplet do
not interact unphysically with periodic images of the droplet.

We use Gromacs v4.5.542 to carry out MD simulations.
Temperature is maintained with the Nosé-Hoover thermostat
with a time constant of 1. We use a time step of ∆t = 0.001
and integrate equations of motion with the leap-frog algorithm.
We equilibrate the system at T = 0.53, for which the droplet
is well formed but clearly a liquid and subsequently harvest
501 independent configurations by sampling every 100 000
time steps. Each of these configurations serves as a starting
point for a “crystallization run,” for which the thermostat is
set to the desired lower T . We determine τ(n) from the MFPT
formalism, as in Refs. 32 and 43 from these 501 crystallization
trajectories for each of several T from 0.490 down to 0.385 in
steps of 0.005, and from 0.350 to 0.100 in steps of 0.05. To
determine τ(n), we calculate the size of the largest crystalline
embryo, as described below, every 1000 time steps (integer LJ
time units).

We employ the procedure developed by Frenkel and co-
workers44,45 to define crystal-like embryos within the droplet,
based on quantifying the local bond ordering for a single
particle via spherical harmonics.46 See also Refs. 43 and
47 for details. In this procedure, there are three parameters:
the distance cutoff for determining whether two particles are
neighbors, chosen from the minimum at r = 1.363 between
first and second peaks of the radial distribution function; a
threshold for the correlation ci j, a complex dot product that
determines whether two neighboring particles have sufficiently
aligned local bonding patterns and above which the particles
are considered to be connected, which we choose to be 0.5
as the intersection point for the probability distributions of ci j
obtained from 100 liquid and 100 solidified configurations at
T = 0.475; and the number of connections a particle needs in
order to be considered solid-like, which we take to be 0.8 times
the number of neighbors a particles has (keeping in mind that
particles on the surface have fewer neighbors). Further, for
the purposes of finding the size distribution of embryos, two
connected, crystal-like particles are considered to be part of
the same crystalline embryo.

In order to differentiate between embryos of the same
size but different overall structures, we determine the overall
crystallinity of the cluster by calculating the often-used
quantity Q6.48

To determine the free energy profiles, we carry out
umbrella sampling Monte Carlo (MC) simulations in the
canonical ensemble to determine the works defined in Eqs. (2)
and (13). When barriers are reasonably high, we make use of
a biasing potential,

φ(nmax) = 1
2
κ(nmax − n0)2, (19)

where κ = 0.006 25 determines the strength of the constraint
and n0 is the target embryo size. Following the method in
Refs. 30, 43, 44, and 47, the MC procedure consists of first
noting at iteration step i, the value of the constraint for a config-
uration o, φo, and then generating an unbiased MC trajectory
in the canonical ensemble with the Metropolis algorithm
for 10 displacement attempts per particle to arrive at a new
configuration w with a value of the constraint potential φw. The
new configuration is accepted (w becomes the configuration
at iteration i + 1) with probability min [1,exp (βφo − βφw)].
Otherwise, o remains the configuration at iteration i + 1.

We carry out biased simulations for several values of n0
for each T and correct for the bias in determining portions
of N(n) and Pmax(n) around each n0 according to Ref. 44.
As in Ref. 47, we discard histogram bins with poor statistics
and simply shift the different portions of β∆F(n) and β∆G(n)
to minimize the difference in the range of n for which the
pieces overlap. We check our procedure with MBAR49 and
our results agree to within the error. β∆F(n) is normalized
according to Eq. (14) and for β∆G(n), we determine Nt

so that exp[−β∆G(0)] +n∗
i=1 exp[−β∆G(i)] = Np. This latter

condition is usually indistinguishable to within 0.1kBT from
imposing the condition β∆G(0) = 0 in terms of determining
β∆G∗.

When the barrier is sufficiently low, we impose a simple
“hard wall” constraint, namely, that any MC trajectory that
results in nmax > n0 is rejected, using only a single n0 for a
given T . When using a hard wall constraint, it is important
to not place it much beyond the critical embryo size. A good
check is that the time series of nmax should not get “stuck” near
the constraint. If the constraint is too large, poor sampling will
result in an apparent barrier height and critical size that are
both too large. In both biasing schemes, we generally use 20
independent starting configurations in order to obtain good
averages.

IV. RESULTS

A. The melting temperature

There are two melting temperatures to speak of. Accord-
ing to Eq. (3), the barrier to nucleation becomes infinite and the
rate is zero at Tm, when ∆µ = 0, i.e., the melting temperature
in the thermodynamic limit. For bulk LJ at p = 0, this is
the fcc melting temperature of 0.618.50 For comparison, the
pressure of our system, evaluated from the virial as for a bulk
system, is less than 10−4, effectively zero. Thus, Tm = 0.618 is
a reasonable estimate.

However, for our finite-sized cluster, the presence of a
surface complicates matters and the coexistence temperature
should be defined as the temperature at which the droplet
as a whole has equal probability of being either in the
solid or liquid state. To determine this temperature, we note
that the system at T = 0.490 is predominantly in the liquid
state but makes short excursions to being largely solid (a
surface melted state). This flipping between states is readily
apparent in any of the 501 potential energy time series
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FIG. 1. Heat capacity as a function of T . CV (T ) is determined by reweight-
ing the double-peaked potential energy probability distribution P(U ) at
T = 0.490 shown in the inset. The peak at T = 0.482 marks the coexistence
temperature between liquid and solid cluster states. The circle is the value of
CV at T = 0.470 determined from solidified cluster states.

we have collected (not shown). From these time series, we
construct the probability distribution for the potential energy
P(U), which has a distinctly bimodal character as shown
in the inset of Fig. 1. The main part of the figure shows
the heat capacity CV(T) extrapolated through straightforward
temperature reweighting of P(U). Also plotted is a point for
CV(T = 0.470), as determined solely from energy fluctuations
in the crystallized state at that T . That the discrepancy is small
at T = 0.470 allows us to estimate the coexistence temperature
for our cluster to be Tc

m = 0.482. Clearly, Tc
m is not the intended

melting temperature in Eq. (6).

