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Heterogeneous nucleation in the low-barrier regime
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In simulations of the two-dimensional Ising model, we examine heterogeneous nucleation induced by a small
impurity consisting of a line of l fixed spins. As l increases, we identify a limit of stability beyond which the
metastable phase is not defined. We evaluate the free energy barrier for nucleation of the stable phase and show
that, contrary to expectation, the barrier does not vanish on approach to the limit of stability. We also demonstrate
that our values for the height of the barrier yield predictions for the nucleation time (from transition state theory)
and the size of the critical cluster (from the nucleation theorem) that are in excellent agreement with direct
measurements, even near the limit of stability.
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I. INTRODUCTION

The formalism of transition state theory (TST), as
developed by Volmer and Weber [1], Becker and Döring [2],
Zeldovich [3], and Frenkel [4], continues to be of fundamental
importance for understanding phase transformations in a great
variety of systems. The assumptions upon which TST is based
nominally restrict this approach to predicting nucleation rates
for systems that are only mildly metastable and for which
the nucleation barrier is large relative to kT , where T is
the temperature and k is Boltzmann’s constant. However,
many interesting phase changes occur in the deeply metastable
regime where the system is approaching a limit of stability and
the free energy barrier to nucleation is expected to disappear
[5–10]. Some recent simulation studies [11–13] find that the
predictions of TST remain surprisingly robust in this deeply
metastable regime, but others suggest that TST breaks down
[8,14,15]. Understanding whether TST remains applicable, or
how the formalism should be adapted, when the nucleation
barrier becomes low remains an open question.

The presence of a heterogeneous interface in a metastable
system can dramatically lower the nucleation barrier in phase
transformations such as vapor condensation and crystallization
[16,17]. Consequently, heterogeneous nucleation plays an
important role in a variety of phenomena including atmo-
spheric physics [18–20], the use of templates to form com-
plex structures [21–23], and protein crystallization [24,25].
The basic principles of heterogeneous nucleation involving
macroscopic, bulk surfaces are relatively well established.
However, in many cases the heterogeneities are microscopic
in size and there is considerable interest in understanding
how particle size influences the nucleation mechanism and
rate [20,22,23,26–29], especially as the barrier approaches kT .

Here we study heterogeneous nucleation in the two-
dimensional (2D) Ising model to explore the nature of the
nucleation barrier on approach to the limit of stability of a
metastable phase. We seek to clarify the definition of the
barrier in this limit and to test the degree to which theories
(in particular TST, and also the nucleation theorem) are able
to predict the behavior observed directly in this regime. The
Ising system we examine was studied previously by Sear [27],

who demonstrated that a small cluster of fixed “impurity”
spins increased the nucleation rate significantly relative to the
homogeneous nucleation rate. In the present study, we exploit
the fact that by increasing the size of the impurity we can
systematically lower the nucleation barrier and also bring the
system to a limit of stability. At the same time, as we will show,
this simple model allows the heterogeneous nucleation barrier
to be defined in a way that is free of significant approximations
that affect the definition of the homogeneous nucleation barrier
when the barrier height is low. As a consequence, this model
provides an excellent opportunity to compare the free energy
barrier, critical cluster size, and nucleation rate as predicted by
theory, with values obtained by direct simulations.

II. METHODS

Our results are based on Monte Carlo (MC) simulations of
a 2D Ising model of a ferromagnet. We employ a L × L square
lattice with periodic boundary conditions and choose L = 45,
the same system size studied in Ref. [27]. The energy of the
system in spin configuration c is given by

Ec = −J
∑
〈i,j〉

sisj + H

N∑
i=1

si, (1)

where si = ±1 is the spin value of site i, J > 0 quantifies
the ferromagnetic exchange interaction, H is the value of the
external magnetic field, and N = L2 is the number of sites in
the lattice. The sum in the first term is taken over all nearest-
neighbor pairs of spins. We explore the configuration space of
the system using Metropolis single-spin-flip MC dynamics, in
which one Monte Carlo step (MCS) corresponds to N spin-flip
attempts, and where spins are chosen at random.

