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Abstract

Colloidal gels are an important class of materials with mesoscale building blocks, and
they have wide-ranging applications, from water purification to cement to biotechnol-
ogy. However, the formation of colloidal gels is beset by inadequate control over phase
behaviour and slow aging kinetics. In this work, we report on experiments that ex-
amine structure, structural relaxation and dynamics in colloid-polymer suspensions,
with fine, tunable control: the concentration of non-adsorbing polymer controls the
strength of a depletion attraction, and an external electric field induces dipolar inter-
actions that are instantly switchable and tunable in strength. ßWith these switchable
interactions, we have studied the “dipolar-depletion” phase diagram in real space via
fluorescence confocal laser scanning microscopy. We show combining depletion with
dipolar interactions, at lower polymer concentrations, lowers the field threshold for
observing ordered sheet-like dipolar structures. At intermediate polymer concentra-
tions, depletion-induced clusters suppress field-induced ordering. At high depletion
strengths, we can create partially ordered gel states. We also quantitatively char-
acterize the transition from reversible to irreversible structures, and use the cycling
of the external field to accelerate aging in a gel-forming system. For processes that
take months or years to study, such as the collapse of certain gels, such accelerated
aging would prove extremely useful. In addition, we characterize our model system
by measuring the Zeta potential and charge on the colloids that we use to study the
phase diagram via both AC and DC microelectrophoresis. We compare AC and DC
measurements and find that there is no electrode polarization effect in a partially
polar solvent.
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Lay summary

Colloids – mesoscale particles suspended in a fluid – are found in many forms, and
their study is highly relevant for industrial applications. Colloidal studies can be
conducted by finely tuning the particle interaction by altering the particle coating,
solvent conditions, or solutes present.

Colloids are often seen as an experimental model systems to understand “phase
transitions”: how atoms and molecules crystallize or fail to crystallize. Importantly, it
is also possible to form a gel from colloidal particles under certain conditions. Gels are
a disordered network of particles. They have wide-ranging applications from water
purification to cement to biotechnology but the formation of colloidal gels is beset by
inadequate control over phase transitions and by very slow aging kinetics.

We have conducted experiments on a colloid-polymer mixture. The colloids are
hard-sphere-like: we control the electrostatic screening length by adding salt, we
measure it via the conductivity, and measure the colloid charge using AC microelec-
trophoresis. In our research, we create an experimental colloidal model system that
combines two important interactions — depletion interactions (by adding polymer)
and the dipolar interaction (by applying an external electric field) — and report a
novel phase diagram. Depletion is an isotropic, short-ranged attractive interaction
that gives rise to disordered cluster and gel states. Dipolar interactions give rise to
anisotropic ordered structures; since they are electrically controlled, they are switch-
able and tunable. This provides fine, tunable control over colloidal phase transitions.

Using a field-induced tunable interaction, we show that we can accelerate the
aging process in gels by cycling the field on and off. Our work is an example of how
introducing novel combinations of interactions results in new phase behavior, leading
the way for new classes of materials.

iv



Acknowledgements

I would like to express my gratitude to my supervisors, Dr. Anand Yethiraj and
Dr. Ivan Saika-Voivod. This thesis would not have been completed without your
invaluable supervision, support and guidance. I enjoyed and learned a lot from the
numerous and often long discussions we had. I can not imagine having better super-
visors and mentors for my Ph.D. Your advice on research as well as on my career has
been invaluable.

I would also like to thank my supervisory committee Dr. Kris Poduska and Dr.
James LeBlanc, for their insightful comments and questions. My sincere thanks
goes to Dr. Alfons van Blaaderen for collaborating with us and allowing me to
conduct research in their lab at Utrecht University in the Netherlands. I thank
Anna Nikolaenkova for showing me how to perform microelectrophoresis experiments
and preparation of the sample cell. I have significantly benefited from our valuable
discussions.

I want to thank many people who contributed to the research through helpful
discussions and other ways. I thank Dr. Valerie Booth for giving me access to the
biochemistry lab to use the DLS equipment. Lars Kurandt-Jaeger from Anton Paar
for a loan of the refractometer to measure the refractive index. I also thank Dr. Celine
Schneider for training me to use NMR. Derrick P. Earle for his help in preparing the
sample cell for the electrophoresis experiment. Venky and Yanitza, for their assistance
in both NMR and rheology experiments. Fred Perry for his technical support in the
lab. I am also very grateful to John Jerrett for helping me recover lost data from the
corrupted external hard drive.