B. Nucleation rates from MFPT

Prior to determining the rate, we consider the potential
energy per particle U/Np as a function of time after the quench
from T = 0.530 to the various target temperatures. At low
to moderate supercooling, e.g., from T = 0.485 to T = 0.430
in Fig. 2(a), the initial rapid change in U shows the system
reaching a metastable equilibrium, where the droplet is liquid.
The sharp drop in U for these T , after metastable equilibrium
is achieved, marks rapid growth of a postcritical crystalline
embryo, as evidenced by the commensurate sharp increase in

nmax in Fig. 2(b). At T = 0.385, the metastable state is less
clearly seen, if at all, near t = 60 and the decrease in U beyond
t ≈ 90 is accompanied by an increase in nmax. By T = 0.200,
the system proceeds monotonically from the T = 0.530 state,
with both U and nmax sliding towards the frozen state. The
sharp change in U and nmax near t = 200 occurs after most of
the droplet is already crystalline. While this is interesting, we
do not consider it in this study.

Next, we wish to quantify the rate of nucleation from τ(n).
A sampling of curves from our range of T is shown in Fig. 3,
where we have normalized the curves by τ(n = 250) since
nucleation times vary widely. We define a crystallization rate
as J250 ≡ 1/τ(250) that should approximately equal the nucle-
ation rate at shallow supercooling, but clearly underestimate
the nucleation rate at low T as it captures much time spent by
a post-critical embryo growing to a size of 250.

At shallow to moderate supercooling, τ(n) is fairly well
approximated by Eq. (17). We thus define JMFPT ≡ 1/τJ, where
τJ is determined from fitting to Eq. (17) for T = 0.415 and
higher. From the fit, we also obtain n∗MFPT as an estimate for
n∗F.

In order to extend the determination of the nucleation rate
to lower T , we find the inflection point in τ(n) and so define n∗inf
according to Eq. (18). Since the system has equal probability
of growing or shrinking at n∗F, we define another estimate of
the nucleation rate Jn∗ ≡ 1/[2τ(n∗inf)]. We plot n∗MFPT and n∗inf
in Fig. 9(b).

The progression of the change of shape of τ(n) upon
lowering T is noteworthy. At first, the low-n plateau shrinks
as n∗F decreases. Along with this, the steepness of τ(n) for
small n increases. However, below T ≈ 0.4, the curves become
progressively less steep, and by T = 0.250, the inflection
clearly occurs at larger n. An increase in n∗ on lowering
T is not predicted by CNT but rather is predicted by mean
field theories of spinodal-type nucleation. While this warrants
further investigation, we note that there are likely strong non-
equilibrium effects at this very low T .

We show the temperature dependence of our three rates
J250, JMFPT, and Jn∗ in Fig. 4. All three rates agree from high
T down to 0.415, the lowest T at which we determine JMFPT.
Below this T , the difference in J250 and Jn∗ reflects the lack
of separation of growth and nucleation time scales. Both J250
and Jn∗ exhibit a broad maximum and show only a weak T
dependence below T = 0.4.

FIG. 2. Time series of (a) potential energy U and (b) largest embryo size nmax showing crystallization events. At higher T , the nearly vertical changes in the
graphs indicate very fast growth compared to the lifetime of the metastable liquid state. Legend indicates T for both panels. At T = 0.385, the metastable state
becomes difficult to discern. At T = 0.200, the system progresses essentially monotonically to the frozen state.
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FIG. 3. Mean first-passage time τ(nmax) for the appearance of an embryo of size nmax for a range of T indicated by the legend. In (a), curves are normalized
by τ(250). For T = 0.485, we show a fit according to Eq. (17). This sigmoidal shape is progressively lost with increased supercooling as the early time plateau
shortens. Below T = 0.35, curves become less steep at small nmax, which tends to move the inflection point to larger nmax, and the curves become more linear.
In (b), we plot the data rescaled with n∗inf, the inflection point.

In Sec. IV C, we determine the extent to which simple
CNT can quantitatively account for the T dependence of the
rate.

C. T dependence of the rate from CNT

As discussed in Sec. II A, the simplest model for J(T)
assumes an Arrhenius dependence of the attachment rate on
T , a constant surface tension, and a constant difference in
enthalpy between the solid and liquid phases. The resulting
model is given in Eq. (6). We use it to fit J250 and JMFPT. J250
is a crystallization rate blind to the separation of nucleation
and growth time scales and should not yield good results. By
contrast, JMFPT represents a T range for which nucleation and
growth are well separated.

Given the orders-of-magnitude difference in the rates as T
varies, we fit by first taking logarithms of both sides of Eq. (6).
The resulting fits of J250 and JMFPT are plotted in Fig. 4(a),
and the fit parameters are as follows. For J250 (fitting from
T = 0.200 to 0.485): λ = 87, Tm = 0.54, B = 1.5 × 10−2, C
= 1.7. For JMFPT (fitting from 0.415 to 0.485): λ = 2.8 × 1021,
Tm = 0.67, B = 0.54, C = 14. Choosing data from J250 in
the same temperature range over which JMFPT is calculated
produces similar fit parameters to those for JMFPT. The fits for
JMFPT are more stable with respect to data sampling. Thus,
the parameters vary widely according how much of the data
below T ≈ 0.43 is taken for fitting. Unfortunately, fitting yields
physically unrealistic or imprecise parameters.

So while as a fitting function Eq. (6) is able to reproduce
the T dependence of the rate, it is difficult to extract meaningful
physical quantities from the fits parameters. Our goal is
therefore to reduce the fit parameters to just γ by independently
determining Tm, ∆H , A, f0, and C.

