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In simulations of supercooled, high-density liquid silica we study a range of temperature T in which we

find both crystal nucleation as well as the characteristic dynamics of a glass forming liquid, including a

breakdown of the Stokes-Einstein relation. We find that the liquid cannot be observed below a homoge-

neous nucleation limit (HNL) at which the liquid crystallizes faster than it can equilibrate. We show that

the HNL would occur at lower T, and perhaps not at all, if the Stokes-Einstein relation were obeyed, and

hence that glassy dynamics plays a central role in setting a crystallization limit on the liquid state in this

case. We also explore the relation of the HNL to the Kauzmann temperature, and test for spinodal-like

effects near the HNL.
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A long-standing question regarding the liquid state con-
cerns its ultimate fate when supercooled below the equi-
librium freezing temperature [1]. In his seminal 1948 work
on the glass transition, Kauzmann pointed out that many
supercooled liquids are headed for an ‘‘entropy catastro-
phe’’ as the temperature T decreases [2]. That is, the liquid
entropy decreases so rapidly with T that unless crystalli-
zation or the glass transition intervenes, the entropy will
become negative below a finite temperature TK. Since
1948, two major scenarios have emerged for avoiding the
entropy catastrophe based on our understanding of glasses:
that the liquid terminates at TK in an ‘‘ideal glass’’ state,
and that a ‘‘fragile-to-strong’’ crossover occurs in which
the entropy changes its T dependence so as to remain
nonzero for all T > 0 [1,3].

Yet it is often crystallization, rather than the glass tran-
sition, that terminates the liquid on cooling prior to TK. In
experiments, a homogeneous nucleation limit (HNL) is
often encountered below which crystallization is, in prac-
tice, unavoidable [1]. In theoretical and simulation studies,
a kinetically defined HNL has been identified as the T at
which the time for crystal nucleation �n becomes compa-
rable to the structural relaxation time, �� [2–5]. Below this
HNL, the supercooled liquid ceases to be observable be-
cause it nucleates before it can equilibrate. Other recent
simulation studies report the occurrence of a thermody-
namically defined spinodal-like limit for crystal nuclea-
tion, at which the free energy barrier to nucleation �G�
decreases to zero [6–8].

Kauzmann himself proposed that crystallization be-
comes inevitable in supercooled liquids prior to TK [2],
and recently Tanaka has reexamined this scenario, through
an analysis of both classical nucleation theory (CNT) and
the behavior of glass forming liquids [3]. While CNT
forms the basis of much of our understanding of nuclea-
tion, by itself it seems to predict no limit on supercooling

[1]. In CNT the nucleation time is given by �n ¼
K expð�G�=RTÞ, where R is the gas constant, and the
kinetic prefactor K contains a factor of D�1, the inverse
of the liquid diffusion coefficient. Assuming that D�1 is
proportional to ��, a system obeying CNT will always
satisfy �n > ��; i.e., the equilibrium liquid will be observ-
able prior to nucleation at all T.
In this context, Tanaka pointed out that a liquid can obey

CNT and exhibit a HNL if there is a breakdown of the
Stokes-Einstein (SE) relation [3]. The SE relation asserts
that D�=T, where � is the viscosity, is independent of T.
Here we use �� as a proxy for �, since both quantify
collective structural relaxation. The violation of the SE
relation is a ubiquitous feature of supercooled liquids, in
which D��=T is found to grow rapidly as T decreases,
demonstrating that the relaxation time associated with
diffusion (a local process) increases faster than �� (a global
process). Since in CNT �n is controlled by D, and not by
��, SE breakdown makes it possible for �n and �� to
become comparable at sufficiently low T, inducing a HNL.
Tanaka’s analysis is significant because it predicts that

the physics of a glass forming liquid (SE breakdown) is
crucial to the origins of the phenomenon (unavoidable
crystallization at the HNL) by which the entropy catastro-
phe is avoided. Tanaka showed that experimental data on a
metallic liquid alloy are consistent with his interpretation
[3]. Cavagna and co-workers have come to similar con-
clusions by incorporating SE breakdown into CNT through
viscoelastic effects [5]. In this Letter we use computer
simulations to identify a HNL in a deeply supercooled
liquid, and show that the nature and location of this limit
are indeed strongly influenced by the presence of glassy
dynamics.
Our results are based on molecular dynamics simula-

tions of the model of silica developed by van Beest,
Kramer, and van Santen (BKS) [9]. Our system consists