I thank all my friends in St. John’s for a cherished time spent together and for
making me feel at home. I am thankful to Kanachi for her companionship and the

v



delicious food she brings whenever I am busy. Venky for our discussions during coffee
breaks. I thank Yanitza and Somayeh for our get togethers. Kartikay, for our evening
walks and long discussions on any topic over a cup of coffee or chai.

I would also like to thank VigyanShaala International and its team for allowing
me to be a part of their organization that helped me grow professionally. I am very
grateful to Darshana (di) and Vijay (jiju) for always believing in me and providing
their time-to-time guidance in every step of my life.

I also appreciate the love and support from my mother and father. Without their
tremendous understanding and continuous encouragement, it would be impossible to
continue this journey. I thank my sister, Sonali, for always having time for me and
being a bundle of positive energy in my life. I would like to thank my partner Kirti
for always cheering me up when I feel low and understanding me in the process of re-
searching and writing this thesis. I have always enjoyed your inquisitiveness towards
my research, especially my lab. I would also like to thank my uncle (chacha), aunt
(chachi), and Sunita aunty for checking on my well-being through our regular phone
calls.

vi



Statement of contribution

The experiments and analysis discussed in this thesis represent the work that I carried
out during my Ph.D. My supervisors, Dr. Anand Yethiraj and Dr. Ivan Saika-Voivod,
have contributed to the work undertaken as a part of this thesis.

The manuscript, “Tunable colloids with dipolar and depletion interactions: towards
field-switchable crystals and gels” that include results from Chapters 3 and 4, is sub-
mitted to Physical Review X.

vii



Table of contents

Title page i

Abstract ii

Lay summary iv

Acknowledgements v

Statement of contribution vii

Table of contents viii

List of tables xi

List of figures xii

List of symbols xiv

List of symbols xv

List of abbreviations xvi

1 Introduction 1

1.1 Colloids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

viii



1.2 Colloidal Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Dipolar Interaction . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Depletion Interaction . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Characterization and experimental techniques 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 General properties of the solvent mixture . . . . . . . . . . . . . . . 17

2.3 Conductivity measurements on the solvent . . . . . . . . . . . . . . . 18

2.3.1 Debye-Hückel screening length . . . . . . . . . . . . . . . . . . 18

2.3.2 Electrolyte screening by adding tetrabutylammonium bromide
salt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Colloid-polymer suspension . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Suspension Preparation . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Experimental characterization of polymer . . . . . . . . . . . . 21

2.4.3 Electric-field cell preparation . . . . . . . . . . . . . . . . . . . 23

2.5 Confocal laser scanning microscopy (CLSM) . . . . . . . . . . . . . . 24

2.6 Particle Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 The dipolar-depletion phase diagram 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Experimental Section . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Radial distribution function . . . . . . . . . . . . . . . . . . . 31

3.3.2 Bond order parameter . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Dipolar-Depletion Phase Diagram . . . . . . . . . . . . . . . . 39

ix



3.4.2 Quantitative analysis of the ordering, disordering and gel regimes 44

3.5 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . 47

4 Dipolar-depletion: time-dependent phenomena 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Mean square displacement . . . . . . . . . . . . . . . . . . . . 51

4.3 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 Kinetics during phase transition from ordered/disordered struc-
tures to a steady state . . . . . . . . . . . . . . . . . . . . . . 53

4.4.2 Steady-state colloidal dynamics in an external electric field . . 61

4.5 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . 70

5 Study of electrokinetics in a colloidal suspension using microelec-
trophoresis 73

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.1 Electrophoresis . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1.2 Electrode Polarization . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 DC electrophoresis . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.2 AC electrophoresis . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . 94

6 Summary 96

Bibliography 100

x



List of tables

2.1 General properties of a solvent at T = 23◦C. The dielectric constant
value is taken from the dielectric constant plot in Fig. 6 of Ref. [1] . . 17