1. The enthalpy difference

The enthalpy difference ∆H = UL −US + P(VL − VS) be-
tween solid and liquid enters into the coefficients of Eq. (6).
Given that our system is at a very small pressure, that the
densities of liquid and crystal are comparable and that there
is a sizeable potential energy difference between liquid and
crystal, we approximate ∆H ≈ UL −US ≡ Np∆u, where ∆u
is the per particle potential energy difference between the
liquid and crystal. The scenario is complicated here by the fact
that when our droplet solidifies, it does so incompletely and
remains partially liquid. Calling ∆U the difference in potential
energy between the liquid and (partially) solidified droplet, and
α the fraction of particles in the solidified droplet identified as
solid-like, then we can estimate the enthalpy difference as

∆H
Np
= ∆u =

1
α

∆U
Np

. (20)

In the inset of Fig. 5, we plot α as a function of T , and
see that the fraction of solid-like particles in the frozen state,
at least according to our order parameters, increases roughly
linearly with decreasing T . In the main panel of Fig. 5, we plot

FIG. 4. Nucleation rate as a function of T . Panel (a) shows three estimates as described in the text of J based on τ(n), which all agree at higher T . Curves are
fits according to Eq. (6). Panel (b) shows a comparison of Jn∗(T ) with the rate predicted by Eq. (1) (plus signs) and a one-parameter fit to obtain γ = 0.128 using
Eq. (6) (curve) with other parameters determined independently. Also shown is the kinetic prefactor (stars) of Eq. (1).
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FIG. 5. Determining ∆H/Np. Circles show the raw estimate ∆H =∆U , the
system potential energy difference before and after crystallization occurs, as
well as a more refined estimate Np∆u =∆H that takes into account α (inset,
see Eq. (20)) in determining energy differences between solid and liquid
particles (squares). ∆u is approximately constant with T .

both ∆U/Np and the resulting ∆u. We see that the assumption
of constant enthalpy difference between liquid and crystal used
in deriving Eq. (6) is vindicated, and its value is approximately
∆H/Np = ∆u = 0.58.

2. Embryo shape

As noted above, we assume that the surface area of
a crystalline embryo within the droplet has surface area
S = An2/3. If we assume spherical embryos and a volume per
particle to be that of an fcc particle, vfcc = 1.04,51 we obtain
A = 4.96. To obtain a better estimate of the shape factor, we
model the embryo as an ellipsoid.29,30 To do this, we first
compute the moment of inertia tensor for all particles in the
largest embryo in the system. The eigenvalues of this tensor
yield the three principal axes lengths and hence the surface
area of the ellipsoid.

We plot A = Sn−2/3 as a function of n in Fig. 6 for both
critical embryos from MC (all T) and MD (T ≥ 0.410), and
all nmax embryos from MD trajectories for T = 0.485. We see
that, roughly speaking, the critical embryos from different T
follow the same behaviour as embryos (pre-critical, critical
and post-critical) at T = 0.485. For large embryos (shown in
the lower inset), A tends to the spherical value of ∼5, as is
expected. For our range of T of interest (0.415–0.485), we
see that the embryos become less spherical with decreasing
size, and that the values of A range from about 6.7 to 8.5
(corresponding to 50 < n < 100), with an average of 7.6. The
upper inset shows that the dependence of S on n2/3 possesses
only a slowly varying departure from linearity.

3. Attachment rate

To estimate f0, which is essential in the prefactor in Eq. (6)
and defined in Eq. (5), we follow Refs. 44 and 45. This method
makes use of the fact that the change in size of a critical
embryo follows a simple diffusive process since the free energy
landscape is locally flat at the top of the free energy barrier.

FIG. 6. Estimating the shape factor A= Sn−2/3 as a function of embryo size,
where embryo area S is that of an ellipsoid with equivalent moments of inertia
as an embryo. Shown are data for critical clusters from MD (T ≥ 0.410,
circles) and MC (all T , squares), as well as from all clusters from MD
simulations at T = 0.485. In the T range where we expect Eq. (6) to be valid,
corresponding to 50 < n < 100, A ranges from about 6.7 to 8.5. Insets show
S as a function of n2/3 (upper) and that A approaches a spherical value of 5
for large n (lower).

One defines the mean of the squared deviation from the critical
size as a function of time,



∆n2(t)� = [nmax(t) − nmax(0)]2


, (21)

where nmax(0) = n∗. After a very short time,


∆n2(t)� enters

a diffusive regime,52 i.e., it becomes linear in time, and one
obtains in this regime

f +crit =
1
2

slope of


∆n2(t)� . (22)

The usual process is to select a few system configurations
containing an embryo of size n∗ from MC simulations and
to use those as starting points for MD simulations. One then
selects trajectories that diffuse near n∗ and averages over these
trajectories, i.e., one rejects runs for which the embryo slips
off the top of the barrier and shows rapid growth or decay. For
low barriers, attachment of clusters of particles to the critical
embryo (or break-up of a tenuously linked embryo), rather
than single particle events, may contribute to rapid growth
or decay. We follow the same procedure, employing from 50
(at low T) to 300 (at high T) MC configurations. The criteria
for choosing what constitutes diffusive motion is unclear, for
even an embryo that appears to grow rapidly first undergoes
a diffusive process, and this diffusive behaviour should be
included in the averaging.

To systematically explore this, we define two parameters,
δ andΛ, and perform averaging in Eq. (21) for trajectories that
satisfy |nmax(Λ) − nmax(0)| < δ. In principle, δ should be of the
size over which the free energy barrier is flat. Λ governs the
length of time over which a trajectory ends up back within δ
of n∗. A smallΛ eliminates embryos that exhibit large changes
in short times, while a large Λ allows embryos that grow or
shrink to return to the critical region. Ideally, there should be a
range of δ and Λ over which f +crit is invariant. We note that we
employ averaging over time origins, i.e., if an embryo returns
to n∗ after a time of 4, we treat that time as the beginning of
an independent trajectory.
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FIG. 7. Determination of the attachment rate to the critical cluster. (a) The effect of Λ and δ on f +crit for T = 0.485. Short MD trajectories used to determine f +crit
contribute to the average in Eq. (21) if |nmax(Λ)−nmax(0)| < δ. Values of Λ for the different curves are given in the legend. To obtain f +crit, we average over all Λ
and 30 ≤ δ ≤ 90. (b) f +crit (symbols) as a function of T . Solid curve is an Arrhenius fit ln f +crit= 16.4 − 6.2 1

T over 0.430 ≤T ≤ 0.485. Inset shows determination
of f +crit= 84 for δ = 100 and Λ= 25.