In each of our runs, we initialize all free spins to si = −1,
and equilibrate the system in the spin-down phase at βJ =
0.65 (i.e., 0.678 of the critical temperature) and βH = −0.05,
where β = 1/kT . We then create a metastable state by
instantaneously changing the sign of the magnetic field, so
that βH = +0.05. These choices of T and H are the same as
those used in Ref. [27]. Under these conditions the spin-down
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phase is metastable, and the system persists in this phase until
nucleation of the stable spin-up phase occurs.

III. HOMOGENEOUS NUCLEATION

The aim of the present work is to study a system in
which heterogeneous nucleation is the dominant process for
transforming the metastable to the stable phase. In this section,
we quantify the homogeneous nucleation process that occurs
when no impurity is present. Doing so allows us to confirm
that we are working under conditions where homogeneous
nucleation can be neglected once we introduce an impurity
into the system. We emphasize that we are not attempting here
to conduct a detailed examination of homogeneous nucleation
in the Ising model. There have been a number of recent and
very thorough studies of homogeneous nucleation in the Ising
model, to which we refer the interested reader [30–33].

We begin by evaluating the free energy barrier for homo-
geneous nucleation, following the same approach as used in
Refs. [31–33]. This method exploits the fact that when up-spin
clusters occurring in a metastable down-spin phase are rare and
do not interact, the free energy g to form an up-spin cluster of
size m is well approximated by

βg(m) = − ln
N (m)

N
, (2)

where N (m) is the average number of up-spin clusters of size
m [34–36].

As we will see, the homogenous nucleation barrier in our
case is large relative to kT . As in Refs. [31–33], we therefore
use an umbrella sampling method to access the relatively rare
configurations of the system that occur near the top of the
nucleation barrier. In this approach, a biasing potential UB =
κ(M − M0)2 is added to the system potential energy given in
Eq. (1), where M is the size of the largest cluster of up-spins
in the system, and M0 is a target value of M . The effect of UB

is to drive the system to sample configurations for which M is
close to M0, over a range of M that is controlled by the value
of the parameter κ . For a given value of M0, we determine a
segment of the N (m) curve from

N (m) = 〈NB(m) exp[βUB(M,M0)]〉, (3)

where NB(m) is the number of up-spin clusters of size m for a
system configuration sampled during the biased simulation. In
Eq. (3), 〈· · ·〉 denotes an ensemble average computed during
the biased simulation, and the exponential factor reweights the
result to provide the estimate of N (m) that would be found
from an unbiased simulation (i.e., one with UB = 0).

By carrying out several simulations, each for a different
choice of M0, we obtain estimates for overlapping segments
of g(m), which are then spliced together to form the complete
g(m) curve, as shown in Fig. 1. From the location of the
maximum in g(m), we find that the free energy barrier for
homogeneous nucleation is approximately 27kT and that the
size of the critical nucleus is approximately 200.

By way of comparison, we note that Ref. [27] estimates
that the homogeneous nucleation barrier is 22kT , and that
the size of the critical nucleus is 219. These estimates are
obtained using classical nucleation theory (CNT), assume a
square droplet, and use the Onsager result for the interfacial
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FIG. 1. (Color online) Free energy barrier g(m) for homogenous
nucleation at βJ = 0.65 and βH = 0.05. The symbols (circles
and plus signs) give the result obtained from umbrella sampling
simulations using κ/J = 0.01. The solid curve is constructed from
16 separate simulations, where M0 is varied from 0 to 300 in steps of
20. The data sets corresponding to each value of M0 are represented
by either black open circles or red plus signs. The dashed blue line
gives our estimate for g(m) obtained from CNT using the approach
of Ryu and Cai [32,33].

tension in the 2D Ising model. Using a forward-flux sampling
method, Ref. [27] also estimates the homogeneous nucleation
rate of the present system to be 3.3 × 10−13 events per MCS
per lattice site. Thus the homogeneous nucleation time for a
system of L2 = 2025 sites is 1.5 × 109 MCS.