4.1 Polymer concentration (cp) and corresponding attractive potential strength
(U0/kBT ) estimated from the equation, U0/kBT = cp/c2 where c2 is the
fitting parameter obtained from the graph in Fig.4(e) and UFV T/kBT
from the Free-Volume Theory (FVT) model [2] . . . . . . . . . . . . . 57

xi



List of figures

1.1 Dipolar Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Stacked and staggered configuration . . . . . . . . . . . . . . . . . . . 6

1.3 Depletion Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Characterization of the size of the polymer (polystrene) using NMR . 22

2.2 Schematic diagram of an electric field cell . . . . . . . . . . . . . . . . 23

2.3 Schematic diagram of a confocal microscope . . . . . . . . . . . . . . 25

2.4 Particle tracking of a 2D microscopy image . . . . . . . . . . . . . . . 27

3.1 Radial distribution function (g(r)) at different field strengths (E) . . 32

3.2 Field dependence of g(r) . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Microscopy images in the xy and xz plane . . . . . . . . . . . . . . . 35

3.4 Identifying nearest neighbors using the Delaunay triangulation . . . . 35

3.5 Bond order parameter (ψ̄8) for cp = 3 mg/ml at different field strengths
(E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 The dipolar-depletion phase diagram . . . . . . . . . . . . . . . . . . 40

3.7 Three different regimes in the dipolar-depletion phase diagram . . . . 42

3.8 The height of the first peak of radial distribution function, g(r1) and
fraction of particles with high ψ̄8 (f8) . . . . . . . . . . . . . . . . . . 43

4.1 Reversibility in the dipolar-depletion phase diagram . . . . . . . . . . 55

xii



4.2 Structural relaxation kinetics g(r1, t), time constant τ and a quantita-
tive measure of reversibility, g1 − g0 in different regimes . . . . . . . . 56

4.3 Multiple times cycling through the field . . . . . . . . . . . . . . . . . 60

4.4 Accelerated aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Linear plot of mean square displacement as a function of time for
cp =3 mg/ml at different E . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Mean square displacement at different cp . . . . . . . . . . . . . . . . 64

4.7 Anomalous subdiffusive dynamics . . . . . . . . . . . . . . . . . . . . 66

4.8 MSD at E = 0 for cp from 0 to 5 mg/ml . . . . . . . . . . . . . . . . 67

4.9 Probability distribution of displacements . . . . . . . . . . . . . . . . 69

4.10 From Gaussian to non-Gaussian . . . . . . . . . . . . . . . . . . . . . 71

5.1 The electrophoretic flow in a closed rectangular glass capillary . . . . 79

5.2 Schematic diagram of a rectangular glass capillary with cross-section
dimensions 0.1 mm × 2 mm . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Experimental sample cell filled with colloidal suspension . . . . . . . 83

5.4 DC electrophoresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Response to a sinusoidal AC electric field at f = 0.15 Hz and E = 3.33
V/mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 AC (sine wave) electrophoresis at frequency (f) = 0.15 Hz and E =
3.33 V/mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.7 AC (sine wave) and DC electrophoretic mobilities µe . . . . . . . . . 89

5.8 Electrophoretic mobilities µe as a function of f for both AC and DC
experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.9 Electro-osmotic mobilities µeo as a function of f . . . . . . . . . . . . 91

5.10 Comparison between AC sine and square wave experiment . . . . . . 93

xiii



List of symbols

A amplitude
a particle radius
cp polymer concentration
c∗ overlap polymer concentration
cs salt concentration
ci concentration of ions
D0 diffusion coefficient
dc cut-off distance
Dα generalized diffusion constant
E field strength
e elementary charge
f frequency

g(r) radial distribution function
kB Boltzmann constant
M dimensionless mobility
Mw molecular weight of the polymer
Nn number of neighbors
NA Avogadro number

P (x) probability distribution of displacements
r distance between the particle centers

Rg radius of gyration
RH hydrodynamic radius
T Temperature
t time
U interaction potential
Vex escluded volume
ve electrophoretic velocity
v velocity
vp particle velocity
vl liquid velocity

xiv



List of symbols

zs stationary layer
z depth
Z charge
α anomalous exponent
εo permittivity of vacuum
εs dielectric constant of the solvent
εc dielectric constant of the particle
ζ zeta
η viscosity

