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ABSTRACT
We present an introductory review of concepts behind micro-
magnetic simulations, in which magnetic moments represent-
ing collections of atomic spins within a material evolve ac-
cording to the Landau-Lifshitz-Gilbert equation, a generalized 
torque equation. This evolution is determined by a variety of 
interactions, including those arising from external fields, mag-
netostatic and exchange effects, and magnetic anisotropy. 
Anisotropy is a key ingredient in the Stoner-Wohlfarth model, 
which provides a quantitative basis for understanding mag-
netic hysteresis. In turn, hysteresis loops provide a basis for 
comparing simulations and experiments, and are important, 
for example, in quantifying the heating response of a sam-
ple to an oscillating external magnetic field. Micromagnetic 
simulations bear conceptual similarity to molecular dynamics 
(MD) simulations, but whereas in MD classical potentials are 
used to naturally model interactions between atoms and/or 
molecules, the choice of modelling length scale in micromag-
netics is less obvious. If effective interactions are determined 
for, say, two crystallographic unit cells of a material, how in-
teraction parameters should scale with micromagnetic sim-
ulation cell size, particularly at finite temperature, is still an 
area of research. Finally, we discuss the coupling of magnetic 
and mechanical degrees of freedom in simulating atomic and 
nanoparticle systems. This review is based, in part, on our 
own experience in modelling hysteretic heating of magnetite 
nanoparticles.

CONTACT Ivan Saika-Voivod  saika@mun.ca  Department of Physics and Physical Oceanography, 
Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed 
under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which 
this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/23746149.2024.2409070&domain=pdf&date_stamp=2024-10-19
mailto:saika@mun.ca
http://creativecommons.org/licenses/by/4.0/


2  R. B. DIBA ET AL.

1. Introduction

Magnetism is a phenomenon that exerts its influence in different contexts on 
vastly different length scales  [1], from the magnetohydrodynamics of galac-
tic collisions  [2], to the control of tiny electric currents based on the spins 
of individual electrons in so-called spintronics  [3]. Micromagnetism is de-
voted to the study of magnetic phenomena with spatial dimensions between 
the macroscopic and the atomic  [4], between solving Maxwell’s equations 
in order to, say, determine the magnetic field configuration due to a tangle 
of electrical currents, and calculating the quantum mechanical response of 
atomic nuclei to variations of such a field  [5]. In micromagnetic modelling, 
or simply micromagnetics  [6–8], a single classical magnetization vector is 
used to represent all the atomic spins within a small volume, referred to as 
a micromagnetic cell, thus treating materials as being composed of a dis-
crete collection of small magnets. The focus of micromagnetic modelling is on 
physical phenomena occurring on length scales larger than the cell size. The 
micromagnetic cell is a modelling element that is coarser than, but nonethe-
less analogous to, an atom or molecule in a molecular dynamics simulation: 
large enough to be modelled classically, and small enough so that their col-
lective behaviour predicts emergent properties. Examples of applications of 
micromagnetic modelling include the study and development of magnetic 
recording media and devices  [9–11], thin films  [12–15], spintronics  [16–18], 
nanoparticle hyperthermia  [19–23] and skyrmions  [24–26].

Figure 1 provides an example illustrating the basic idea behind micro-
magnetic modelling and is motivated by our own efforts in modelling the 
heating of complex iron oxide nanoparticles under an external AC mag-
netic field in the context of nanoparticle hyperthermia  [27–30]. A small 
portion of a magnetite nanorod, initially taken to be the crystallographic 
unit cell comprising several atomic spins highly correlated through strong 
exchange interactions, is modelled with a coarse-grained micromagetic cell 
with volume V, uniform magnetization M, and magnetic moment 𝝁 = MV
of constant magnitude 𝜇 = MsV , where Ms is the saturation magnetiza-
tion  [31–33], the magnitude of the magnetic moment per unit volume when 

Figure 1. Micromagnetics in a nutshell.
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atomic spins are optimally aligned with an external field. This micromagnetic 
cell interacts with neighbouring cells via exchange and with the many other 
cells making up the nanorod through magnetostatic (approximately dipo-
lar) interactions. Using larger and therefore fewer micromagnetic cells would 
reduce the computational load, enabling, in our example, the simulation of 
assemblies of nanorods in the form of nanoparticles. However, the assump-
tion that all atomic spins are completely correlated owing to exchange within 
a cell, even at temperature T = 0, holds at best only for cells smaller than the 
exchange length, a length scale brought about by the competition between 
magnetostatic and exchange interactions  [4]. At finite T, thermal fluctua-
tions necessitate the finding of effective interaction parameters as a function 
of V. Beyond the purely magnetic behaviour of a system, there is growing in-
terest in modelling the coupling of magnetic and rototranslational degrees of 
freedom at the atomistic and nanoscopic scales, for example in the modelling 
of cobalt nanowires  [34] or how nanoparticle rotation can effect hysteretic 
heating induced by an oscillating external field  [35].

The purpose of this review is to familiarize the non-expert reader with 
the basics of micromagnetic modelling. In section 2, we discuss the inter-
actions and modelling needed to describe magnetic hysteresis, including 
magnetic anisotropy and the celebrated Stoner-Wohlfarth model. Section 3 
provides a discussion of other important magnetic interactions. The equa-
tion at the heart of modelling the dynamics of micromagnetics, namely the 
Landau-Lifshitz-Gilbert (LLG) equation, is presented in section 4. At its core, 
micromagnetics is an exercise in coarse-graining – using a relatively small 
number of degrees of freedom with effective interactions between them to 
represent systems with a large number of individual magnetic spins. In this 
vein, section 5 discusses how the interactions between micromagnetic cells 
need to change as cell size is varied. In section 6, we provide a survey of 
efforts to combine magnetic and mechanical degrees of freedom, a topic 
gaining recent attention within the micromagnetics community, both on an 
atomic scale and at the nanoparticle level. In section 7, we provide concluding 
remarks.

2. Energy, anisotropy and the Stoner-Wohlfarth model: hysteresis

2.1. Energy of a magnetic moment in a field

The fundamental starting point for our discussion is a result familiar to us 
from the early years of our physics education, namely, that the potential 
energy (Zeeman energy) of a magnetic dipole, or in our case a uniformly 
magnetized cell, in a magnetic field B (or H) is given by, 

U = –𝝁 ⋅ B = –𝜇0𝝁 ⋅ H = –𝜇0VM ⋅ H = –𝜇0MsVm ⋅ H, (1)
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where the unit vector m = 𝝁/𝜇 = M/Ms and 𝜇0 = 4𝜋 × 10–7 N/A2 is the 
permeability of free space. In the micromagnetic context of moments within 
a magnetic material, H is not solely due to an external field. Magnetocrys-
talline anisotropy, arising from the electronic environment formed by the 
neighbours of magnetic ions, various forms of exchange, and weak but long-
ranged magnetostatic (dipolar) fields are possible contributors to the effective 
field acting on a given magnetic moment. Going forward, we will refer to the 
external field as H, and the effective field as Heff. Whatever the sources of Heff,
𝝁 will align with it if energy is removed from the system.

2.2. Magnetic anisotropy

While less familiar to students of physics than exchange and dipolar interac-
tions, magnetic anisotropy is important in understanding magnetic hysteresis 
loops, which are crucial in characterizing magnetic materials and systems 
experimentally  [31,32,36–38].

Crystal structure, shape and surfaces of a magnetic sample can result in 
magnetic anisotropy: preferred directions for the magnetic moments within 
the sample. Magnetocrystalline anisotropy arises from the crystal field, de-
fined as the electric field arising from neighbouring atoms in the crystal  [32]. 
It derives its character from the symmetry of the local environment. For a 
uniaxial crystal, this energy depends on the angle the spin makes with the 
anisotropy axis represented by the unit vector u, and its contribution to the 
system Hamiltonian can be written as, 

ℋani = –KuV(m ⋅ u)2, (2)

where Ku is the uniaxial magnetocrystalline anisotropy constant or energy 
density. When Ku>0 (u defines an easy axis), the energy is lower if the mo-
ment aligns, either parallel or antiparallel, with u, and if Ku<0 (u defines 
a hard axis), the energy is minimized when spins lie in a plane perpendic-
ular to u. For a cubic crystal with three equally preferred axes, taken here 
as x̂, ̂y, ̂z, the lowest order anisotropy term occurs at fourth order, given by, 
ℋani = –KcV(m4

x + m4
y + m4

z), where Kc represents the cubic anisotropy con-
stant. Kc>0 causes spins to align along the [100] directions and for Kc<0 the 
preferred anisotropy axes are along [111].

Surface anisotropy originates from broken symmetry at the surface and 
surface-core strains. It imparts a local anisotropy axis perpendicular to the 
surface and can be orders of magnitude greater than bulk magnetocrys-
talline anisotropy, for example, in cubic ferromagnets  [39]. The shape of a 
magnetized object may give rise to shape anisotropy, which we discuss below.
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2.3. The Stoner-Wohlfarth model and hysteresis loops

The elements discussed above allow us to introduce the Stoner-Wohlfarth 
(SW) model, the foundational model for understanding hysteresis loops that 
consists of a uniformly magnetized body with a single uniaxial anisotropy 
axis, or, more fully, a collection of such independent bodies randomly ori-
ented, subject to an external field. Relevant vectors of the model are illustrated 
in Figure 2(a). A particle’s energy is the sum of the anisotropy and Zeeman 
contributions, and so it is convenient to work in terms of the reduced external 
field h = H/Hk, where H is the scalar in H = H ̂H, and Hk = 2Ku/(𝜇0Ms)
is called the anisotropy field. Normally, ̂H is considered fixed (often taken to 
be ẑ), with H flipping directions when H changes sign. A particle’s energy de-
pends on the angle 𝜃 between the magnetization and the anisotropy (between
m and u), the angle 𝜃0 between the applied field and the anisotropy axis (be-
tween ̂H and u), and the angle between the magnetization and the applied 
field, which for planar geometry is 𝜃0 – 𝜃, and can be expressed in this case as,

E
KuV = sin2 𝜃 – 2h cos(𝜃0 – 𝜃). (3)

As shown in Figure 2(b), for which ̂H is pointing away from u at an angle 
of 𝜃0 = 3𝜋/4, energy minima representing the stable and metastable direc-
tions of 𝝁 are separated by an energy barrier at low h. Varying h alters these 
directions. In the low-temperature limit (T = 0), on increasing h, 𝝁 initially 
aligned along u flips to align (approximately) along H only when the energy 
maximum and metastable minimum disappear by merging into an inflection 

Figure 2. a) Stoner-Wohlfarth particle with an effective uniaxial anisotropy under application 
of an external field, b) the reduced energy (Etot/KuV ) as a function of 𝜃, when 𝜃0 = 3𝜋/4 and
hc ≃ 0.5 (see Equation 3). For h < 0.5, two energy minima are present, and they are separated by 
a maximum. At a threshold value of h ≈ 0.5 the metastable minimum merges with the maximum, 
and so for h ≥ 0.5, there is only a single energy minimum.
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point at h = hc [hc ≈ 0.5 in Figure 2(b)], an expression for which is ob-
tainable by considering appropriate derivatives of Equation 3  [31]. For T > 0, 
the required energy to overcome the barrier can be supplied through thermal 
fluctuations in a statistical process.