A more accurate procedure for evaluating g(m) from CNT
has recently been described by Ryu and Cai [32,33]. Although
the two key ingredients for CNT, the surface tension and the
difference in chemical potential between the metastable and
stable phases, are known exactly for the 2D Ising model, Ryu
and Cai found that the standard CNT expression for g(m)
failed to fit simulation-based calculations of the free energy
barrier. However, by adding two additional terms to the CNT
expression, one for shape fluctuations, and a constant term
that ensures that the free energy of a single spin [i.e., g(1)] is
correct, they were able to predict the free energy of forming
a cluster within 1% of their umbrella sampling simulation
results, with no fitting parameters, over a wide of temperatures
and field strengths. Our evaluation of g(m) using Ryu and Cai’s
corrected CNT expression (Eq. (6) of Ref. [32]) is included
in Fig. 1 and shows a similar level of agreement with our
simulation results.

As shown in the following sections, for the cases of
heterogeneous nucleation studied here, the height of the
heterogeneous nucleation barrier is always less than 14kT , and
the system nucleation time is always less than 5 × 106 MCS.
Heterogeneous nucleation processes are thus always more
than 300 times faster than the homogeneous process, under
all conditions studied here. On this basis, we are assured
that homogenous nucleation events (i.e., events that do not
involve the impurity sites introduced below) are rare relative
to heterogeneous events, and can be neglected in our analysis
of the nucleation process in the presence of an impurity.

The above considerations also justify the choice of the
system size (L = 45) used here and in Ref. [27]. Since the
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homogeneous nucleation time of the system is proportional
to N , then the smaller the system, the easier it is for
heterogeneous nucleation events triggered by a single impurity
to dominate the transformation of the metastable to the stable
phase. At the same time, the system must be chosen large
enough so that the critical cluster does not interact with its
images across the periodic boundaries. For both homogeneous
and heterogeneous nucleation, we find that the size of the
critical nucleus is always 200 or less. In a system of size
N = 452 = 2025, the critical cluster will thus occupy 10%
or less of the total system volume. Furthermore, since we
conduct our simulations close to the coexistence curve at
H = 0, and well away from the critical temperature, we expect
that the critical nucleus will be a relatively compact cluster and
that spin-spin correlations are negligible beyond a few lattice
spacings. It is thus extremely unlikely for a critical cluster in
our system to interact with spins in its periodic images.

IV. FREE ENERGY BARRIER FOR
HETEROGENEOUS NUCLEATION

To induce heterogeneous nucleation, we next study the case
where our system contains an impurity consisting of a line of
l spins fixed to si = +1; see Fig. 2. To find the free energy
barrier for heterogeneous nucleation, we seek to evaluate the
minimum reversible work of formation of a critical cluster of
the stable phase. However, since homogenous nucleation can
be neglected, the critical cluster is necessarily a cluster of up-
spins (i.e., sites with si = +1) attached to the impurity. In the
following, we define the “impurity cluster” as the contiguous
cluster of up-spins that contains the impurity spins; thus, the
number of spins n in the impurity cluster includes the impurity
spins themselves. Under this definition there can only be one
impurity cluster, and so n is a system property (and hence
an order parameter) with respect to which the nucleation free
energy barrier may be defined.

To define the free energy barrier for heterogeneous nucle-
ation, we first consider the partition function of the system for
fixed (N,H,T ,l). We write the system partition function Z =∑N

n=l Z(n) as a sum over the conditional partition function
Z(n) = ∑

c(n) exp(−βEc). The sum in Z(n) is over all system
configurations c in which the impurity cluster consists of

(a) (b)

FIG. 2. (Color online) Example configurations of the system
in the metastable phase with βJ = 0.65, βH = +0.05, and l = 7
(a) when n = n0 = 21 and (b) when n = n∗ = 174. Impurity sites are
shown as red open squares. Up-spins (si = +1) are shown as black
solid squares. White regions correspond to down-spins (si = −1).

exactly n spins. The corresponding conditional free energy
is G(n) = −kT ln Z(n), which is the free energy of the system
when it contains an impurity cluster of size n.