κ−1 Debye screening length
Λ0 molar conductance
λB Bjerrum length
λ dipolar strength parameter
µe electrophoretic mobility
ξ polymer to colloid size ratio
ρ density
σ conductivity
σc diameter of a colloid
σp diameter of a polymer
τ structural relaxation time
φ volume fraction
ψs bond order parameter
Ψ dimensionless zeta potential

xv



List of abbreviations

AO Asakura and Oosawa
bcc body-centred cubic
bco body-centred orthorhombic
bct body-centered tetragonal

CHB cyclohexyl bromide
CLSM Confocal laser scanning microscopy
Decalin decahydronapthalene
DCG dipolar chain gel
DID depletion-induced disordering
DIO depletion-induced ordering
DLS dynamic light scattering

DLVO Derjaguin, Landau, Verwey and Overbeek
E.F. Electric Field
fcc face-centred cubic

IDL Interactive Data Language
ITO indium- tin-oxide
MSD mean-squared displacement
NA numerical aperture

NBD 7-nitrobenzo-2-oxa-1,3 diazole
NMR neutron magnetic resonance

PB Poisson-Boltzmann
PS polystyrene

PHSA poly-12-hydroxystearic acid
PMMA poly(methyl methacrylate)
TBAB tetrabutylammonium bromide

xvi



Chapter 1

Introduction

1.1 Colloids

Colloids are particles that undergo Brownian motion in a fluid phase. The random

motion resulting from the collision between the molecules in the solvent and colloidal

particles due to thermal motion is called Brownian motion. This phenomenon was first

observed by Robert Brown in 1827 when studying small pollen grains in water under

a microscope [3]. Later, in 1905, Albert Einstein provided a theoretical explanation

for the Brownian motion in terms of statistical fluctuations [4]. The size of colloidal

particles ranges from nanometres to a few microns. In this size range, Brownian

motion is always important, and enables colloids to effectively sample configurations.

A colloidal suspension is kinetically stable when colloids do not aggregate in a

suspension. Whether the colloidal particles aggregate or not is determined by the

combination of attractive and repulsive forces. The van der Waals force is responsible

for the attraction between the colloids and causes them to coagulate. In a colloidal

system, the attraction between particles results from the coupling between fluctuating

dipoles, whose magnitude depends on the polarizability of a material [5]. Therefore,
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colloidal particles are always dispersed in a refractive index matched solvent to min-

imize such interaction. Another advantage of a refractive-index matched system is

that it suppresses the scattering of light and thus allows confocal microscopy studies

of colloidal suspensions. Colloids can be sterically stabilized by grafting the surface

of the particles with polymer "hairs" that prevents the colloids to aggregate. These

polymer hairs on two colloidal particles are repulsive in a good solvent for the poly-

mer. They can also be charge-stabilised: this results in repulsion between the colloids.

In the 1980s, sterically stabilized poly(methyl methacrylate) (PMMA) spheres were

prepared that behaved like hard spheres and equilibrium phase behavior was observed

[6].

Colloids are of interest from a fundamental point of view as they can be used as an

experimental model system to mimic atomic systems [7]. Unlike atoms, micron-scale

colloids have a typical length scale comparable to the wavelength of visible light:

this makes them accessible for microscopy and light scattering experiments. Also,

the real-space structure and real-time dynamics of colloids can be relatively easily

obtained experimentally due to their large size compared to atoms. In this thesis,

confocal microscopy is used as the main experimental technique to study the colloidal

system in real-time, real space and at a single-particle level.

Over the past decades, colloids have stimulated interest and shed light on funda-

mental problems of condensed matter physics, including the kinetics of crystallization

and the nature of glassy states [7, 8, 9, 10]. Self-assembling colloidal particles thus

provide a fascinating experimental model system for studying the fundamental as-

pects of the crystallizing behavior of atoms. Past studies of colloids have revealed

many interesting phenomena, including a variety of crystal structures, crystal twin-

ning and the glass transition [11]. Colloids behave like hard spheres in the absence of
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all interactions. Computer simulations have predicted, and experiments have found,

that for hard spheres, a fluid phase exists at low particle volume fractions (φ) and for

0.494 < φ < 0.545, the fluid and the crystal coexist. Above φ = 0.58, an amorphous

or glass phase is observed [12]. A very productive synergy between simulation and

experiments has been developed in colloidal self-assembly studies.