Equation 3 forms the basis for understanding hysteresis loops at T = 0. 
Highlighted in Figure 3(a) is a blue hysteresis loop for 𝜃0 = 45∘. At large pos-
itive h, m is nearly aligned with the external field and its component along 
the field mH = m ⋅ Ĥ is nearly unity. As h decreases and the relative influence 
of anisotropy increases, mH decreases, its precise value obtainable by mini-
mizing Equation 3 with respect to 𝜃. At h = 0, by definition, mH = mr , the 
remanent magnetization. As h decreases further to small negative values, the 
magnetization is now trapped in a local energy minimum, with the global 
minimum existing at larger value of 𝜃, as depicted in the inset to the right 
of Figure 3(a). At h = –hc the metastable minimum becomes unstable, as 
depicted in the inset to the top left of Figure 3(a). Infinitesimally below –hc, 
the magnetization flips to (nearly) align itself again with the external field. 
In general, the field magnitude Hc at which mH = 0 is called the coercivity, 
or coercive field. Below –hc, mH approaches –1 as h decreases further. On in-
creasing h, there is a similar lag in the response of m to the changing sign 
of h, resulting in an open loop, with a finite area between increasing and de-
creasing field branches. Loops for other values of 𝜃0 are shown in Figure 3(a), 
while the uniformly spherical average over 𝜃0 is shown in Figure 3(b). This 
average represents the response of a collection of randomly oriented SW
particles.

At finite temperature, thermal excitations facilitate the magnetization 
switching between energy minima, reducing both mr and Hc. The rate of 
switching is chiefly controlled by the energy barrier separating the two min-
ima. Usov et al.  [40] introduced expressions for the rate of escape from a 
local minimum to the global minimum that can be used to calculate hysteresis 
loops at finite T.

Figure 3. SW hysteresis at T = 0: a) hysteresis loop for selected 𝜃0 and magnetization energy pro-
file according to the field strength; b) average hysteresis loop for a collection of randomly oriented 
particles.
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Hysteresis loops in general depend on both T and the rate at which H
changes with time, the sweep rate, which is expressed in terms of the field 
amplitude and the frequency  [41]. The idealized T = 0 hysteresis loops reflect 
the assumption that the sweep rate is effectively zero, i.e. slow enough to allow
m to relax to the local potential energy minimum at every value of H. Simu-
lating this case involves numerical minimization of the energy to a specified 
tolerance to obtain mH(H). This approach is sufficient for some applications. 
In other applications, such as nanoparticle hyperthermia, the sweep rate can 
strongly impact loops because it is comparable to the relaxation rate of m. 
The experimental sweep rate can often be orders of magnitude too slow to be 
accessible to direct simulations. One approach to bridge this gap, in the case 
when the underlying relaxation follows Arrhenius dynamics, is to link the 
behaviour of loops at slow sweep rates and low T with those at higher sweep 
rates and higher T  [10]. Additionally, kinetic Monte Carlo techniques are 
useful when relaxation is dominated by rare energy barrier crossings. In this 
case, a simulation proceeds at the level of spin flips between stochastic wait 
times, rather than waiting for flips to occur spontaneously as spins undergo 
microscopic motion. Kinetic Monte Carlo, however, requires a determination 
of the escape rates from local energy minima from an analysis of the poten-
tial energy landscape  [41]. As a final remark, for the case of a finite sweep 
rate, loop shape falls roughly into two categories: major loops, for which mH
reaches saturation at large H, and minor loops, for which mH does not plateau 
at large H but rather traces out an ellipse-like shape in the mH-H plane.

3. Exchange, dipolar interactions, magnetostatics

3.1. Exchange interactions

The exchange interaction between atoms is a quantum mechanical effect due 
to the requirement that the wave function for a system of electrons be anti-
symmetric with respect to the exchange of electrons  [32,42,43]. For a system 
of two electrons, with 𝝍a(r1) describing the spatial state of the first electron 
and 𝝍b(r2) that of the second, the allowed states are the singlet and triplet
states, given respectively by, 

ΨS = 1
√

2
[𝝍a(r1)𝝍b(r2) + 𝝍a(r2)𝝍b(r1)]𝝌Singlet and

ΨT = 1
√

2
[𝝍a(r1)𝝍b(r2) – 𝝍a(r2)𝝍b(r1)]𝝌Triplet,

(4)

where 𝝌Singlet is a spin state antisymmetric with respect to electron exchange 
and with total spin S = 0, and 𝝌Triplet represents any of three symmetric states 
with total spin S = 1. The spatial parts are constructed to be appropriately 
symmetric or antisymmetric.
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The energy difference between singlet and triplet states can be written in 
terms of an overlap integral, 

ES – ET = 2J = 2 ∫ 𝝍∗
a(r1)𝝍∗

b(r2)ℋ𝝍a(r2)𝝍b(r1)dr1dr2, (5)

which depends on Coulomb interactions and is zero if 𝝍a and 𝝍b do not 
overlap.

The widely used Heisenberg model Hamiltonian can then be written, up to 
a constant, as, 

ℋH = –2JS1 ⋅ S2, (6)

where the eigenvalues of the operator S1 ⋅ S2 are – 3

4
 for 𝝌Singlet and 1

4
 for 

𝝌Triplet. For J < 0, the singlet state, for which spins are antialigned, has the 
lower energy, giving rise to antiferromagnetic order. Conversely, for J > 0, the 
triplet state has lower energy, giving rise to ferromagnetic order. While the 
quantum states of a system with many spins is much more complex, pairwise 
exchange is still relevant. In the classical version of the Heisenberg model, the 
spin operators are replaced with classical spin vectors.

In making the transition to micromagnetics, the exchange energy of the 
system takes on the form of the classical Heisenberg model, 

E = – ∑
<i,j>

Jeffmi ⋅ mj, (7)

where the double sum runs over all nearest neighbour pairs of cells and it is 
assumed that all spins within the cell are perfectly correlated. For example, 
if the micromagnetic cell is the unit cell of a material like magnetite, which 
contains 24 magnetic ions, Jeff can be estimated by considering the exchange 
interactions across the faces of the unit cell  [44–47]. Jeff can also be esti-
mated from a critical magnetic temperature Tc, which, for the example of the 
classical Heisenberg model on a cubic lattice, follows  [48], 

kBTc = 0.24 × 6Jeff = 0.24 × 6aA, (8)

where a is the cell length (lattice constant) and A is another form of the ex-
change constant, with units of energy per length. In the continuum limit  [49], 
where spatial variations in mi occur on a scale much larger than a and hence 
it makes sense to think in terms of a field m(r), the system energy is the prod-
uct of A and an integral over space of the gradient of m(r). Experimentally, 
A can be determined from the analysis of wave motion, i.e. spin waves, in a 
sample of material  [50,51].
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The relation Jeff = aA suggests a simple scaling of interactions when varying 
cell size in micromagnetic simulations. However, it is not so simple, as the 
larger a is, the less valid the assumption of perfect correlation among spins 
represented by a single magnetic moment. Finally, factors of 2 abound in the 
definitions of J, Jeff and A depending on context and convention, and so care 
must be taken in this regard.

3.2. Dipoles, magnetostatics, and shape anisotropy

Unlike quantum-based exchange interactions, dipole interactions are rooted 
in classical magnetism. The magnetic energy between two magnetic dipoles 
𝝁1 and 𝝁2 separated by r is given by [32], 

E =
𝜇0

4𝜋r3 (𝝁1 ⋅ 𝝁2 – 3
r2 (𝝁1 ⋅ r)(𝝁2 ⋅ r)) . (9)

In addition to the magnitude of the moments and the distance between them, 
the magnetic energy depends on their directions relative to each other (first 
term), just as in Heisenberg exchange, as well as their directions relative to the 
line joining them (second term). In crystals, this axis is related to the lattice 
vectors.

Compared to exchange and magnetic anisotropy, the dipole energy is typ-
ically orders of magnitude weaker but is long ranged, and can therefore 
have profound effects on the state of magnetization, and hysteresis loops, 
for ferromagnetic and ferrimagnetic materials. Ferrimagnetic materials have 
antiparallel neighbouring spins of unequal magnitude, resulting in a net 
moment. Owing to cancellation effects, dipole interactions are much less 
important in the case of antiferromagnets. Two energetically optimal align-
ments of a pair of magnetic dipoles important for our discussion are shown in 
Figure 4. In the first case, Figure 4(a), dipole moments are aligned with r. This 
stable orientation enhances ferromagnetic order. In the case where the mo-
ments are perpendicular to r, Figure 4(b), antiparallel orientation is favoured 
and disrupts long-ranged ferromagnetic order.

In going from an atomic-level description to the micromagnetic one, the 
inevitable competition between ferromagnetic exchange and dipole interac-
tions limits the range of magnetization correlation, at T = 0, to be less than 
the so-called exchange length  [4],

lex = √ 2A
𝜇0M2

s
. (10)
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Figure 4. Energetically favourable configurations for (a) parallel (ferromagnetic) and (b) 
antiparallel (antiferromagnetic) dipole alignments. 

As an example, for magnetite, A = 1 × 10–11 J/m  [4,45–47,50,52–54] and 
Ms = 480 kA/m  [52,55,56], and so micromagnetic simulation cells should be 
less than lex = 8 nm  [4] in length in order to avoid unphysical results.

Once finite micromagnetic cells are used, the point dipoles (Figure 5(a)) 
only approximately describe the fields generated by the cells (Figure 5(b)). 
The field at an arbitrary point in space due to a magnetized cell is obtained by 
integrating the dipolar contributions over the volume of the cell. Through the 
divergence theorem, the result can be expressed as a surface integral, which, 
for rectangular prisms, has a closed form solution  [57]. The field due to a 
cell acts on the cell itself (this is the Hd appearing below in the discussion 
of shape anisotropy) and has a demagnetizing effect, and is often referred to 
as self-demag. Otherwise, the magnetic field due to a cell is referred to as the 
demag field. The terms demag and self-demag merely differentiate the effects 
of magnetostatic interactions.