PRL 103, 225701 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

27 NOVEMBER 2009

0031-9007=09=103(22)=225701(4) 225701-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.103.225701


of 444 Si atoms and 888 O atoms at fixed volume, with
simulation parameters the same as in Refs. [10,11]. This
model liquid is a well-studied glass former [12], and yet
also crystallizes to stishovite on time scales accessible to
simulation for T < 3200 K at density 4:38 g=cm3 [10].
Under these conditions the liquid is deeply supercooled;
at this liquid density the liquid-stishovite coexistence tem-
perature is greater than 6000 K [10].

We quantify the dynamical properties of the liquid by
evaluating D and �� at density 4:38 g=cm3 for several T
from 5000 to 2900 K.D is evaluated from the mean square
displacement, while �� is defined as the time constant in a
fit of a stretched exponential exp½�ðt=��Þ�� to the decay of
the intermediate scattering function at a wave number
corresponding to the first peak of the structure factor.
Both quantities are computed for the Si atoms only. For
each T � 3200 K, these properties are evaluated from a
microcanical simulation run, starting from a well-
equilibrated initial configuration.

For T < 3200 K, crystallization occurs spontaneously
on our computational time scale. In this regime we seek
to evaluateD and �� for the liquid as well as to quantify the
crystal nucleation kinetics. To this end, for each T <
3200 K, we conduct 200 runs initiated from distinct con-
figurations equilibrated at 5000 K, and quench the system
by applying the Berendsen thermostat [13] (with a time
constant of 1 ps) to decrease T to the target value. Each run
continues until it crystallizes, as detected by a significant
drop in the potential energy. The nucleation time for a run
is taken as the latest time at which the system contains no
crystalline particles [14]. These times are averaged over
the 200 runs to give the mean nucleation time �n; uncer-
tainties are computed as the standard deviation of the
mean.

To estimate D and �� for each T < 3200 K, we identify
those 20 of the 200 runs that remain longest in the liquid
state before crystallizing. At three T (3100, 3000, and
2900 K) we find that the transient behavior associated
with the quenching procedure is completely removed by
discarding the initial 2 ns of each run. The liquid state
properties (e.g., energy, pressure) are stationary thereafter,
and we findD and �� for each run from this stationary time
series. Averaging over the 20 runs, we compute the mean
value of D and ��, and report their respective uncertainties
as the standard deviation of the mean. In this work, we
restrict our attention to those T at which we can confirm
that liquid equilibrium is established on a time scale much
less than the nucleation time (i.e., �� � �n) in order to
ensure that nucleation events do not interfere with the
accurate evaluation of liquid properties.

It is important to note that �n reported here is the system
nucleation time, which depends on the system volume V as
�n ¼ ðJVÞ�1, where J is the nucleation rate per unit vol-
ume [1]. Hence �n for larger systems than ours will be
smaller by a factor of V0=V, where V0 is our system

volume. In simulations, as in experiments, small systems
are often exploited in order to increase the nucleation time
and thus allow examination of deeply supercooled liquid
states. As shown below, our system size is small enough to
allow us to reach a range of T in which both nucleation and
glassy dynamics occur, and yet large enough to easily
accommodate crystal nuclei of critical size.
In Fig. 1(a) the T dependence of �n is compared to that