To compute G(n), we note that the probability to observe an
impurity cluster of n spins is P (n) = Z(n)/Z . Consequently,
the work of formation of an n-spin impurity cluster, starting
from a “bare” impurity (i.e., n = l), is given by the free energy
difference,

G(n) − G(l) = −kT ln
Z(n)

Z(l)
= −kT ln

P (n)

P (l)
. (4)

We evaluate G(n) using Eq. (4) from simulations in which
l ranges from 3 to 12. As shown below, for this range of l

the variation of G(n) is never more that 12kT , and therefore
multiwindow umbrella sampling is not required. Rather, we
simply impose a constraint on our MC sampling such that
n � nmax = 300. This choice of nmax restricts our simulations
to the metastable phase and to configurations in the vicinity of
transition states to the stable phase. This approach is equivalent
to using a single umbrella sampling window in which UB = 0
for n � nmax and UB = ∞ for n > nmax. As in all umbrella
sampling simulations, the relative probabilities with which
configurations occur inside the umbrella window are correctly
estimated after the appropriate reweighting, regardless of the
specific form of UB . Consequently, our results for n � nmax

are independent of the choice of nmax.
We evaluate the equilibrium ratio P (n)/P (l) from our

simulations and plot the result for G(n) − G(l) in Fig. 3(a), for
various l. For 3 � l � 11, each curve exhibits a maximum at
n = n∗, indicating the size of the critical cluster. The value of
n∗ demarcates the boundary between the metastable and stable
phases of the system, and we define the configuration space
of the metastable phase as the set of microstates for which
l � n � n∗.

Figure 3(a) also shows that as l increases, a minimum in
G(n) at n = n0 emerges and grows; this feature corresponds to
wetting of the impurity by a finite cluster of the stable phase.
For l = 12, G(n) is a monotonically decreasing function of n,
and the metastable phase has ceased to exist. This qualitative
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FIG. 3. (Color online) (a) Free energy relative to a “bare”
impurity, G(n) − G(l) as a function of n for impurities of size l = 3
to 12. (b) Free energy relative to the equilibrium metastable phase,
G(n) − Gm versus n for l = 3 to 11. For all curves, the statistical
error is less than 0.02kT .
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FIG. 4. (Color online) Size of the impurity cluster at the maxi-
mum (n∗) and minimum (n0) of G(n) as a function of impurity size
l. Statistical errors are smaller than the symbol size.

change in the shape of G(n) as l increases thus represents the
limit of stability of the metastable phase. This limit of stability
is also seen in Fig. 4, where we show that n∗ and n0 approach
one another and then become undefined for l � 12.

To obtain the free energy barrier for nucleation from G(n),
we must take care to identify the appropriate thermodynamic
reference state with respect to which the barrier height should
be measured. We follow the reasoning of Ref. [37], which
studied homogeneous nucleation, adapted here for the case of
heterogeneous nucleation. That is, the free energy barrier for
nucleation is defined as the minimum reversible work required
to apply a constraint that confines the system to the transition
state at n = n∗, starting from a reference state that considers
the entire configuration space of the metastable phase, i.e.,
all configurations in the range l � n � n∗. To implement this
definition, we define the partition function of the metastable
phase Zm = ∑n∗

n=l Z(n) as a restricted sum over all states
such that l � n � n∗. The corresponding free energy of the
metastable phase is Gm = −kT lnZm. The work of formation
of an n-spin impurity cluster, starting from the equilibrium
metastable phase, is then given by the free energy difference,

G(n) − Gm = −kT ln
Z(n)

Zm

= −kT ln
P (n)∑n∗

n′=l P (n′)
. (5)

The second equality above emphasizes that G(n) − Gm can
also be evaluated in our simulations from the relative proba-
bilities for observing the impurity cluster to have various n.

Our results for G(n) − Gm are plotted in Fig. 3(b). The
difference between the free energy curves in Figs. 3(a) and
3(b) is a change in the reference state, giving rise to an l-
dependent vertical shift without a change in shape. The work
of formation of the transition state from the metastable phase
(i.e., the free energy barrier for nucleation) is given by �G =
G(n∗) − Gm. As shown in Fig. 5(a), �G does not go to zero at
the limit of stability. Although paradoxical at first glance, this
result is physically reasonable for our system. Since n∗ remains
nonzero even at the limit of stability, the metastable phase
encompasses a considerable region of configuration space (l �
n � n∗) up to the point where stability is lost. Hence, the work
required to create the transition state remains finite, even as the
metastable state ceases to exist as a distinct phase. In previous
work, it has been assumed that the nucleation barrier should go
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FIG. 5. (Color online) (a) Comparison of the nucleation barriers
�G and �G0 as a function of impurity size l. (b) Nucleation times
τ 0

TST, τTST, τMFPT, and τSear as a function of l. For comparison, note
that the homogeneous nucleation time when no impurity is present is
1.5 × 109 MCS [27]. For all quantities, statistical errors are smaller
than the symbol size.

to zero as the thermodynamic stability of a metastable phase
is lost [6–10]. Our system provides a counterexample.