The shape of a magnetized object may give rise to shape anisotropy. The 
magnetization discontinuity at the surface of a finite-sized ferromagnet leads 
to effects that can be modelled by a surface layer of magnetic charges or 
monopoles. The field arising from these surface monopoles is called the de-
magnetization field Hd. It is a complicated function of the position within 
magnets of arbitrary shape. However, the Brown-Morrish theorem  [56,58] 

Figure 5. The magnetic field produced by (a) a magnetic point dipole and (b) a bar magnet at 
distance r. 
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suggests equivalence of an arbitrarily shaped magnetized body with a uni-
formly magnetized ellipsoid of the same volume. For a uniformly magnetized 
ellipsoid, Hd = –NM, where N is the demagnetizing tensor that depends on 
the axis lengths of the ellipsoid  [32]. In the case of a spheroid, the demag-
netization energy density E = 𝜇0M ⋅ N ⋅ M/2 can be written in the form 
of a uniaxial anisotropy with energy density Ksh = 𝜇0M2

s (N⟂–N||)

2
  [31], where 

N⟂ and N|| are, respectively, demagnetizing factors perpendicular and along 
the rotational symmetry axis of the spheroid. Ksh is positive (easy-axis) for a 
long, thin (prolate) spheroid. The dimensionless ratio 𝜇0M2

s /|Kc| estimates the 
shape anisotropy contribution to the particle’s total energy relative to its cubic 
magnetocrystalline anisotropy. For magnetite spheroids with a ratio as small 
as 1.2 between semi-axes lengths, effects of cubic anisotropy can be ignored 
as the uniaxial shape anisotropy is dominant  [56]. For an example of cal-
culating the shape anisotropy, see  [57,59]. Modeling self-demag with shape 
anisotropy reduces the computational load in micromagnetic simulations; 
rather than calculating magnetostatic interactions between all the cells mak-
ing up a magnetized body, an anisotropy term is simply added to each cell. 
However, whenever accuracy is preferred to computational speedup, partic-
ularly where non-uniform magnetization is expected, the full magnetostatic 
formalism should be used.

3.3. Other interactions

In addition to the magnetic interactions described above, there are a number 
of other mostly anisotropic contributions to the energy that can be important 
for micromagnetic simulations in some cases. These types of terms typically 
depend on the nature of the crystal symmetry and often have their origin in 
spin-orbit coupling effects. An example considered in thin-film applications 
is the fourth-order single-ion uniaxial term of the form  [60],

ℋu4 = –K4V(m ⋅ u)4. (11)

Anisotropic terms may also involve interactions between neighboring cells. 
Systems with single-site uniaxial anisotropy usually have a crystal symmetry 
that supports the existence of anisotropic exchange in addition to the usual 
Heisenberg isotropic exchange. This type of exchange term can be written as,

ℋJz = Jz ∑
<i,j>

mzimzj, (12)
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and has been shown to impact the structure of MH loops  [61]. Systems 
with exotic magnetic structures called skyrmions  [26] have been mod-
elled using micromagnetics where such spin textures are stabilized by the 
Dzyaloshinskii-Moriya interaction  [24,25]. This contribution is allowed by 
symmetry only for a relatively small set of crystal structures and takes a form 
that one can think of as a cross-product version of normal exchange,

ℋD = ∑
<i,j>

Dij ⋅ mi × mj. (13)

These and other less traditional contributions to the energy can usually safely 
be omitted from most simulations as they are typically small but in some cases 
they are necessary to explain key phenomena.

4. Dynamics: magnetic torque and the LLG equation

4.1. Torque on a magnetic moment

The torque on the magnetic moment due to a field is 𝝁 × B, and this lies at 
the heart of simulating the dynamics of classical magnetic systems. As 𝝁 is 
associated with angular momentum S through the gyromagnetic ratio 𝛾 via 
𝝁 = –𝛾S, and given the fact that the time rate of change of angular momentum 
is equal to the torque, the time evolution of a magnetic moment is governed 
by the torque equation, 

d𝝁
dt = –𝛾𝝁 × B, (14)

with the result that 𝝁 precesses around B  [32] indefinitely and without decay, 
maintaining a constant component along B.

In the context of the micromagnetic modelling of materials, Equation 14 
applies to each cell, for which 𝝁 = mMsV  and B is replaced with 𝜇0Heff. The 
result is the Landau-Lifshitz (LL) equation, 

dm
dt = –𝛾𝜇0m × Heff. (15)

In the micromagnetic context, 𝛾 is taken to be that of an electron, with 
𝛾 = eg/2me, where e, me and g ≃ 2 are the absolute value of an electron’s 
charge, mass and g-factor, respectively. Heff represents the sum of different 
interactions as, 

Heff = HZeeman + Hani + Hmagnetostatic + H, (16)
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where the field contribution at the ith cell can be calculated via the derivative 
of the appropriate energy with respect to magnetization, e.g., for anisotropy, 

Hani = – 1
𝜇0MsV

𝜕ℋani
𝜕mi

= – 1
𝜇0MsV

𝜕
𝜕mi

(–KV(mi ⋅ ui)2) = 2K
𝜇0Ms

(mi ⋅ ui)ui,

(17)
and exchange, where we assume that V = a3 and recall that Jeff = aA, 

Hex = – 1
𝜇0MsV

𝜕
𝜕mi

(–
Jeff
2 ∑

j
∑
k∈Nj

mj ⋅ mk) = A
𝜇0Msa2 ∑

j∈Ni

mj, (18)

where j ∈ Ni signifies that the index j runs over the neighbouring cells of 
cell i.

4.2. The Landau-Lifshitz-Gilbert equation

As with the simple torque (Equation 14), the LL (Equation 15) implies that the 
magnetization vector precesses around the effective field forever. They both 
neglect the decay of the magnetic moment’s precession from dissipation ef-
fects and the resulting eventual alignment with the effective field direction. 
Attributing this decay to various factors, such as coupling of magnetic mo-
ments to the lattice, lattice disorder, defects, impurities, etc., Gilbert  [62] 
suggested adding a damping term to the effective field,

Heff ⟶ Heff – 𝜂dM
dt , (19)

where the damping coefficient 𝜂 = 𝛼/(𝜇0𝛾Ms) depends on a dimensionless 
phenomenological damping parameter 𝛼, which results from both intrinsic 
properties of the material and extrinsic effects (e.g. defects)  [62–67]. Incor-
porating damping results in the Landau-Lifshitz-Gilbert (LLG) equation, 

dm
dt = – ( 𝛾1

1 + 𝛼2 )m × Heff – ( 𝛾1𝛼
1 + 𝛼2 )m × (m × Heff), (20)

where 𝛾1 = 𝜇0𝛾.
To study systems at finite temperature, a stochastic term based on the 

fluctuation-dissipation theorem  [68] is added to the effective field, 

Hthermal = 𝚪√ 2𝛼kBT
V𝜇0𝛾1MsΔt , (21)
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where kB is the Boltzmann constant and 𝚪 = 𝚪(t) is a random vector with 
Cartesian components drawn at each time step during the numerical solu-
tion from a Gaussian distribution with zero mean and unit variance. Given 
the dependence of Hthermal on V and the time step Δt of the numerical solver, 
one needs to be careful in choosing an appropriate Δt, particularly for small 
V. With the addition of Hthermal, the resulting equation is often called the 
stochastic LLG equation, sLLG. We note that there are slight variations in 
how precisely the stochastic term enters the equation  [69,70]. The sLLG 
equation can be used to study the magnetization dynamics for low to high 
damping limits (𝛼 ∼ 0.001 – 1). A variety of numerical techniques have 
been successfully employed to solve the LLG and sLLG  [71] equations, and 
numerous software packages are available: OOMMF  [72], Vinamax  [73], 
MuMax  [74,75], and finite element codes  [49,76–79] with bright prospects 
for the future  [80].

Traditional micromagnetics is based on the assumption that the magni-
tude of the magnetization vector remains constant. An extension of the LLG 
equation, the Landau-Lifshitz-Bloch equation, which incorporates a phe-
nomenological formulation of the effects of thermal fluctuations on |m|, has 
been demonstrated to provide a good description for a number of applica-
tions  [81,82].

5. Scaling

Omitted from our discussion thus far is how simulation results are affected 
if the cell size is changed, or rather, how to scale parameters like A and K
so that results are independent of a. The difficulty is made apparent when 
considering that different contributions to Heff scale differently with a: e.g. 
Hani ∝ a0, Hex ∝ a–2 and Hthermal ∝ a–3/2.

Simulating a sample of magnetic material using bigger but fewer cells, i.e. 
coarse-graining, is desirable in order to decrease the number of calculations 
and hence simulation time. This is particularly useful for the study of larger 
systems. Moreover, considering Equation 21, using bigger simulation cells al-
lows for a longer integration time step, again resulting in faster calculations. 
However, simply using larger cells, especially approaching or exceeding that 
of the nominal exchange length, carries the risk of obscuring the essential 
physics of a problem of interest. Scaling the magnetic parameters properly 
with cell size is essential, and not trivial.

Among the different approaches for coarse-graining  [83–90], we here cast 
the problem in terms of the theoretically appealing renormalization group 
(RG) approach taken by Grinstein and Koch  [86]. Let us assume that for 
a simulation carried out with cell size a0, magnetic parameters A0 and K0, 
and field strength H0, we obtain the resulting magnetization M0. If we then 
increase the cell size to ab = ba0 (b > 1), we need to carry out simulations with 
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coarse-grained parameters A(b) and K(b), and field H(b) all chosen in such a 
way so that we can map the resulting M(b) to M0. In Ref.  [27], we modified 
and applied the approach in Ref.  [86], arriving at a set of relations between 
coarse-grained and original quantities in the limit of strong exchange relative 
to anisotropy and Zeeman terms, 

A(b) = 𝜁(b) × A0

K(b) = 𝜁(b)3 × K0

H(b) = 𝜁(b) × H0

M0 = 𝛿𝜁(b)M(b) + (1 – 𝛿)M(b),

(22)

where the scaling factor 𝜁(b) = t/b + 1 – t, with t = T/Tc, with Tc be-
ing the Curie temperature. The parameter 𝛿 = 0.511 was obtained from a 
one-parameter fit of M0(T) computed without any scaling.