The results for f +crit as a function of δ for differentΛ values
for T = 0.485 are shown in Fig. 7(a). We see that for δ < 30,
there is a large spread in f +crit over different Λ. For δ > 90,
there is a rapid increase in f +crit. For δ in between, we see no
obvious way to choose an optimal f +crit, and so we average over
the range 30 ≤ δ ≤ 90 over all Λ for this T to obtain f +crit = 43
with a standard deviation of 13. While a value of δ = 90 seems
to be large, approaching n∗ in fact, we note that the time over
which the slope of



∆n2(t)� is taken is fixed to be from 4 to

10, significantly smaller than our smallest Λ. Shown in the
inset of Fig. 7(b) is



∆n2(t)� for (extreme values) δ = 100 and

Λ = 25, and it appears to be rather well behaved, therefore
not providing grounds for rejection on its own. We repeat the
examination of f +crit as a function of δ and Λ for each T . Our
analysis indicates a need for a more refined way of determining
f +crit if more precise values are required.

In this way, we obtain f +crit across our T range, which
we plot in Fig. 7(b). It shows a super-Arrhenius decrease
with T until an apparent falling out of equilibrium below
T = 0.4, behavior consistent with typical glassy dynamics of
simple liquids. However, as we are primarily concerned with
finding γ through Eq. (6), the figure also shows a fit of f +crit to
the Arrhenius behaviour in Eq. (5) over 0.430 ≤ T ≤ 0.485,
with fit parameters C = 6.2 ± 0.3 and f0 = exp(16.4 ± 0.7)
= 1.3 × 107 (6.6 × 106 to 2.7 × 107). The marked departure
below T ≈ 0.40 from the behavior at higher T is consistent
with the liquid not achieving metastable equilibrium.

4. Surface tension

Studies of crystal nucleation in bulk LJ liquid report values
of γ = 0.28 to 0.30 for T = 0.43 and 0.45, respectively,50

and these compare favourably with the surface tension of a
flat interface at the same T .53 Using our estimates for the
parameters other than γ, namely, ∆H = 0.58Np, A = 7.6, f0
= 1.3 × 107, C = 6.2, and the literature values of Tm = 0.61850

and γ = 0.3,50 we obtain B = 2.0 and λ = 8.6 × 108. The
resulting curve, according to Eq. (6), is not plotted because
it fails to recover the rates in Fig. 4(a) by several orders of
magnitude.

Therefore, we proceed to find γ from a one parameter
fit of Jn∗(T) with Eq. (6), using the above values for the

other parameters. Fitting from T = 0.35 to 0.485, we obtain
γ = 0.13, which is significantly lower than the bulk value.
The value of γ is quite robust to how much of the data
below T = 0.40 is used. The fit is plotted in Fig. 4(b) and
models the data well down to T = 0.385. This validates the
approximations incorporated into CNT, namely of constant
∆H , A, f0, C, and γ. We note that although the Arrhenius
modelling of f +crit(T) is valid for T ≥ 0.43, the fit of Eq. (6)
is rather good down to T = 0.385 for two reasons: one, the
changes in J(T) are driven largely by changes in β∆G∗ and
two, the difference between the Arrhenius model and the
actual values of f +crit(T) between T = 0.385 and T = 0.43 is
maximally of the order of a factor of five, which is compensated
by an slight overestimation of β∆G∗ by the model. The
departure of the fit from data at low T is due to the dramatic
change in behavior of f +crit below T = 0.40.

In Sec. IV D, we test to what extent these approximations
hold in the context of β∆G(n). We also test the ability of Eq. (1)
to predict the rate, when β∆G(n) and the other quantities in
the equation are calculated through MC simulations.

D. Free energy barriers

1. β∆G(n) from MC calculations

In Fig. 8, we present a sampling of the barrier profiles
obtained from MC simulations. The β∆F(n) curves are shifted
up by ln Np as discussed in Sec. II B and overlap well with
the β∆G(n) for the higher T . Parabolic fits within ∼kBT of
the maxima in the curves allow us to determine Z , ZF, β∆G∗,
β∆F∗, n∗, and n∗F.

Below T = 0.405, as shown in the figure for T = 0.380,
the β∆F(n) curves are monotonically decreasing. The inter-
pretation of this results is laid out in Ref. 34 in the context
of the vapour to liquid transition but still above spinodal
conditions. The monotonic decrease means that for any value
of nmax, it is more probable for nmax to increase in size
than to decrease. Thus, the system has lost metastability and
unavoidably transforms to the solid. However, the work of
forming a critical embryo is still positive [β∆G(n∗) ≈ 7.6].
So while the liquid phase is locally stable against fluctuations
towards the solid state, the system as a whole is not, since it
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FIG. 8. Barrier profiles from umbrella sampling MC for β∆G(n) (symbols)
and β∆F(n) (curves), which have been shifted up by ln Np and which
possess a minimum at small n. Below T = 0.405 (not shown), at which
β∆G∗≈ ln Np, β∆F(n) decreases monotonically.

is large enough to make it probable for a critical embryo to
appear somewhere in the system on the time scale required for
the diffusive attachment of particles.