V. NUCLEATION TIME

We next assess the implications of our results for �G for
estimating the nucleation time using TST [32,33]. For our
system, the TST prediction for the nucleation time is

τTST = (f +
c z)−1 exp(β�G), (6)

where τTST is the average time (in MCS) per impurity for
a critical cluster to appear in the system that subsequently
evolves into the stable phase. z = √

βη/2π is the Zeldovich
factor, where η = −(∂2G/∂n2)n=n∗ is the curvature of G(n)
at the top of the barrier. We estimate η from a quadratic fit
to data that lies within 0.2kT of the maximum of G(n). f +

c

is the attachment rate of monomers to the critical cluster. We
determine f +

c from the time dependence of fluctuations of the
size of critical clusters, following the same procedure used in
Refs. [32,33]. The result for τTST obtained from our data is
shown in Fig. 5(b).

To test the accuracy of τTST, we directly evaluate the
nucleation time in terms of the mean first passage time (MFPT)
for the impurity cluster to grow to the critical size. For a given
l, we set nmax = n∗ so that the system is confined to explore
only the configuration space of the metastable phase and bring
this constrained system into equilibrium. Then, at a randomly
selected time, we set t = 0 and measure the time it takes for
the system to first reach n = nmax. The MFPT is the average of
many such measurements. We define the nucleation time τMFPT

as twice the MFPT, because only half of the runs that reach the
transition state would ultimately evolve into the stable phase.
As shown in Fig. 5(b), τTST is in excellent agreement with
τMFPT. Figure 5(b) also shows that τMFPT is consistent with
the nucleation times (τSear) reported in Ref. [27] for the same
system, as found using a forward-flux sampling method. Our
results thus demonstrate that in our case TST is capable of
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FIG. 6. (Color online) Comparison of our estimates for the excess
number of up-spins in the critical cluster �nNT, �n0

NT, and �nsim as
a function of βH , for the l = 7 system.

predicting the nucleation time with remarkable accuracy even
at the very limit of stability of the metastable phase.

VI. NUCLEATION THEOREM

It is also possible to validate our results for �G by testing
the nucleation theorem. The nucleation theorem [38–42] states
that (

∂�G

∂�μ

)
T

= 1

2

(
∂�G

∂H

)
T

= −�n, (7)

where �μ is the difference in chemical potential between the
stable and metastable phases, and �n is the excess number of
up-spins in the critical cluster. In the first equality, we have used
�μ ≈ 2H , which for the Ising model is a good approximation
for T below the Curie temperature [32,33,43]. To conduct this
test, we carry out new runs for the case of l = 7 over a range of
βH from 0.048 to 0.056. Although �n can be approximated
as n∗ − n0, in the low-barrier regime it is more accurate to
directly evaluate �n as the difference in the average number
of up-spins in the entire system (including those not in the
impurity cluster) when the system is at n = n∗, and the average
number of up-spins in the metastable phase averaged over all
l � n � n∗; these results are shown in Fig. 6 and denoted as
�nsim. We also evaluate �G as a function of H and estimate
the derivative in Eq. (7) using a five-point central-difference
numerical method. The estimate of �n thus obtained from
Eq. (7) is denoted �nNT in Fig. 6 and is in good agreement
with �nsim.