The above approach was applied in Ref.  [27] to calculate hysteresis loops 
of a magnetite nanorod modelled with exchange and uniaxial anisotropy 
of dimensions 8a0 × 24a0 × 56a0, where a0 = 0.839 nm is the size of the 
crystallographic unit cell. In Figure 6(a), the results for b = 1 involved simu-
lating 10,752 micromagnetic cells, taking months to complete. The rest of the 
curves show progressive departure from the b = 1 result when cell size is in-
creased without scaling any of the other quantities. In Figure 6(b), the results 
show much better agreement when the scaling given by Equation 22 is used. 
This methodology was further developed to include magnetostatic interac-
tions  [28], and with the speed-up provided by coarse-graining, was applied to 
simulating clusters of interacting nanoparticles with complex internal struc-
ture  [29]. Despite being able to find a single effective ‘macrospin’ description 
of an entire nanoparticle composed of several nanorods, we found that the 
macrospin approximation failed when the nanoparticles were very close to 
each other.

More recently, Schrefl et al.  [90] produced a method of scaling interaction 
parameters by integrating spin-wave fluctuations smaller than the cell size. 
The authors make the case that this method should have a broader range of 
applicability than RG approaches, e.g. for materials with large anisotropies 
and high fields.

6. Coupling magnetic dynamics with particle motion

Our discussion up until now has focused exclusively on magnetization dy-
namics, neglecting motion of or within the magnetized body. However, there 
is growing interest in simulating systems where magnetic and mechanical 
degrees of freedom are coupled, both in atomic and colloidal systems.
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Figure 6. Application of RG coarse graining to nanorod MH loops at T = 310 K and SR = 2.5 Oe/ns. 
(a) Changing cell length (a = ba0) without changing magnetic parameters. (b) Quantities are 
scaled according to Equation 22. Figures adapted from Ref.  [27]. 

For atomic systems, the micromagnetic equations of motion apply, but 
now with a cell’s magnetic moment mMsV  replaced with an atomic mag-
netic moment 𝝁  [91]. In addition to dipolar forces, forces on atoms arise 
from, e.g. the distance dependence of the exchange coupling between atoms. 
Spin dynamics-molecular dynamics (SPMD) simulations have already been 
used in several studies  [34] and have been implemented in available codes 
such as Spilady  [92] and within the popular MD code LAMMPS through the 
SPIN package  [93,94]. The authors of such codes develop and use the neces-
sary numerical framework to properly integrate the equations of motion for 
the translational and spin degrees of freedom, using, for example, a Trotter-
expansion-based method that conserves the spin vector magnitude  [34,95] 
or implicit variants  [94].

Examples of the use of SPMD include the study of phase transi-
tions  [96,97], effects of spin-orbit coupling  [98], magnetocrystalline 
anisotropy and anisotropic magnetostriction  [99], understanding mech-
anisms of (Gilbert) damping  [100], electron transport across nanocon-
tacts  [101], and iron nanoclusters  [102].

For magnetic nanoparticles, the basic ideas behind micromagnetics return, 
now with the nanoparticle represented by a single magnetization vector. The 
anisotropy axis is fixed to the nanoparticle, which is modelled as a rigid body 
(RB) that can now undergo rotations and translations. In this case, the mag-
netization (once again described by m) and orientation of the RB (described 
by the anisotropy axis vector u) are coupled but evolve separately. When the 
so-called Néel relaxation time 𝜏N = 𝜏0 expKV/kBT  is much faster than the 
rotational relaxation time 𝜏B = 3𝜂VH/kBT (also referred to as the Brown-
ian relaxation time), we return to the Stoner–Wolhfarth model. Here V refers 
to the magnetic volume, while VH refers to the hydrodynamic (or total) vol-
ume. A nanoparticle with a magnetic core surrounded by a non-magnetic 
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shell would have VH>V . Understanding relative contributions of Brown-
ian and Néel relaxation is important for biomedical application of magnetic 
nanoparticles  [103,104]. In the limit of high anisotropy, m may be regarded as 
being fixed along u and the magnetization dynamics are dictated by particle 
rotation.

Examples of studies that couple rotational and magnetization dynamics 
of magnetic nanoparticles (MNPs) include calculating specific absorption 
rates of iron NPs with cubic anisotropy distributed in a viscous liquid 
[105,106]; alignment of suspended MNPs to external fields with biomedi-
cal applications  [107,108]; magnetic and mechanical contributions to MNP 
heating  [109–111]; the role of particle size on relative importance of Néel 
and Brownian (at large sizes, the magnetic moment is locked with the parti-
cle axis)  [112]; the effect of interparticle interactions on the magnetization 
dynamics and energy dissipation rates  [113]; and magnetization response 
under a pulsed field  [114].

6.1. Coupling of nanoparticle rotational and magnetization dynamics

We now review the equations governing magnetization dynamics for a parti-
cle that is free to rotate  [35,115–118], the development of which can be found 
in Refs.  [35] and [117]. Consider a spherical magnetic nanoparticle with a 
magnetic uniaxial anisotropy axis fixed rigidly to it. As before, this axis lies 
along the unit vector u and the energy associated with the anisotropy is given 
by Equation 2. The anisotropic interaction can again be described by an effec-
tive anisotropy field (given by Equation 17). This field gives rise to a torque on 
the magnetic moment, a torque due to the rest of the nanoparticle (the RB), 
given by, 

𝝉m = 𝝁 × B = 𝜇0MsVm × Hani = 2KV(m ⋅ u)m × u. (23)

There will be an equal and opposite torque on the body due to the magnetic 
moment. Recalling that S = – 𝝁

𝛾e
= – 1

𝛾e
MsVm and that dS

dt
= 𝝉m, we write 

Equation 15 as, 

dm
dt = –𝜇0𝛾em × Hani = –𝛾e

2K
Ms

(m ⋅ n)m × u, (24)

and a corresponding equation for the angular momentum of the RB as, 

dL
dt = –𝝉m = –2KV(m ⋅ n)m × u, (25)
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that ensures that J = L+ S is constant. If an external field Hext is present, then 
Equation 25 remains unchanged, and Equation 24 becomes, 

dm
dt = –𝜇0𝛾em × (Hani + Hext) . (26)

Equations 25 and 24 or 26 conserve energy, and are useful for checking 
implementations of numerical integration algorithms.

As with pure micromagentics, we would like to consider the case that in-
cludes magnetic damping through the loss of magnetic energy to microscopic 
degrees of freedom. In this case, there is a drag torque that will allow the mag-
netization to align with the anisotropy axis instead of continually precessing. 
A fundamental assumption is that this torque is due to the body, and so there 
must be a compensating torque due to the magnetization on the body. The 
equations of motion for Langevin dynamics are  [35,117], 

dm
dt = hD × m, (27)

with 

hD = 𝝎 +
𝜇0𝛾e

1 + 𝛼2 {(Heff – 𝝎
𝛾 ) + 𝛼m × (Heff – 𝝎

𝛾 )} , (28)

 

du
dt = 𝝎 × u, (29)

and 

Θd𝝎
dt =

MsV
𝛾e

dm
dt + 𝜇0MsVm × (Hext + 𝜻) – 𝜉𝝎 + 𝝐, (30)

where 𝝎 is the angular velocity of the body, Θ is the moment of inertia, and 
𝝉fluid = –𝜉𝝎 + 𝝐 is the torque due to the fluid. The factors 𝛼 and 𝜉 = 6𝜂VH , 
with 𝜂 being the viscosity, are magnetic and rotational damping constants, re-
spectively, while 𝜻 and 𝝐 are stochastic vectors with components drawn from 
normal distributions with zero mean and variances given by, 

𝜎2
𝜁 =

2 𝛼 kBT
𝜇2

0MsV𝛾eΔt
(31)
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and 

𝜎2
𝜖 =

2 𝜉 kBT
Δt , (32)

respectively, with Δt being the simulation time step. The effective field is given 
by, 

Heff = Hext + HK + 𝜻. (33)

For sufficiently small particles, Θ becomes negligible, and Equation 30 can be 
solved algebraically for 𝝎  [35,117], 

𝝎 = 1
𝜉 (MsV

𝛾e
hD × m + 𝜇0MsVm × (Hext + 𝜻)+𝝐) . (34)

The inclusion of 𝜻 in Equations 30 and 34 is subject to interpretation  [119]. 
If the thermal stochastic term affecting m arises only from torques internal to 
the nanoparticle, then 𝜻 should not appear in Equation 30 (i.e. not added to 
Hext within the parentheses on the right hand side of the equation). This can 
be most easily understood by considering that angular momentum changes 
only from external torques, 

dJ
dt = 𝜏external

d(L + S)
dt = 𝜇0MsVm × Hext – 𝜉𝝎 + 𝜖

Θd𝝎
dt =

MsV
𝛾e

dm
dt + 𝜇0MsVm × Hext – 𝜉𝝎 + 𝜖. (35)

Regardless of the interpretation, i.e. whether or not 𝜻 is explicitly in-
cluded in Equations 30 and 34, the numerical example below confirms that 
both approaches yield indistiguishable results when the ratio MsV

𝜉𝛾e
 [117] is 

small  [119].
In [117], Usadel developed the equations of motion for the case where m

maintains alignment with u, i.e., m = u, in the high K limit (and where ther-
mal switching does not take place). This limit, or rigid dipole (RD) model, 
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can be understood again by considering the change in angular momentum, 

dJ
dt = Θd𝝎

dt –
MsV
𝛾e

dm
dt

= Θd𝝎
dt –

MsV
𝛾e

du
dt

= Θd𝝎
dt –

MsV
𝛾e

𝝎 × u

= 𝜏ext,

(36)

or 

Θd𝝎
dt =

MsV
𝛾e

𝝎 × u + MsVu × (Bext + 𝜻)+𝝉fluid, (37)

where once again we note that the inclusion of 𝜻 as causing an external torque 
is a matter of interpretation (and can be omitted). From this, we see that, apart 
from 𝝉fluid and a torque stemming from 𝜻, the RD feels a torque, 

MsV
𝛾e

𝝎 × u + MsVu × Bext = MsVu × (Bext – 𝝎
𝛾e

) , (38)

and not simply MsVu × Bext.
If we are only interested in tracking the magnetization in the Brownian 

(Θ = 0) limit, the equations simplify to  [112,117], 

dm
dt = hRD × m, (39)

with 

hRD = 1
1 – MsV

𝜉𝛾e

1
𝜉 (𝝐 + MsVm × Bext) , (40)

where, again, the term MsV/(𝜉𝛾e) is often negligible, and Usadel omits it. In 
a similar spirit, in Ref.  [117], Usadel argues that 𝜻 in Equation 37 is negligible 
to first order in MsV/(𝜉𝛾e) and omitted it from Equation 40.