2. T -dependence of barrier heights and critical
embryo sizes, and rate prediction

The T dependence of barrier heights is shown in Fig. 9(a),
while that of critical embryo size in Fig. 9(b). For the
barriers, both ∆F∗ + ln Np and ∆G∗ agree quite closely. The
crystallization process becomes formally driven by growth-
limited nucleation when β∆F∗min = 0 at T = 0.405, at which
point β∆G∗ = 7.6. In Ref. 34, the authors gave a simple
criterion for the onset of growth-limit nucleation, namely that
Pmax(n∗) ≈ 1, or β∆F(n∗) = 0, which implies β∆G∗ ≈ ln Np

= 6.40, which is roughly 1 kBT lower than what we obtain.
But as this is a rule of thumb, the prediction is quite good.

Below the crossover temperature ofT = 0.405, both β∆G∗

and n∗ vary significantly less with decreasing T . This trend
is consistent with the predictions of CNT shown in Fig. 9,
especially if n∗ is to remain finite as it appears to do. The
crossover more or less coincides with a flattening out of the T

dependence of f +crit, as shown in Fig. 7(b). We note that below
T = 0.405, the equilibrium dynamics, if one could probe them,
may be quite slow, and the time scale of liquid relaxation
appears to be significantly longer than the time scale of
embryo assembly, and thus we see an interplay between glassy
dynamics and nucleation.54 Nucleation below this temperature
is occurring in an aging, non-equilibrium liquid, and this
warrants further exploration.

In Fig. 9(b), we see significant differences in critical
embryo size, both between n∗ and n∗F and more strikingly,
between n∗F (MC) and n∗inf or n∗MFPT (both MD). This is not a
consequence of the definition of what constitutes a solid-like
particle, but rather a real difference in the structures accessible
to MD and MC in the critical region. At low T , where we
are increasingly out of equilibrium, n∗inf in fact increases as T
decreases. Even at moderate supercooling, the critical size is
larger for MD simulations.

Having calculated β∆G(n), and hence obtained Z and n∗

as well, we can now predict JCNT(T) according to Eq. (1),
and we show the result in Fig. 4(b). The agreement with
Jn∗ is rather good, showing discrepancy only at T = 0.35 and
below. Also shown in Fig. 4(b) is the kinetic prefactor Z f +crit.
Similarly to what was observed in Ref. 34 for the vapour to
liquid transition, once the growth-limited nucleation regime is
entered, the kinetic prefactor dictates the T dependence of the
rate.

Equation (1) is the CNT prediction of the rate that lacks
any thermodynamic modelling of the work of forming a critical
embryo. We have already seen that modelling β∆G(n) through
Eq. (3) and estimating the thermodynamic quantities that enter
it and Eq. (6) matches the rate from MD, but with a smaller
value of γ than expected. Whatever values of γ and ∆u we
derive from β∆G(n) as obtained from MC, from what we
already know, we expect that they should combine to produce
nearly equal values of β∆G∗ as implied from MD (since both
Eqs. (1) and (6) recover the rate) and a smaller n∗. This later
condition implies that we should obtain a larger value of γ.
We also wish to test whether the constancy of ∆u and γ
obtained from MD for T ≥ 0.4 (i.e., from the T dependence of
the rate and direct calculation) is borne out in the ∆G(n) MC
data.

To this end, we plot in Fig. 10(a) for T ≥ 0.4, the
quantity 2∆G∗/n∗, which according to Eq. (3) should equal

FIG. 9. (a) Nucleation barrier heights as a function of T . Solid curve shows the prediction based on CNT after obtaining only γ = 0.13 from a fit to J (T ) via
Eq. (6). β∆F∗min= 0 signals the onset of growth-limited nucleation. (b) Size of the critical cluster as a function of T from various estimates. Solid curve is the
CNT prediction using the same parameters as in panel (a).
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FIG. 10. Estimates of γ and ∆µ from T dependence of MC data. Panel (a) shows the CNT relation ∆µ = 2∆G∗/n∗ as a function of T . Blue solid line is
∆u − ∆uT /Tm, setting Tm = 0.618 and ∆u = 0.58. The dashed line is a fit (for T ≥ 0.44), yielding Tm = 0.564 and ∆u = 1.27. Panel (b), γ = 3∆G∗/S∗ versus
T . Dashed line is a fit (for T ≥ 0.43) with a constant, yielding γ = 0.18.

∆µ(T), which in turn should be ∆µ(T) = ∆H(1 − T/Tm)/Np

≈ ∆u − ∆u T/Tm. A linear fit to data only for T ≥ 0.44 looks
convincing, and yields Tm = 0.564 and a value of ∆u = 1.27
that is significantly higher than the independently calculated
value of 0.58, roughly by a factor of 2.2. Similar discrepancies
have been noted for MC studies of nucleation in Ref. 47, where
across many state points the value of β∆µ obtained from fits
to Eq. (3) was a factor of 2.5 higher than those calculated from
thermodynamic integration, i.e., the true value.

In Fig. 10(b), we plot γ = 3∆G∗/S∗, which again follows
from Eq. (3), where S∗ is the area of the critical embryo. For
a good range of data, γ is indeed constant. A fit to a constant
for T ≥ 0.43 yields γ = 0.18, which is higher than what the
rate data imply but still significantly lower than the expected
value of 0.3. These MC-derived values of γ, ∆u, and Tm do not
produce a particularly good fit to the rate when plugged in to
Eq. (6).

To compare MC-derived parameters and those obtained
from MD in another way, we plot, according to CNT
(Eq. (3)) predictions, β∆G∗ from Eq. (7) in Fig. 9(a) and
n∗ = 2BkBTm/[∆u(Tm − T)3] in Fig. 9(b), using parameters
as obtained in Sec. IV C (γ = 0.13, ∆H = 0.58Np, and Tm

= 0.618, giving B = 0.16). We find remarkably good agree-
ment for β∆G∗(T) (even for T < 0.4) with MC while the CNT
expression for n∗ gives values that are significantly higher than
the MC result.

We conclude from these comparisons that the discrep-
ancies γ and ∆u between MD and MC are consistent with a
larger n∗ from MD, since γ from MD is smaller. However,
while from MD we find that ∆u is constant, MC does not show
this to the same extent. Therefore, we also conclude that in
order to obtain quantitative estimates from the MC-derived
∆G(n), a more nuanced modelling of β∆G(n) than in Eq. (3),
and a more careful definition of the surface area of embryos
(including more precise definitions of liquid-like and solid-like
particles) are required.