of ��. Previous studies indicate that liquid equilibrium is
established on a time scale of between 10 and 20 times ��
[15,16]. At T ¼ 3100, 3000, and 2900 K, we find that �n
remains greater than an order of magnitude larger than ��,
indicating that liquid equilibrium is well established prior
to crystal nucleation. However, the gap between �n and ��
is closing rapidly as T decreases. Figure 1(b) shows that the
ratio �n=�� is decreasing with T in a manner suggesting
that this liquid system reaches a HNL in the vicinity of
2800 K, where nucleation will on average occur faster than
equilibrium measurements of liquid properties can be
made. Consistent with this behavior, we have attempted
simulations at 2800 K, but find that a significant fraction of
the 200 runs nucleate during the initial transient associated
with the quenching procedure, complicating the evaluation
of �n, as well as ofD and ��. Empirically, we also note that
in the T range studied here �n=�� fits well to an exponen-
tial function (referred to below as E), as shown in Fig. 1(b).
On approach to the HNL, we find that the liquid behaves

as a fragile glass former, in that D=T and �� are modeled
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FIG. 1 (color online). (a) Behavior of ��, �n, and �SE� as a
function of T. The model functions �VFT� (solid line), �VFT� =R
(dashed line), and E�VFT� (dot-dashed line) are also shown. (b) T
dependence of �n=�� and �n=�

SE
� . The model functions E (solid

line) and ER (dashed line) are also shown.
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well by the Vogel-Fulcher-Tammann (VFT) expression
[17], A exp½B=ðT � T0Þ�, where A, B, and T0 are fitting
parameters [Fig. 2(a)]. The dynamical divergence tempera-
ture T0 serves as an estimate of TK. We obtain T0 ¼ 2270
and 2237 K for D=T and ��, respectively, and in Fig. 2(a)
we set T0 to the mean of these values, 2254 K. The VFT fit
to ��, denoted �VFT� , is shown in Fig. 1(a).

The fragile nature of the liquid is also demonstrated
in the T dependence of the configurational entropy Sc
[Fig. 3(a)]. Sc quantifies the entropy associated with the
number of distinct basins of the potential energy landscape
explored by the liquid at a given T. We evaluate Sc via an
analysis of the inherent structure energy of the liquid, as
described in detail in Ref. [11]. We find that Sc decreases
rapidly as T decreases, characteristic of a fragile glass
former. Using Sc we also find, in common with many glass
forming liquids, that D=T and �� satisfy the Adam-Gibbs
(AG) expression [18], C exp½E=ðTScÞ�, where C and E are
fitting parameters [Fig. 2(b)]. The fact that D=T and ��
conform to both the VFTand AG relations at all T in Fig. 2
is a validation of our method for finding the equilibrium
liquid behavior in the low T range, where nucleation also
occurs.

A further signature of glassy dynamics is shown in
Fig. 3(b), which gives the SE ratio D��=T normalized by
its high-T value c0. As T decreases, the SE relation breaks
down, and at the lowest T the characteristic time scale for
structural relaxation is nearly 10 times larger than that
associated with the diffusion process, compared to high
T. We use the VFT fits to D=T and �� to evaluate a model
function (denoted R) for D��=Tc0, shown in Fig. 3(b).

Next we seek to quantify the role played by SE break-
down in the occurrence of the HNL. To do so, we estimate
what �� would be if the SE relation were obeyed. That is,

we define �SE� as the value of �� computed using the data
for D via the SE relation, i.e., �SE� ¼ c0T=D. If we assume
that �n depends on D, but not on ��, as predicted by CNT,
then �n can be compared to �SE� to test for the occurrence of
a HNL if the SE relation were obeyed.
We find that �SE� is as much as an order of magnitude

smaller than ��, and that �n and �SE� are more widely
separated, and converging less rapidly, than �n and ��
[Fig. 1(a)]. In Fig. 1(b) we plot the ratio �n=�

SE
� . Noting

that �n=�
SE
� ¼ ð�n=��ÞðD��=Tc0Þ, we model �n=�

SE
� as the

product of the fitting functions E and R. In Fig. 1(a), we
model �SE� as �VFT� =R, and �n as E�VFT� , to show the be-
havior consistent with the modeling presented in Fig. 1(b).
Comparison of �n=�� and �n=�

SE
� in Fig. 1(b) suggests

that if the SE relation were obeyed, the HNL would be
shifted to lower T by at least several hundred degrees
kelvin. Since �n=�� and �n=�

SE
� differ by a factor of

D��=Tc0, which appears to diverge as T ! T0, the gap
between �n=�� and �n=�

SE
� will grow rapidly as T de-

creases. So long as �n=�� decreases with T more slowly
than D��=Tc0 increases, it is possible for the liquid to
remain observable (i.e., satisfy �� � �n). For example, if
the exponential fit to �n=�� holds for T < 2900 K, our data
allow the possibility that a liquid obeying the SE relation
remains observable approaching T0.
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FIG. 2 (color online). (a) VFT and (b) AG plots of D=T
(circles) and 1=�� (squares). Filled symbols are data generated
for T � 3200 K from single simulation runs. Open symbols are
data found using the 20 longest runs from the ensemble of 200
conducted at each T < 3200 K. Fits of a straight line to each data
set are also shown. In (a) T0 ¼ 2254 K. In (b) the data for Sc
from Fig. 3(a) are used to evaluate 1=TSc.
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FIG. 3 (color online). (a) Sc as a function of T (thick solid
line). The dashed line is an extrapolation based on the finding in
Fig. 2 that both the VFT and AG relations are satisfied. That is,
we solve A exp½B=ðT � T0Þ� ¼ C exp½E=ðTScÞ� for Sc, where
the fitting parameters A, B, T0, C, and E are taken from the fits to
D=T in Fig. 2. This curve models the case where Sc approaches
an ideal glass transition at TK ¼ T0. (b) T dependence of the SE
ratio D��=T, normalized by c0, the value of D��=T at 5000 K.
The solid line is the model function R.
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In summary the above results illustrate a case in which
SE breakdown plays a key role in setting a supercooling
limit on the liquid state due to crystallization. This inter-
play of glassy phenomena and crystal formation is a real-
ization of Kauzmann’s original proposal for avoiding the
entropy catastrophe at TK, and is entirely consistent with
Tanaka’s recent analysis [3]. In our system, TK cannot be
approached because of a HNL at approximately 2800 K.
Yet, in the absence of glassy dynamics (in the form of SE
breakdown), lower T would be accessible, including per-
haps the region near TK.

We note that the dependence of �n on V will not quali-
tatively change our conclusions. Decreasing V, for ex-
ample, by a factor of 10 (from 444 to 44 molecules), will
increase �n by a factor of 10 and lower the HNL by
approximately 200 K. This would place the HNL at ap-
proximately 2600 K, still well above T0 ¼ 2254 K. Any
further reduction in V would introduce significant finite-
size effects. The HNL studied here is thus located near the
lowest possible T at which such a limit can be observed in
this system, and yet is always well above T0 for all V.

Finally, we also examine the thermodynamic aspects of
the nucleation process, to test if the kinetically defined
HNL is related to a spinodal-like thermodynamic limit.
We show in Fig. 4 �GðnÞ, the work of formation of
crystalline clusters of size n for several T. Our procedure
for computing �GðnÞ is the same as that used in Ref. [10].
The number of molecules in the critical nucleus n� as well
as �G� are both decreasing as a function of T (inset of
Fig. 4). At the same time, both quantities remain finite in
the range of T studied here, and the shape of �GðnÞ
remains consistent with CNT. Further, in nucleation influ-
enced by a spinodal, it is expected that the critical nucleus

becomes ramified and/or that the nucleation process in-
volves a coalescence of distinct crystalline clusters [7,8].
We find no indication of such behavior in our system. At
almost all times during the nucleation process, the system
contains at most one compact crystalline cluster that is of
critical size or greater.
Nucleation thus remains a localized, activated process as

T decreases toward the HNL, and we do not find evidence
that spinodal-like phenomena influence the nature of the
liquid state in this range of T. These findings reinforce the
strongly kinetic (rather than thermodynamic) character of
the HNL found here, and the key role played by glassy
dynamics on approach to this limit.
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