6.2. Example

As an illustration of the above methods, in Figure 7 we show the results 
of applying Usadel’s formalism to study the effects of Brownian rotation on 
hysteresis for the magnetite nanorod introduced earlier in section 5  [27], 
modelled as a sphere of the same volume as the nanorod, at various viscosities. 
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Figure 7. MH loops for a magnetic nanoparticle at T = 310 K in a fluid at several viscosities, given 
in terms of the viscosity of water, calculated according Equations 27, 28, 29 and 35 (with Θ = 0, 
and so solved algebraically for 𝜔), compared with a purely micromagnetic calculation (no rotation 
of the nanoparticle allowed), Equation 20 (black curve, no symbols). 

For the external field frequency of f = 125 kHz, Brownian motion significantly 
reduces the loop area, relative to purely micromagnetic modelling, once the 
viscosity is reduced (from infinity) to 103𝜂water, which is a reasonable estimate 
for kidney tissue  [120]. We also see a non-monotonic dependence of the loop 
area, as partially quantified by the plot of the coercive field as a function of T
in the inset of Figure 7. This interesting feature warrants further study but is 
similar to Usadel’s result that there is an optimal size for absorbed power at 
fixed field strength, frequency and T.

The parameters we use in the example are as follows: T = 310 K
Ms = 480 × 103 A/m, K = 104 J/m3, V = 6.331625 × 10–24 m3 which is 
(18.5 nm)3, 𝜌 = 7874 kg/m3, 𝛼 = 0.1, Bmax = 50 mT, Bz(T) = Bmax cos (2𝜋ft), 
𝜂water = 10–3 Pa.s. The system is equilibrated for 100 loops, and then data are 
collected and averaged over 1000 loops. We use Equation 34, both with and 
without 𝜻 on the right hand side. For 𝜂 ≥ 𝜂water, the ratio MsV

𝜉𝛾e
≤ 4.543 × 10–4, 

and the resulting hysteresis loops with and without 𝜻 are indistinguishable. 
The results are plotted without 𝜻 in Equation 34. The stochastic equations of 
motions are integrated using Heun’s solver  [121,122] with a time step of 1 ps.

As a test on the inclusion of 𝜻 in Equation 34, we calculate the heat capacity 
for the same model nanoparticle. Nominally, Θ = 2.627 × 10–36 kg.m2, as 

obtained from the moment of inertia of a sphere 2

5
(𝜌V)( 3V

4𝜋
)

2

3 . However, we 
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Figure 8. Heat capacity comparisons in the high damping limit with (a) 𝜂 = 𝜂water/10. Cvar (filled 
squares) and Cslope (open squares) obtained using Equation 34 show a systematic deviation from 
each other. Removing 𝜻 from Equation 34, such that 𝜻 provides no external torque and enters the 
equations of motion only through Equation 33, yields Cvar (filled circles) and Cslope (open circles) 
that are consistent with each other. Panel (b) shows results at a higher viscosity, 𝜂 = 𝜂water, with 
greater consistency between including and not including 𝜻 in Equation 34. 

set Θ = 0 since we use Equation 34, thus neglecting the rotational kinetic 
energy and its contribution to the heat capacity. In Figure 8(a), we plot for 
𝜂 = 𝜂water/10 and Bext = 𝜇0Hext = 4 mT the heat capacity obtained from 
fluctuations in the energy,

Cvar = <E2> – <E>2

kBT2 , (41)

with filled symbols, and from the derivative with respect to T, 

Cslope = d <E>
dT , (42)

with open symbols. The results using Equation 34 (squares) deviate from each 
other, while omitting the explicit appearance of 𝜻 on the right-hand-side of 
Equation 34 yields consistent curves. For 𝜂 = 𝜂water, shown in Figure 8(b), 
there is greater consistency between data sets. While our example is not par-
ticularly physically meaningful, given the T range employed, it does serve as 
a note of caution when modelling the effects of T through the inclusion of 𝜻
in Equations 30 and 34, or at least as an encouragement to test for consistency 
in one’s results when including 𝜻 in Equations 30 and 34. The heat capacity 
simulations are performed using 2 × 108 equilibration time steps followed by 
8 × 108 steps over which statistics are gathered. The simple centred difference 
scheme is used to calculate Cslope from <E(T)>.
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7. Concluding remarks

In writing this review, we have covered the micromagnetics background 
that two of us would have greatly benefited from knowing prior to start-
ing computational research on magnetic nanoparticle hyperthermia, having 
come from an MD simulation background. We have learned that the appli-
cation of micromagnetics to study problems where temperature and process 
rates are important can be challenging when coarse graining is required to 
bridge different length scales. We have shown in our previous works, as high-
lighted in section 5, that scaling methods taken from fundamental concepts in 
renormalization group theory are useful for this purpose in the study of mag-
netic hyperthermia. Using this or alternative scaling approach to study other 
problems where thermodynamics plays a key role warrants consideration.

MD simulations have grown immensely in applicability and use since their 
humble beginnings with hard spheres  [123] and now are used extensively 
in many research areas within, e.g. biochemistry, chemical physics, and ma-
terials engineering. There are several well supported, well documented and 
flexible computer codes and associated tools for system setup and analysis. 
Several books, now classics, have been written to bring students up to speed 
on how to write or properly use simulation codes, analyze data and implement 
advanced techniques based on statistical mechanics.

We are very pleased to see similar development in micromagnetic simula-
tions, and expect to see continued growth in the application or consideration 
of micromagnetism as available codes become more accessible and research 
areas broaden into biomedical areas. Notable is the inclusion of SPMD in 
the popular MD code LAMMPS  [93], which has facilitated research where 
lattice motions couple with magnetization dynamics. We would encourage 
similar inclusion of magnetization dynamics within colloidal particles as a 
boon to the magnetic nanoparticle community, including in new areas such 
as magnetically controlled nanoswimmers  [124]. 

Funding

The work was supported by the Natural Science and Engineering Research Council of Canada 
[RGPIN-2016-04499 and RGPIN-2017-05569].

Acknowledgments

We thank K. D. Usadel, J. Tranchida and M. Karttunen for pleasant and fruitful discussions. 
MLP and ISV thank the Natural Sciences and Engineering Research Council (Canada) for 
funding.

Disclosure statement

No potential conflict of interest was reported by the author(s).



24  R. B. DIBA ET AL.

References

[1] Wilson KG. Problems in physics with many scales of length. Sci Am. 1979;241:158–179. 
doi: 10.1038/scientificamerican0879-158

[2] Ptuskin VS, Moskalenko IV, Jones FC, et al. Dissipation of magnetohydrodynamic 
waves on energetic particles: impact on interstellar turbulence and cosmic-ray trans-
port. Astrophysical J. 2006;642:902. doi: 10.1086/501117

[3] Žutić I, Fabian J, Sarma SD. Spintronics: fundamentals and applications. Rev Mod Phys. 
2004;76:323. doi: 10.1103/RevModPhys.76.323

[4] Abo GS, Hong YK, Park J, et al. Definition of magnetic exchange length. IEEE Trans 
Magn. 2013;49:4937–4939. doi: 10.1109/TMAG.2013.2258028

[5] Kittel C. Theory of the dispersion of magnetic permeability in ferromagnetic materials 
at microwave frequencies. Phys Rev. 1946;70:281. doi: 10.1103/PhysRev.70.281

[6] Brown W Jr. Micromagnetics. New York: Wiley Interscience; 1963.
[7] Brown WF Jr. Some magnetostatic and micromagnetic properties of the infinite rect-

angular bar. J Appl Phys. 1964;35:2102–2106. doi: 10.1063/1.1702798
[8] Suess D, Fidler J, Schrefl T. Micromagnetic simulation of magnetic materials. Handb 

Magnetic Mater. 2006;16:41–125.
[9] Plumer ML, Van Ek J, Weller D. The physics of ultra-high-density magnetic recording. 

Vol.41. Berlin Heidelberg: Springer-Verlag; 2001. doi: 10.1007/978-3-642-56657-8
[10] Xue J, Victora RH. Micromagnetic predictions for thermally assisted reversal over long 

time scales. Appl Phys Lett. 2000;77:3432–3434. doi: 10.1063/1.1331094
[11] Zhu JG, Li H. Understanding signal and noise in heat assisted magnetic recording. IEEE 

Trans Magn. 2013;49:765–772. doi: 10.1109/TMAG.2012.2231855
[12] Zhu JG, Bertram HN. Micromagnetic studies of thin metallic films (invited). J Appl 

Phys. 1988;63:3248–3253. doi: 10.1063/1.341167
[13] Covington M, Crawford T, Parker G. Time-resolved measurement of propagating spin 

waves in ferromagnetic thin films. Phys Rev Lett. 2002;89:237202. doi: 10.1103/Phys-
RevLett.89.237202

[14] Schrefl T, Fidler J, Kirk K, et al. Domain structures and switching mechanisms 
in patterned magnetic elements. J Magn Magn Mater. 1997;175:193–204. doi: 
10.1016/S0304-8853(97)00156-X

[15] Heyderman LJ, Nolting F, Backes D, et al. Magnetization reversal in cobalt antidot 
arrays. Phys Rev B. 2006;73:214429. doi: 10.1103/PhysRevB.73.214429

[16] Leliaert J, Van De Wiele B, Vansteenkiste A, et al. A numerical approach to incorporate 
intrinsic material defects in micromagnetic simulations. J Appl Phys. 2014;115. doi: 
10.1063/1.4854956

[17] Gypens P, Leo N, Menniti M, et al. Thermoplasmonic nanomagnetic logic gates. Phys 
Rev Appl. 2022;18. doi: 10.1103/PhysRevApplied.18.024014

[18] Tejo F, Fernandez-Roldan JA, Guslienko KY, et al. Giant supermagnonic Bloch point 
velocities in cylindrical ferromagnetic nanowires. Nanoscale. 2024;16:10737–10744. 
doi: 10.1039/D3NR05013K

[19] Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. 
Int J Hyperth. 2008;24:467–474. doi: 10.1080/02656730802104757

[20] Vallejo-Fernandez G, Whear O, Roca A, et al. Mechanisms of hyperthermia in 
magnetic nanoparticles. J Phys D Appl Phys. 2013;46:312001. doi: 10.1088/0022-
3727/46/31/312001