E. Escape from the critical state

We now explore the differences in n∗ between MC and
MFPT results that begin to be felt at T = 0.475. According to
MFPT, n∗ ≈ 100. In Fig. 11, we plot the probability density
P(Q6) for Q6, a global measure of the crystallinity of the
system as a whole. We plot the negative of the logarithm of

the distribution in order to view it as a free energy. Generally
speaking, two factors contribute to the value of Q6, the number
of crystal-like particles and the relative orientation of crystal-
like domains. For example, Q6 will grow as the size of an fcc
crystallite increases, but a large icosahedral embryo of similar
size consisting of 20 fcc tetrahedra sharing a vertex will have
a lower value of Q6.

In the first instance, we calculate P(Q6) from MD
crystallization trajectories, using data up to the first time that
nmax reaches 100, utilizing all configurations with 60 ≤ nmax
≤ 100. In this way, we consider embryos in the critical region
but do not allow embryos to sample states beyond the critical
size. The result is a unimodal P(Q6) with a preferred value of
Q6 = 0.1. We refer to this value of Q6 as high. If we consider
embryos from all times along the trajectory, i.e., we allow
the system to sample post-critical states and subsequently
shrink back into the pre-critical region, the distribution
changes by exhibiting a localized preference for Q6 = 0.04
[a shallow minimum in − ln P(Q6)]. We refer to this value of
Q6 as low. Finally, we carry out MC simulations with hard
wall constraints to enforce 60 ≤ nmax ≤ 100. The resulting
fee energy, also shown in Fig. 11, shows that the relative
preferences for high and low Q6 structures are similar, and that
there is a free energy barrier separating the two. Thus, although
there exist qualitatively different equilibrium structures in the
critical region (same nmax, different Q6), MD trajectories do
not easily sample the low Q6 states until after embryos have
crossed into the post-critical region. The kinetics of crossing

FIG. 11. Probability distributions for Q6 at T = 0.475 for 60 ≤ nmax ≤ 100.
See text for explanation.
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FIG. 12. Joint probability distributions for nmax and Q6 at T = 0.475. Plotted is −ln P(nmax,Q6) for (a) MC, (b) MD, (c) MD without allowing retracing to
nmax ≤ 100. The contour lines are in increments of 1.

the small barrier for nmax ≤ 100 are apparently significantly
slower than structural changes occurring for nmax > 100.

To develop a better picture of the process, we use the
data from Fig. 11 to construct two-dimensional probability
distributions in both Q6 and nmax. The results are plotted in
Fig. 12 as contour plots of− ln P(nmax,Q6). For the equilibrium
MC data in panel (a), we see a single trough coming into the
critical region from nmax = 60 and Q6 = 0.1 that becomes fairly
flat at larger nmax. For nmax ≥ 90, there are two exiting troughs:
a weak one at high Q6 that continues the incoming one and a
more dominant one at low Q6. There is a small ridge separating
the two troughs.

Panel (b) of Fig. 12 shows MD data where post-critical
embryos that retrace back below nmax = 100 are counted. The
exiting trough at low Q6 is higher in free energy and is much
weaker than the high Q6 exiting trough. The MD data for which
no retracing is allowed, in panel (c), show only the high Q6
exiting trough.

Thus, while it is possible for nmax < 100 embryos to
transform from high to low Q6, and both states have similar
free energies, as the MC data show, the ridge separating high
and low Q6 prevent the MD trajectories from exploring these
low Q6 states. Further, it is clear that the critical embryo size

is significantly smaller when low Q6 states are sampled, and
this is responsible for the discrepancy between MC and MD
estimates of n∗F. Another major point is that we do not see two
competing pathways entering the critical region. The low Q6
exiting trough only forms near the critical region.

While we leave a more detailed study of these transforma-
tions near the critical region for the future, we show in Fig. 13
a series of snapshots of critical configurations from T = 0.485
down to T = 0.200. For T = 0.465 and above, we select both
high and low Q6 specimens. We assign particle types (fcc, hcp,
icosahedral) through common neighbor analysis (CNA),55,56

which distinguishes between local structures by considering
the number of common neighbors two neighboring particles
share, as well as how those common neighbors are bonded.
Before carrying out the CNA analysis, we identify the particles
in the largest embryo, and then carry out a conjugate gradient
quench of the system to remove vibrational displacements. It
is these quenched structures that are presented in Fig. 13, with
particles originally in the largest embryo colour-coded, and
the rest of the particles appearing in a faint shade.

While we present here only a handful of structures,
the picture that emerges seems rather robust. The high Q6
structures, Figs. 13(a), 13(c), and 13(e), appear to be stackings
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FIG. 13. Quenched droplet configurations containing embryos near critical size from (a) T = 0.485, Q6= 0.176, nmax= 98, (b) T = 0.485, Q6= 0.086,
nmax= 100, (c) T = 0.475, Q6= 0.129, nmax= 79, (d) T = 0.475, Q6= 0.040, nmax= 76, (e) T = 0.465, Q6= 0.111, nmax= 63, (f) T = 0.465, Q6= 0.038,
nmax= 65, (g) T = 0.425, Q6= 0.078, nmax= 24, (h) T = 0.200, Q6= 0.078, nmax= 18. The colouring scheme: blue, bulk fcc; mauve, bulk hcp; yellow, bulk
icosahedral; cyan, unidentified (amorphous); green, 111 surface; orange, 100 surface; particles not part of the critical embryo, transparent tan. Note that the
determination of the largest embryo is made prior to quenching and that the surface ordering visible for some of the droplets results from quenching.

of fcc and hcp layers, while the low Q6 structures appear to
be multiply twinned structures, rich in hcp, and possessing
5-fold symmetry. For the lower T shown, the embryos are
small and do not show secondary organization but appear to
be high in fcc. Thus, the embryos belonging to the incoming
free energy trough in Fig. 12 appear to be randomly close-
packed structures, while differentiation to structures suggestive
of icosahedra or decahedra occurs as or after these embryos
approach critical size.