VII. COMPARISON OF BARRIER DEFINITIONS

Although our definition of �G is straightforward, we note
that almost all previous studies of heterogeneous nucleation on
small impurities use a different definition. Specifically, when
the free energy as a function of n exhibits both a minimum (at
n0) and a maximum (at n∗) the nucleation barrier is usually
defined as �G0 = G(n∗) − G(n0) [6,7,9,10,17,18,23,25,26,
44–48]. However, this definition is an approximation that
becomes increasingly inaccurate in the low-barrier regime.
To illustrate the problem, we show our results for �G0 as a
function of l in Fig. 5(a). Whereas �G remains finite at the
limit of stability, �G0 vanishes. In Fig. 5(b), we show τ 0

TST,

the TST prediction for the nucleation time obtained if we use
�G0 instead of �G in Eq. (6). We find that for the lowest
barriers (at large l), τ 0

TST underestimates τMFPT by more that
two orders of magnitude. Similarly, if we use �G0 in Eq. (7),
the estimate obtained for �n (denoted �n0

NT) is distinctly less
accurate than that found using �G (Fig. 6).

The above results demonstrate that the use of �G0 instead
of �G leads to a qualitatively different and erroneous physical
picture for nucleation in the low-barrier regime: Using �G0,
the barrier vanishes, and theories such as TST break down,
whereas using �G we find that the actual behavior is exactly
the opposite. We emphasize that the difference between �G

and �G0 is only apparent in the low-barrier regime. When
the barrier is high, even small clusters are rare, and the
properties of the metastable phase are dominated by system
configurations found near n = l. In this limit G(l) ≈ Gm, and
�G and �G0 become equivalent. However, when approaching
a limit of stability, the correct definition of the free energy
barrier must be used.

VIII. DISCUSSION

It is important to note how the definition of the free energy
of cluster formation for the homogeneous system [g(m) in
Eq. (2)] differs from that for the heterogeneous case [G(n)
in Eq. (4)] in the low-barrier regime. The definition of g(m)
is correct in the limit that stable-phase clusters are rare and
noninteracting. In a finite-sized system near the transition
state, this limit is realized only if there is at most one
large cluster in the system. However, when the homogeneous
nucleation barrier approaches kT , several large clusters may
form simultaneously. In this case, cluster interactions cannot
be neglected, and Eq. (2) is no longer accurate. In contrast,
our definition of G(n) for heterogeneous nucleation depends
only on taking the limit that homogeneous nucleation events
are rare, which we have assured by our choice of T , H , and N .
By construction, there is always one, but only one, impurity
cluster of any size present in our heterogeneous system,
regardless of the height of the heterogeneous nucleation
barrier. As a consequence, multiple large clusters do not occur
in our system, even as we approach the stability limit of the
metastable phase, and thus Eq. (4) does not break down when
the barrier height approaches kT .

We also emphasize that our definitions of the metastable
phase and its limit of stability are only well-defined for a
finite-sized system. As discussed in Sec. III, our system size is
deliberately chosen to be small enough so that homogeneous
nucleation processes can be neglected. If we take the limit
N → ∞ in a system that contains only one impurity, a homo-
geneous nucleation event somewhere in the system becomes
overwhelmingly more probable than an event triggered by
a lone impurity. This is a well-known conceptual challenge
associated with the definition of metastability for any system
(homogeneous or heterogeneous) in the thermodynamic limit
[16,49,50].

In addition, our results demonstrate the importance of the
reference state when calculating the nucleation rate from a
measure of the nucleation barrier. This insight is facilitated
here by the fact that the definition of the heterogeneous
nucleation barrier is free of the complications that arise in
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the homogenous case when the barrier is low, as discussed
above. Although further work is required, we anticipate
that a similar examination of the reference state appropri-
ate to homogeneous nucleation may elucidate the rate and
its relation to thermodynamic quantities in the low-barrier
regime.

In summary, for heterogeneous nucleation on small im-
purities, we show that �G remains well-defined and does
not vanish at the limit of stability of the metastable phase.
Furthermore, we find that both TST and the nucleation theorem
are impressively accurate, even at the limit of stability, so long
as the correct reference state is used to define the height of the
nucleation barrier. We expect that the pattern of behavior found

here will be common to all low-barrier systems where a free
energy minimum and maximum converge at a finite value of
the order parameter and thus may be generic for heterogeneous
nucleation on small impurities. That is, for impurity-induced
nucleation, it is only when the size of the critical cluster goes
to zero (n∗ → 0) that we should expect the nucleation barrier
to vanish at the limit of stability.
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