[21] Salunkhe AB, Khot VM, Pawar S. Magnetic hyperthermia with magnetic 
nanoparticles: a status review. Curr Top Med Chem. 2014;14:572–594. doi: 
10.2174/1568026614666140118203550

https://doi.org/10.1038/scientificamerican0879-158
https://doi.org/10.1086/501117
https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.1109/TMAG.2013.2258028
https://doi.org/10.1103/PhysRev.70.281
https://doi.org/10.1063/1.1702798
https://doi.org/10.1007/978-3-642-56657-8
https://doi.org/10.1063/1.1331094
https://doi.org/10.1109/TMAG.2012.2231855
https://doi.org/10.1063/1.341167
https://doi.org/10.1103/PhysRevLett.89.237202
https://doi.org/10.1103/PhysRevLett.89.237202
https://doi.org/10.1016/S0304-8853(97)00156-X
https://doi.org/10.1103/PhysRevB.73.214429
https://doi.org/10.1063/1.4854956
https://doi.org/10.1103/PhysRevApplied.18.024014
https://doi.org/10.1039/D3NR05013K
https://doi.org/10.1080/02656730802104757
https://doi.org/10.1088/0022-3727/46/31/312001
https://doi.org/10.1088/0022-3727/46/31/312001
https://doi.org/10.2174/1568026614666140118203550


ADVANCES IN PHYSICS: X  25

[22] Périgo EA, Hemery G, Sandre O, et al. Fundamentals and advances in magnetic 
hyperthermia. Appl Phys Rev. 2015;2:041302. doi: 10.1063/1.4935688

[23] Torche P, Munoz-Menendez C, Serantes D, et al. Thermodynamics of interacting mag-
netic nanoparticles. Phys Rev B. 2020;101:224429. doi: 10.1103/PhysRevB.101.224429

[24] Mochizuki M. Spin-wave modes and their intense excitation effects in skyrmion 
crystals. Phys Rev Lett. 2012;108:017601. doi: 10.1103/PhysRevLett.108.017601

[25] Lin SZ, Batista CD, Saxena A. Internal modes of a skyrmion in the ferromagnetic state 
of chiral magnets. Phys Rev B. 2014;89:024415. doi: 10.1103/PhysRevB.89.024415

[26] Back C, Cros V, Ebert H, et al. The 2020 skyrmionics roadmap. J Phys D Appl Phys. 
2020;53:363001. doi: 10.1088/1361-6463/ab8418

[27] Behbahani R, Plumer ML, Saika-Voivod I. Coarse-graining in micromagnetic sim-
ulations of dynamic hysteresis loops. J Phys Condens Matter. 2020;32:35LT01. doi: 
10.1088/1361-648X/ab8c8d

[28] Behbahani R, Plumer ML, Saika-Voivod I. Multiscale modelling of magnetostatic ef-
fects on magnetic nanoparticles with application to hyperthermia. J Phys Condens 
Matter. 2021;33:215801. doi: 10.1088/1361-648X/abe649

[29] Behbahani R, Plumer ML, Saika-Voivod I. Micromagnetic simulations of clusters of 
nanoparticles with internal structure: application to magnetic hyperthermia. Phys Rev 
Appl. 2022;18:034034. doi: 10.1103/PhysRevApplied.18.034034

[30] Dennis CL, Jackson AJ, Borchers JA, et al. Nearly complete regression of tumors 
via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology. 
2009;20:395103. doi: 10.1088/0957-4484/20/39/395103

[31] Cullity BD, Graham CD. Introduction to magnetic materials. Hoboken, NJ: John Wiley 
& Sons; 2009.

[32] Blundell S. Magnetism in condensed matter. (NY): Oxford University Press Inc.; 2009.
[33] Spaldin N. Magnetic materials: fundamentals and device applications. Cambridge: 

Cambridge University Press; 2003.
[34] Beaujouan D, Thibaudeau P, Barreteau C. Anisotropic magnetic molecular dynamics 

of cobalt nanowires. Phys Rev B. 2012;86:174409. doi: 10.1103/PhysRevB.86.174409
[35] Usadel KD, Usadel C. Dynamics of magnetic single domain particles embedded in a 

viscous liquid. J Appl Phys. 2015;118:234303. doi: 10.1063/1.4937919
[36] Hergt R, Dutz S, Röder M. Effects of size distribution on hysteresis losses of mag-

netic nanoparticles for hyperthermia. J Phys Condens Matter. 2008;20:385214. doi: 
10.1088/0953-8984/20/38/385214

[37] Eggeman AS, Majetich SA, Farrell D, et al. Size and concentration effects on high fre-
quency hysteresis of iron oxide nanoparticles. IEEE Trans Magn. 2007;43:2451–2453. 
doi: 10.1109/TMAG.2007.894127

[38] Mehdaoui B, Tan RP, Meffre A, et al. Increase of magnetic hyperthermia efficiency 
due to dipolar interactions in low-anisotropy magnetic nanoparticles: theoretical and 
experimental results. Phys Rev B. 2013;87:174419. doi: 10.1103/PhysRevB.87.174419

[39] Labaye Y, Crisan O, Berger L, et al. Surface anisotropy in ferromagnetic nanoparticles. 
J Appl Phys. 2002;91:8715–8717. doi: 10.1063/1.1456419

[40] Usov NA, Grebenshchikov YB. Hysteresis loops of an assembly of superparam-
agnetic nanoparticles with uniaxial anisotropy. J Appl Phys. 2009;106:023917. doi: 
10.1063/1.3173280

[41] Fal TJ, Mercer JI, Leblanc MD, et al. Kinetic monte carlo approach to modeling 
thermal decay in perpendicular recording media. Phys Rev B. 2013;87:064405. doi: 
10.1103/PhysRevB.87.064405

[42] Ashcroft NW, Mermin ND. Solid state physics. Fort Worth: Harcourt; 1976.
[43] Kittel C, McEuen P. Introduction to solid state physics. Hoboken, NJ: John Wiley & 

Sons; 2018.

https://doi.org/10.1063/1.4935688
https://doi.org/10.1103/PhysRevB.101.224429
https://doi.org/10.1103/PhysRevLett.108.017601
https://doi.org/10.1103/PhysRevB.89.024415
https://doi.org/10.1088/1361-6463/ab8418
https://doi.org/10.1088/1361-648X/ab8c8d
https://doi.org/10.1088/1361-648X/abe649
https://doi.org/10.1103/PhysRevApplied.18.034034
https://doi.org/10.1088/0957-4484/20/39/395103
https://doi.org/10.1103/PhysRevB.86.174409
https://doi.org/10.1063/1.4937919
https://doi.org/10.1088/0953-8984/20/38/385214
https://doi.org/10.1109/TMAG.2007.894127
https://doi.org/10.1103/PhysRevB.87.174419
https://doi.org/10.1063/1.1456419
https://doi.org/10.1063/1.3173280
https://doi.org/10.1103/PhysRevB.87.064405


26  R. B. DIBA ET AL.

[44] Bercoff PG, Bertorello HR. Exchange constants and transfer integrals of spinel ferrites. 
J Magn Magn Mater. 1997;169:314–322. doi: 10.1016/S0304-8853(96)00748-2

[45] Srivastava CM, Srinivasan G, Nanadikar NG. Exchange constants in spinel ferrites. 
Phys Rev B. 1979;19:499. doi: 10.1103/PhysRevB.19.499

[46] Uhl M, Siberchicot B. A first-principles study of exchange integrals in magnetite. J Phys 
Condens Matter. 1995;7:4227. doi: 10.1088/0953-8984/7/22/006

[47] Glasser ML, Milford FJ. Spin wave spectra of magnetite. Phys Rev. 1963;130:1783. doi: 
10.1103/PhysRev.130.1783

[48] Chen K, Ferrenberg AM, Landau D. Static critical behavior of three-dimensional classi-
cal Heisenberg models: a high-resolution Monte Carlo study. Phys Rev B. 1993;48:3249. 
doi: 10.1103/PhysRevB.48.3249

[49] Fidler J, Schrefl T. Micromagnetic modelling - the current state of the art. J Phys D Appl 
Phys. 2000;33:R135. doi: 10.1088/0022-3727/33/15/201

[50] Srivastava CM, Aiyar R. Spin wave stiffness constants in some ferrimagnetics. J Phys C 
Solid St Phys. 1987;20:1119. doi: 10.1088/0022-3719/20/8/013

[51] Brockhouse BN, Watanabe H. Spin Waves in Magnetite from Neutron Scattering. Pro-
ceedings of the symposium on inelastic scattering of neutrons in solids and liquids, vol 
II. Vienna, Austria: IAEA; 1963. p. 297–308. https://inis.iaea.org/collection/NCLCol-
lectionStore/_Public/44/053/44053909.pdf?r=1

[52] Heider F, Williams W. Note on temperature dependence of exchange constant in 
magnetite. Geophys Res Lett. 1988;15:184–187. doi: 10.1029/GL015i002p00184

[53] Kouvel JS. Specific heat of a magnetite crystal at liquid helium temperatures. Phys Rev. 
1956;102:1489. doi: 10.1103/PhysRev.102.1489

[54] Moskowitz BM, Halgedahl SL. Theoretical temperature and grain-size depen-
dence of domain state in x= 0.6 titanomagnetite. J Geophys Res Solid Earth. 
1987;92:10667–10682. doi: 10.1029/JB092iB10p10667

[55] Dutz S, Hergt R. Magnetic nanoparticle heating and heat transfer on a microscale: basic 
principles, realities and physical limitations of hyperthermia for tumour therapy. Int J 
Hyperth. 2013;29:790–800. doi: 10.3109/02656736.2013.822993

[56] Usov NA, Gudoshnikov SA, Serebryakova ON, et al. Properties of dense assemblies 
of magnetic nanoparticles promising for application in biomedicine. J Supercond Nov 
Magn. 2013;26:1079–1083. doi: 10.1007/s10948-012-1974-6

[57] Fukushima H, Nakatani Y, Hayashi N. Volume average demagnetizing tensor of rect-
angular prisms. IEEE Trans Magn. 1998;34:193–198. doi: 10.1109/20.650225

[58] Morrish AH. Thermal, relaxation, and resonance phenomena in paramagnetic materi-
als. John Wiley & Sons, Ltd; 2013. Chapter 3; p. 78–148. doi: 10.1002/9780470546581

[59] Newell AJ, Williams W, Dunlop DJ. A generalization of the demagnetizing tensor 
for nonuniform magnetization. J Geophys Res Solid Earth. 1993;98:9551–9555. doi: 
10.1029/93JB00694