The reader may notice the significant ordering apparent
on the surfaces of the clusters with larger embryos shown in
Fig. 13, e.g., the cluster in Fig. 13(c). This ordering results
from the conjugate-gradient quench performed to enhance the
ability of CNA to identify crystalline environments and was
previously noted in Ref. 35. Fig. 14(a) shows the unquenched
cluster at T = 0.475 with CNA performed on the unquenched
cluster as well. In this case, there is significantly less surface
ordering apparent and fewer particles within the embryo
are assigned a particular classification. In Fig. 14(b), we
show that calculating nmax for the quenched cluster appearing

FIG. 14. Effect of conjugate-gradient quench on droplet ordering. Panel
(a) shows the droplet from Fig. 13(c) prior to quenching. The surface is
disordered and few particles are positively identified by CNA. Panel (b) shows
the same (quenched) droplet from Fig. 13(c) but with the determination of
nmax done after quenching. Quenching induces significant ordering. Color
scheme is the same as in Fig. 13.

in Fig. 13(c) results in many more solid-like particles,
particularly on the surface. Thus, quenching presents a trade-
off: it enhances identification of crystalline types but induces
significant ordering around embryos. The significant ordering
induced by quenching is certainly interesting and is consistent
with the “prestructured surface cloud” around crystallites
pointed out in Ref. 58.

V. DISCUSSION

Part of the motivation for this work comes from previous
studies on the interpretation of β∆F∗min approaching zero, its
relation to nucleation rates and liquid metastability, and the
appropriateness of using the largest embryo in the system
as an order parameter. While previous work misidentified
this barrier disappearance as a condition for a spinodal (and
the refutation of this pointed out its size dependence),57 it
clearly signalled some sort of limit to metastability. The recent
scenario laid out in Ref. 34, namely that it signals unavoidable
crystallization achieved through growth-limited nucleation, is
supported by our work. We add that in our case, growth-
limited nucleation proceeds in an out-of-equilibrium liquid. By
growth-limited nucleation, we mean that with near certainty,
somewhere in the system, a critical nucleus will form through
∼n∗ consecutive particle additions, and so crystallization is
controlled by the rate at which liquid-like particles attach
themselves to crystal-like ones. This is what we see when
we predict the rate through Eq. (1), which matches MD rate
determination for almost the entire range of T , as seen in
Fig. 4(b). This growth-controlled nucleation mechanism, the
onset of which is determined in part by the size of the system,
is likely important in crystallization occurring in other liquid
droplet systems.59,60

For our LJ clusters, where nucleation originates within
the bulk, CNT as formulated for homogeneous nucleation for
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bulk liquids works quite well. We see that a controlling factor,
despite the presence of the surface, is the temperature Tm at
which ∆µ = 0 in bulk systems, even though in our finite-sized
system the coexistence temperature Tc

m is significantly lower.
We find that the simple modelling often used in CNT,

such as constant γ, ∆H , and A, and Arrhenius temperature
dependence of f +crit is supported by our results in independently
determining these quantities, at least for moderate supercool-
ing. Using these quantities as calculated allows us to fit the
rate with a single value of γ = 0.13 convincingly well over a
broad range of T . There is very good consistency between
thermodynamics and rates, at least for T ≥ 0.40. There is
some ambiguity regarding the values of ∆H , or rather ∆µ,
and γ when using the CNT model in Eq. (3) to compare
independently calculated β∆G(n), as the β∆G(n) curves yield
different values of ∆µ, and γ. This points to the need for more
detailed modelling of β∆G(n).43,61

The temperatureTx = 0.405 at which system metastability
is lost and growth-limited nucleation sets in is well approx-
imated by the condition β∆G∗ = ln Np.34 Near this same Tx,
f +crit begins a rather strong departure from higher T behavior
by becoming roughly constant. This may indicate the liquid’s
inability to equilibrate because of sluggish dynamics, but may
be at least partially driven by the weak T dependence of n∗ that
sets in below Tx. That the system as a liquid does not reach
metastable equilibrium is indicated by the potential energy
time series at low T . The ability for the liquid to undergo
significant diffusive motion (enough to form critical embryos)
while not equilibrating itself may be due to a decoupling of
diffusive and collective relaxation time scales characteristic of
glassy dynamics.54 It is slightly curious that the onset of glassy
dynamics should coincide with the system size dependent Tx.

As for the MC simulations, the constraint should allow
for equilibration to occur since the size of the largest embryo
is constrained. It is perhaps likely that relaxation of the
metastable liquid requires significantly longer times than
our MC of 500 000 iterations (5 × 106 displacement attempts
per particle). Questions about the relaxation of the liquid
surrounding embryos are perhaps more easily addressed in
bulk systems, where determining the dynamics of the system
is somewhat more straightforward in the absence of a surface.
While the increase in ninf that we see at low T may be
viewed positively for the case of the spinodal scenario,
the difficulties in discerning critical embryos precisely and
questions regarding equilibrium must be carefully addressed.
Nonetheless, it is remarkable and slightly curious that the
(more) equilibrated MC simulations at low T should predict
the rate so well through Eq. (1) when there is such a large
difference in n∗ when comparing MD and MC.

Commenting on early work,35 where the free energy was
calculated as a function of Q6-based measures of the bulk and
surface crystallinity, at T = 0.475, the barrier separating the
liquid from a low Q6 5-fold structure was 0.5kBT or less (as
calculated by subtracting from the free energy of the saddle
point the minimum value in the liquid basin), implying that
the system as a liquid had (practically) lost stability at this T .
However, here we see that at T = 0.475, β∆F∗ = 10, which is
considerably higher. Thus, care must be taken when gauging
phase stability from free energies based on Q6, as there are

crystal-like states with values of Q6 that overlap with those of
the liquid.