[60] Pokhrel A, Nepal B, Karki U, et al. Influence of layer dependent perpendicu-
lar anisotropy on higher-order anisotropies in thin films. J Magn Magn Mater. 
2022;563:169963. doi: 10.1016/j.jmmm.2022.169963

[61] Plumer M, Rogers M, Meloche E. Impact of anisotropic exchange on mh 
loops: application to ecc media. IEEE Trans Magn. 2009;45:3942–3945. doi: 
10.1109/TMAG.2009.2021852

[62] Gilbert TL. A phenomenological theory of damping in ferromagnetic materials. IEEE 
Trans Magn. 2004;40:3443–3449. doi: 10.1109/TMAG.2004.836740

[63] Arias R, Mills DL. Extrinsic contributions to the ferromagnetic resonance response of 
ultrathin films. Phys Rev B. 1999;60:7395. doi: 10.1103/PhysRevB.60.7395

https://doi.org/10.1016/S0304-8853(96)00748-2
https://doi.org/10.1103/PhysRevB.19.499
https://doi.org/10.1088/0953-8984/7/22/006
https://doi.org/10.1103/PhysRev.130.1783
https://doi.org/10.1103/PhysRevB.48.3249
https://doi.org/10.1088/0022-3727/33/15/201
https://doi.org/10.1088/0022-3719/20/8/013
https://inis.iaea.org/collection/NCLCollectionStore/_Public/44/053/44053909.pdf?r=1
https://inis.iaea.org/collection/NCLCollectionStore/_Public/44/053/44053909.pdf?r=1
https://doi.org/10.1029/GL015i002p00184
https://doi.org/10.1103/PhysRev.102.1489
https://doi.org/10.1029/JB092iB10p10667
https://doi.org/10.3109/02656736.2013.822993
https://doi.org/10.1007/s10948-012-1974-6
https://doi.org/10.1109/20.650225
https://doi.org/10.1002/9780470546581
https://doi.org/10.1029/93JB00694
https://doi.org/10.1016/j.jmmm.2022.169963
https://doi.org/10.1109/TMAG.2009.2021852
https://doi.org/10.1109/TMAG.2004.836740
https://doi.org/10.1103/PhysRevB.60.7395


ADVANCES IN PHYSICS: X  27

[64] Azevedo A, Oliveira AB, De Aguiar FM, et al. Extrinsic contributions to spin-
wave damping and renormalization in thin Ni 50 Fe 50 films. Phys Rev B. 2000 
Sep;62:5331–5333. doi: 10.1103/PhysRevB.62.5331

[65] Lindner J, Barsukov I, Raeder C, et al. Two-magnon damping in thin films in case of 
canted magnetization: theory versus experiment. Phys Rev B. 2009 Dec;80:224421. doi: 
10.1103/PhysRevB.80.224421

[66] Song HS, Lee KD, You CY, et al. Intrinsic and extrinsic Gilbert damping in exchange-
biased IrMn/Cu/CoFe trilayer films. Appl Phys Express. 2015 May;8:053002. Available 
from: https://iopscience.iop.org/article/10.7567/APEX.8.053002

[67] Wu S, Smith DA, Nakarmi P, et al. Room-temperature intrinsic and extrinsic damping 
in polycrystalline Fe thin films. Phys Rev B. 2022 May;105:174408. doi: 10.1103/Phys-
RevB.105.174408

[68] Brown WF Jr. Thermal fluctuations of a single-domain particle. Phys Rev. 
1963;130:1677. doi: 10.1103/PhysRev.130.1677

[69] Bertotti G, Mayergoyz ID, Serpico C. Nonlinear magnetization dynamics in nanosys-
tems. Amsterdam: Elsevier; 2009.

[70] Zhao Z, Garraud N, Arnold DP, et al. Effects of particle diameter and magnetocrys-
talline anisotropy on magnetic relaxation and magnetic particle imaging perfor-
mance of magnetic nanoparticles. Phys Med Biol. 2020;65:025014. doi: 10.1088/1361-
6560/ab5b83

[71] Leliaert J, Mulkers J, De Clercq J, et al. Adaptively time stepping the stochastic landau-
Lifshitz-gilbert equation at nonzero temperature: implementation and validation in 
mumax3. AIP Adv. 2017;7. doi: 10.1063/1.5003957

[72] Donahue MJ, Porter DG. Oommf user’s guide, version 1.0, interagency report nis-
tir 6376. Gaithersburg (MD): National Institute of Standards and Technology; 1999. 
Available from: https://math.nist.gov/oommf/

[73] Leliaert J, Vansteenkiste A, Coene A, et al. Vinamax: a macrospin simulation tool 
for magnetic nanoparticles. Med Biol Eng Comput. 2015;53:309–317. Available from: 
https://jleliaert.github.io/vinamax/

[74] Vansteenkiste A, Van de Wiele B. Mumax: a new high-performance micro-
magnetic simulation tool. J Magn Magn Mater. 2011;323:2585–2591. doi: 
10.1016/j.jmmm.2011.05.037

[75] Leliaert J, Dvornik M, Mulkers J, et al. Fast micromagnetic simulations on gpu - recent 
advances made with mumax3. J Phys D Appl Phys. 2018;51:123002. Available from: 
https://mumax.github.io

[76] Scholz W, Fidler J, Schrefl T, et al. Scalable parallel micromagnetic solvers for mag-
netic nanostructures. Comput Mater Sci. 2003;28:366–383. Available from: http://
www.magpar.net/

[77] Fischbacher T, Franchin M, Bordignon G, et al. A systematic approach to multi-
physics extensions of finite-element-based micromagnetic simulations: Nmag. IEEE 
Trans Magn. 2007;43:2896–2898. Available from: https://nmag-project.github.io/

[78] Szambolics H, Buda-Prejbeanu LD, Toussaint JC, et al. Finite element formalism for 
micromagnetism. COMPEL Int J Comput Math Electr Electron Eng. 2008;27:266–276. 
Available from: https://feellgood.neel.cnrs.fr/

[79] Abert C, Exl L, Bruckner F, et al. Magnum.Fe: a micromagnetic finite-element simu-
lation code based on FEniCS. J Magn Magn Mater. 2013;345:29–35. Available from: 
http://micromagnetics.org/magnum.fe/

[80] Leliaert J, Mulkers J. Tomorrow’s micromagnetic simulations. J Appl Phys. 2019 
May;125:180901. doi: 10.1063/1.5093730

https://doi.org/10.1103/PhysRevB.62.5331
https://doi.org/10.1103/PhysRevB.80.224421
https://iopscience.iop.org/article/10.7567/APEX.8.053002
https://doi.org/10.1103/PhysRevB.105.174408
https://doi.org/10.1103/PhysRevB.105.174408
https://doi.org/10.1103/PhysRev.130.1677
https://doi.org/10.1088/1361-6560/ab5b83
https://doi.org/10.1088/1361-6560/ab5b83
https://doi.org/10.1063/1.5003957
https://math.nist.gov/oommf/
https://jleliaert.github.io/vinamax/
https://doi.org/10.1016/j.jmmm.2011.05.037
https://mumax.github.io
http://www.magpar.net/
http://www.magpar.net/
https://nmag-project.github.io/
https://feellgood.neel.cnrs.fr/
http://micromagnetics.org/magnum.fe/
https://doi.org/10.1063/1.5093730


28  R. B. DIBA ET AL.

[81] Garanin D, Chubykalo-Fesenko O. Thermal fluctuations and longitudinal relax-
ation of single-domain magnetic particles at elevated temperatures. Phys Rev B. 
2004;70:212409. doi: 10.1103/PhysRevB.70.212409

[82] Kazantseva N, Hinzke D, Nowak U, et al. Towards multiscale modeling of mag-
netic materials: simulations of fept. Phys Rev B. 2008;77:184428. doi: 10.1103/Phys-
RevB.77.184428

[83] Dobrovitski V, Katsnelson M, Harmon B. Statistical coarse-graining as an approach 
to multiscale problems in magnetism. J Magn Magn Mater. 2000;221:L235–L242. doi: 
10.1016/S0304-8853(00)00492-3

[84] Dobrovitski VV, Katsnelson MI, Harmon BN. Length scale coupling for nonlin-
ear dynamical problems in magnetism. Phys Rev Lett. 2003 Feb;90:067201. doi: 
10.1103/PhysRevLett.90.067201

[85] Feng X, Visscher PB. Coarse-graining Landau–Lifshitz damping. J Appl Phys. 
2001;89:6988–6990. doi: 10.1063/1.1355328

[86] Grinstein G, Koch RH. Coarse graining in micromagnetics. Phys Rev Lett. 
2003;90:207201. doi: 10.1103/PhysRevLett.90.207201

[87] Kirschner M, Schrefl T, Dorfbauer F, et al. Cell size corrections for nonzero-
temperature micromagnetics. J Appl Phys. 2005;97:10E301. doi: 10.1063/1.1846411

[88] Kirschner M, Schrefl T, Hrkac G, et al. Relaxation times and cell size in nonzero-
temperature micromagnetics. Physica B Condens Matter. 2006;372:277–281. doi: 
10.1016/j.physb.2005.10.066

[89] Jourdan T, Marty A, Lançon F. Multiscale method for Heisenberg spin simulations. 
Phys Rev B. 2008 Jun;77:224428. doi: 10.1103/PhysRevB.77.224428

[90] Oezelt H, Qu L, Kovacs A, et al. Full-spin-wave-scaled stochastic micromagnetism for 
mesh-independent simulations of ferromagnetic resonance and reversal. Npj Comput 
Mater. 2022;8:35. doi: 10.1038/s41524-022-00719-5

[91] Ellis M, Evans R, Ostler T, et al. The landau-Lifshitz equation in atomistic models. Low 
Temp Phys. 2015;41:705–712. doi: 10.1063/1.4930971

[92] Ma PW, Dudarev S, Woo C. SPILADY: a parallel CPU and GPU code for 
spin–lattice magnetic molecular dynamics simulations. Comput Phys Commun. 
2016;207:350–361. Available from: https://ccfe.ukaea.uk/resources/spilady/

[93] Tranchida J, Plimpton S, Thibaudeau P, et al. Massively parallel symplectic algo-
rithm for coupled magnetic spin dynamics and molecular dynamics. J Comput Phys. 
2018;372:406–425. doi: 10.1016/j.jcp.2018.06.042

[94] Cooke IJ, Lukes J. An implicit spin lattice dynamics integrator in LAMMPS. Comput 
Phys Commun. 2022;271:271. doi: 10.1016/j.cpc.2021.108203