In terms of structural differentiation that occurs in cluster
crystallization, the picture that emerges in our work is that pre-
critical nuclei are layered hcp-fcc planes, but that (at least) two
types of structures, with different Q6 values, leave the critical
region. A small barrier in Q6 appears to separate the two, thus
preventing MD simulations from sampling the low Q6 states
with twinned, five-fold structure until the embryo exceeds
the critical size. It seems that small icosahedral nuclei are
unfavourable, an observation that may find support in studies
of small isolated LJ clusters.13 The lack of sampling of low Q6
critical states leads to disparity in determining n∗ in MD and
MC, and will make it more difficult to use the MFPT formalism
to reconstruct the free energy landscape. As nucleation studied
here occurs within the bulk of the cluster, perhaps a similar
scenario occurs in bulk LJ. We look forward to exploring these
issues in more detail in the future.

VI. CONCLUSIONS

We determine the rate of nucleation in a cluster of 600
LJ particles through MD simulations by calculating mean
first-passage times of embryo sizes. For several orders of
magnitude, the rate follows expectations from CNT under
the simplest of assumptions, namely a constant (ellipsoidal)
shape of crystallites, a constant enthalpy difference, Arrhenius
dependence of the attachment rate, a melting temperature
following from the bulk, and a constant surface tension.
Treating the surface tension as a fitting parameter to the rate
while independently determining the other quantities results in
excellent agreement from T = 0.485 down to T ≈ 0.40 of the
temperature dependence of the rate with CNT and of the work
of forming critical nuclei with MC simulations. However, the
value of the effective surface tension γ = 0.13 is smaller than
expected.

Near Tx = 0.4, the rate starts approaching a maximum as
the system loses its ability to maintain metastability. This is
evidenced by a monotonically decreasing free energy that has
as its argument the size of the largest embryo in the system. At
and below this temperature, crystallization proceeds through
growth-limited nucleation in an unequilibrated liquid. The
liquid phase is not inherently unstable itself, as there is a finite
work required to form critical nuclei, but rather the barrier
has become sufficiently small, as determined approximately
by β∆G∗ = ln Np. This picture follows what was observed for
the vapour-liquid transition.34

Surprisingly robust are the excellent predictions of the
rate from MC-based calculations of β∆G∗, Z , and f +crit. The
predictions match the rate excellently above and below Tx.
Above Tx, the free energy β∆F(nmax) gives the same barrier
heights as β∆G(n), given proper normalization.

For our system, MD and MC show discrepancies in
n∗F, even at slight to moderate supercooling, because of the
appearance of embryos with twinned structures exhibiting 5-
fold symmetry. The differentiation between these and hcp-fcc
stacked structures happens only in the critical region; pre-
critical nuclei do not seem to possess the 5-fold symmetry of
the icosahedral structures to which LJ clusters often freeze.
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TABLE I. Simulation results data. For β∆F∗, we have added ln Np = ln 600= 6.40 in order to better compare
with β∆G∗. For example, at T = 0.485, the bare value of β∆F∗= 12.40 and at T = 0.410, the bare value of
β∆F∗= 2.31.

T β∆G∗ β∆F∗ β∆F∗min n∗ n∗F n∗inf Z f +crit S∗ Jn∗ × 105

0.485 18.80 18.80 11.08 100 100 94 0.0167 42.81 143.08 0.22
0.480 17.69 17.69 9.93 89 89 87 0.0172 32.45 134.40 0.66
0.475 16.69 16.69 8.89 79 77 96 0.0216 22.43 130.42 1.89
0.470 15.76 15.76 7.92 71 73 89 0.0219 29.18 127.70 4.08
0.465 14.88 14.88 6.99 62 62 88 7.75
0.460 14.21 14.22 6.26 57 57 83 0.0249 20.67 113.82 15.87
0.455 13.50 13.5 5.47 51 52 71 32.67
0.450 12.97 12.89 4.79 46 48 66 0.0249 16.99 103.53 56.35
0.445 12.29 12.29 4.10 41 42 56 98.86
0.440 11.81 11.73 3.45 36 35 51 0.0256 11.96 88.61 149.73
0.435 11.08 11.01 2.91 26 26 46 227.71
0.430 10.75 10.60 2.31 24 23 41 0.0445 6.37 71.65 337.16
0.425 10.45 10.13 1.65 20 18 34 486.30
0.420 9.83 9.67 1.14 18 15 31 0.0553 3.59 57.91 647.61
0.415 9.19 9.11 0.74 13 11 29 791.17
0.410 8.76 8.71 0.46 13 9 27 0.0825 1.26 39.98 941.44
0.405 8.26 8.20 0.14 10 7 26 1038.43
0.400 7.96 9 25 0.1128 0.49 30.74 1275.26
0.395 7.58 8 24 1366.98
0.390 7.42 8
0.385 7.22 7 23 1580.74
0.380 7.07 7 0.1392 0.24 25.09
0.375 7.09 7
0.370 7.01 7
0.350 6.86 6 18 0.1370 0.24 19.88 2705.77
0.300 6.75 6 22 0.1350 0.16 20.81 2875.35
0.250 5.90 4 32 12.17 1873.84
0.200 6.03 4 59 14.02 734.11
0.150 5.97 4 11.19

In the critical region, there appears to be a small free energy
barrier with Q6 as an order parameter between the hcp-fcc and
5-fold structures, inhibiting MD trajectories from sampling the
same structures accessible to constrained MC simulations.
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APPENDIX: TABULATED SIMULATION RESULTS

We list detailed results in Table I: Barrier heights, β∆G∗

from MC, β∆F∗ from MC, and β∆F∗min from MC; critical sizes,
n∗ from MC, n∗F from MC, and n∗inf from MD; Zeldovich factor
Z from MC; attachment rate f +crit based on embryos taken from

MC; surface area S∗ of critical embryos taken from MC; and
nucleation rate Jn∗ from MFPT data.
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