[95] Omelyan I, Mryglod I, Folk R. Algorithm for molecular dynamics simulations of spin 
liquids. Phys Rev Lett. 2001;86:898. doi: 10.1103/PhysRevLett.86.898

[96] Perera D, Vogel T, Landau D. Magnetic phase transition in coupled spin-lattice systems: 
a replica-exchange Wang-Landau study. Phys Rev E. 2016;94. doi: 10.1103/Phys-
RevE.94.043308

[97] Ma PW, Dudarev S, Wróbel J. Dynamic simulation of structural phase transitions in 
magnetic iron. Phys Rev B. 2017;96. doi: 10.1103/PhysRevB.96.094418

[98] Perera D, Eisenbach M, Nicholson D, et al. Reinventing atomistic magnetic simulations 
with spin-orbit coupling. Phys Rev B. 2016;93. doi: 10.1103/PhysRevB.93.060402

[99] Nieves P, Tranchida J, Arapan S, et al. Spin-lattice model for cubic crystals. Phys Rev B. 
2021;103. doi: 10.1103/PhysRevB.103.094437

[100] Strungaru M, Ellis M, Ruta S, et al. Spin-lattice dynamics model with angular momen-
tum transfer for canonical and microcanonical ensembles. Phys Rev B. 2021;103. doi: 
10.1103/PhysRevB.103.024429

https://doi.org/10.1103/PhysRevB.70.212409
https://doi.org/10.1103/PhysRevB.77.184428
https://doi.org/10.1103/PhysRevB.77.184428
https://doi.org/10.1016/S0304-8853(00)00492-3
https://doi.org/10.1103/PhysRevLett.90.067201
https://doi.org/10.1063/1.1355328
https://doi.org/10.1103/PhysRevLett.90.207201
https://doi.org/10.1063/1.1846411
https://doi.org/10.1016/j.physb.2005.10.066
https://doi.org/10.1103/PhysRevB.77.224428
https://doi.org/10.1038/s41524-022-00719-5
https://doi.org/10.1063/1.4930971
https://ccfe.ukaea.uk/resources/spilady/
https://doi.org/10.1016/j.jcp.2018.06.042
https://doi.org/10.1016/j.cpc.2021.108203
https://doi.org/10.1103/PhysRevLett.86.898
https://doi.org/10.1103/PhysRevE.94.043308
https://doi.org/10.1103/PhysRevE.94.043308
https://doi.org/10.1103/PhysRevB.96.094418
https://doi.org/10.1103/PhysRevB.93.060402
https://doi.org/10.1103/PhysRevB.103.094437
https://doi.org/10.1103/PhysRevB.103.024429


ADVANCES IN PHYSICS: X  29

[101] Déjardin JL, Vernay F, Kachkachi H. Specific absorption rate of magnetic nanoparticles: 
nonlinear AC susceptibility. J Appl Phys. 2020;128:143901. doi: 10.1063/5.0018685

[102] Dos Santos G, Aparicio R, Linares D, et al. Size- and temperature-dependent magneti-
zation of iron nanoclusters. Phys Rev B. 2020;102. doi: 10.1103/PhysRevB.102.184426

[103] Pankhurst QA, Connolly J, Jones SK, et al. Applications of magnetic nanoparti-
cles in biomedicine. J Phys D Appl Phys. 2003;36:R167–R181. doi: 10.1088/0022-
3727/36/13/201

[104] McNamara K, Tofail SAM. Nanoparticles in biomedical applications. Adv Phys X. 2017 
Jan;2:54–88. doi: 10.1080/23746149.2016.1254570

[105] Usov N, Rytov R, Bautin V. Properties of assembly of superparamagnetic nanoparticles 
in viscous liquid. Sci Rep. 2021;11. doi: 10.1038/s41598-021-86323-x

[106] Gubanova E, Rytov R, Usov N. Dynamics of particles with cubic magnetic anisotropy in 
a viscous liquid. J Magn Magn Mater. 2022;541:541. doi: 10.1016/j.jmmm.2021.168494

[107] Enpuku K, Elrefai A, Gotou J, et al. Difference in ac magnetization between sus-
pended and immobilized magnetic nanoparticles in Néel-relaxation dominant case: 
effect of easy axis alignment in suspended nanoparticles. J Appl Phys. 2021;130. doi: 
10.1063/5.0056481

[108] Elrefai A, Enpuku K, Yoshida T. Effect of easy axis alignment on dynamic magneti-
zation of immobilized and suspended magnetic nanoparticles. J Appl Phys. 2021;129. 
doi: 10.1063/5.0041215

[109] Lyutyy T, Hryshko O, Yakovenko M. Uniform and nonuniform precession of 
a nanoparticle with finite anisotropy in a liquid: opportunities and limitations 
for magnetic fluid hyperthermia. J Magn Magn Mater. 2019;473:198–204. doi: 
10.1016/j.jmmm.2018.10.074

[110] Lyutyy T, Hryshko O, Kovner A, et al. Precession of a fine magnetic particle with fi-
nite anisotropy in a viscous fluid. J Nano Electron Phys. 2016;8:04086–1–04086–5. doi: 
10.21272/jnep.8(4(2)).04086

[111] Lyutyy T, Hryshko O, Kovner A. Power loss for a periodically driven ferromagnetic 
nanoparticle in a viscous fluid: the finite anisotropy aspects. J Magn Magn Mater. 
2018;446:87–94. doi: 10.1016/j.jmmm.2017.09.021

[112] Usadel KD, Storozhenko A, Arefyev I, et al. Frequency-dependent conversion of the 
torque of a rotating magnetic field on a ferrofluid confined in a spherical cavity. Soft 
Matter. 2019;15:9018–9030. doi: 10.1039/C9SM01311C

[113] Zhao Z, Rinaldi C. Magnetization dynamics and energy dissipation of interacting mag-
netic nanoparticles in alternating magnetic fields with and without a static bias field. J 
Phys Chem C. 2018;122:21018–21030. doi: 10.1021/acs.jpcc.8b04071

[114] Trisnanto S, Ota S, Takemura Y. Two-step relaxation process of colloidal mag-
netic nanoclusters under pulsed fields. Appl Phys Express. 2018;11:075001. doi: 
10.7567/APEX.11.075001

[115] Mamiya H, Jeyadevan B. Hyperthermic effects of dissipative structures of mag-
netic nanoparticles in large alternating magnetic fields. Sci Rep. 2011;1:157. doi: 
10.1038/srep00157

[116] Usov NA, Liubimov BY. Dynamics of magnetic nanoparticle in a viscous liquid: ap-
plication to magnetic nanoparticle hyperthermia. J Appl Phys. 2012;112:023901. doi: 
10.1063/1.4737126

[117] Usadel KD. Dynamics of magnetic nanoparticles in a viscous fluid driven by rotating 
magnetic fields. Phys Rev B. 2017;95:104430. doi: 10.1103/PhysRevB.95.104430

[118] Engelmann UM, Shasha C, Teeman E, et al. Predicting size-dependent heating 
efficiency of magnetic nanoparticles from experiment and stochastic Néel-
Brown Langevin simulation. J Magn Magn Mater. 2019;471:450–456. doi: 
10.1016/j.jmmm.2018.09.041

https://doi.org/10.1063/5.0018685
https://doi.org/10.1103/PhysRevB.102.184426
https://doi.org/10.1088/0022-3727/36/13/201
https://doi.org/10.1088/0022-3727/36/13/201
https://doi.org/10.1080/23746149.2016.1254570
https://doi.org/10.1038/s41598-021-86323-x
https://doi.org/10.1016/j.jmmm.2021.168494
https://doi.org/10.1063/5.0056481
https://doi.org/10.1063/5.0041215
https://doi.org/10.1016/j.jmmm.2018.10.074
https://doi.org/10.21272/jnep.8(4(2)).04086
https://doi.org/10.1016/j.jmmm.2017.09.021
https://doi.org/10.1039/C9SM01311C
https://doi.org/10.1021/acs.jpcc.8b04071
https://doi.org/10.7567/APEX.11.075001
https://doi.org/10.1038/srep00157
https://doi.org/10.1063/1.4737126
https://doi.org/10.1103/PhysRevB.95.104430
https://doi.org/10.1016/j.jmmm.2018.09.041


30  R. B. DIBA ET AL.

[119] Usadel KD. Private communication. 2020.
[120] Maralescu FM, Bende F, Sporea I, et al. Non-invasive evaluation of kidney 

elasticity and viscosity in a healthy cohort. Biomedicines. 2022;10:2859. doi: 
10.3390/biomedicines10112859

[121] García-Palacios JL, L ́azaro FJ. Langevin-dynamics study of the dynamical properties 
of small magnetic particles. Phys Rev B. 1998;58:14937–14958. doi: 10.1103/Phys-
RevB.58.14937

[122] Usadel KD. Temperature-dependent dynamical behavior of nanoparticles as probed 
by ferromagnetic resonance using Landau-Lifshitz-gilbert dynamics in a classical spin 
model. Phys Rev B. 2006;73:212405. doi: 10.1103/PhysRevB.73.212405

[123] Allen M, Tildesley D. Computer simulation of liquids. Oxford: Oxford University Press; 
1989.

[124] Fazeli A, Thakore V, Ala-Nissila T, et al. Non-Stokesian dynamics of magnetic heli-
cal nanoswimmers under confinement. PNAS Nexus. 2024;3:182. doi: 10.1093/pnas-
nexus/pgae182

https://doi.org/10.3390/biomedicines10112859
https://doi.org/10.1103/PhysRevB.58.14937
https://doi.org/10.1103/PhysRevB.58.14937
https://doi.org/10.1103/PhysRevB.73.212405
https://doi.org/10.1093/pnasnexus/pgae182
https://doi.org/10.1093/pnasnexus/pgae182

	ABSTRACT
	1. Introduction
	2. Energy, anisotropy and the Stoner-Wohlfarth model: hysteresis
	2.1. Energy of a magnetic moment in a field
	2.2. Magnetic anisotropy
	2.3. The Stoner-Wohlfarth model and hysteresis loops

	3. Exchange, dipolar interactions, magnetostatics
	3.1. Exchange interactions
	3.2. Dipoles, magnetostatics, and shape anisotropy
	3.3. Other interactions

	4. Dynamics: magnetic torque and the LLG equation
	4.1. Torque on a magnetic moment
	4.2. The Landau-Lifshitz-Gilbert equation

	5. Scaling
	6. Coupling magnetic dynamics with particle motion
	6.1. Coupling of nanoparticle rotational and magnetization dynamics
	6.2. Example

	7. Concluding remarks
	Funding
	Acknowledgments
	Disclosure statement
	References