1.2 Colloidal Interactions

Colloidal particles dispersed in a sufficiently polar solvent acquire a charge either due

to dissociation of surface groups or due to adsorption of ions from the solvent onto the

surface of the particles. If the surface of the colloidal particle is negatively charged,

free negative ions in the solvent are repelled from the particle surface while positive

ions are attracted towards the surface. Thus, a charged colloid is surrounded by a

diffuse cloud of oppositely charged micro-ions also called as counterions. The surface

charge and the counter-ions around the particles forms the electric double layer. The

concentration of counterions is high close to the particle due to strong electrostatic

interactions between the charge on the particle and ions.

The suspension of charged colloids is often described by a screened Coulomb po-

tential, or equivalently, a Yukawa potential ≈ e−κr/r, where r is the distance between

the centre of the two colloidal particles and κ measures the effectiveness of the screen-

ing and is the inverse of the Debye screening length [13, 14, 15]. In the experimental

system studied in this thesis, van der Waals interactions are likely smaller than kBT .

Their magnitude is somewhat reduced because our particles are sterically stabilized

and the refractive index closely matches with the solvent.

The interaction between hard sphere colloids with diameter σc can be determined
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using linearization of the mean-field Poisson-Boltzmann (PB) theory used by Der-

jaguin, Landau, Verwey and Overbeek (DLVO) [16, 17]

βU(r) =


Uc

exp[−κσc(r/σc−1)]
r/σc

, r ≥ σc

∞, r < σc,

(1.1)

where U(r) is a short range repulsive potential, β = 1/kBT with kB, the Boltzmann

constant and T , the absolute temperature and Uc is the potential at contact. The

potential in contact can in turn be written as

Uc =
Z2λB

(1 + κσc/2)2σc
, (1.2)

where Z is the charge of the colloids and λB is the Bjerrum length of the suspending

medium. Next, one can write an expression for the Bjerrum length,

λB =
e2

4πεsε0kBT
, (1.3)

with e the elementary charge, εs the relative dielectric constant of the solvent and

ε0 the permittivity of vacuum. The Bjerrum length is the distance at which the

electrostatic interaction energy between two elementary charges is comparable to the

thermal energy, kBT . For the system used in this thesis (PMMA in CHB-decalin),

λB = (9.2± 0.5) nm.

Finally, the Debye screening length is given by,

κ−1 = (8πλBcs)
− 1

2 , (1.4)
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where cs is the concentration of the salt. The κ−1 is the thickness of the double

layer surrounding a colloidal particle and also a measure of the interaction range

between two colloids. In our system κ−1 has a value of 0.095 ± 0.005 µm and σc =

1.3 µm. Typically, charged colloids of diameter σc can reasonably be treated as hard

spheres if σc � κ−1 i.e. κσc � 1; practically, a system with κσc ∼ 10 can be termed

“hard-sphere-like”.

Another advantage of using colloids as a model system is that the interactions

between colloids can be tuned, for example, by adding salt to screen charges, by

adding polymer to induce attractive “depletion” interaction [18, 12, 19, 20] or by

using various other methods to produce anisotropic interactions [21, 22, 23, 24]. In

Section 1.2.1 and 1.2.2, we further discuss the anisotropic dipolar interaction and

polymer-induced depletion interactions in detail.

1.2.1 Dipolar Interaction

Due to their relatively large size, colloids can easily be influenced by an external

field, like an electric field, a magnetic field or gravity. The application of an external

electric field can be used to manipulate the interactions, dynamics and structure of

colloids in a suspension. When an electric field is applied, colloidal particles acquire a

dipole moment parallel to the field due to a dielectric constant mismatch between the

particles and solvent. These induced dipoles are always aligned with the field (z-axis)

as shown in Fig 1.1(b). At sufficiently large external electric field, the polarization

of the colloids due to the field results in forces much stronger than the Brownian

forces, and hence leads to structural transitions in the colloidal suspension [25, 26, 27].

Previously in experimental studies, at lower particle densities and sufficiently strong

fields, formation of strings (chains) was observed [28, 29, 30, 31].
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Figure 1.1: Dipolar Interaction. (a) application of electric field. (b) Dipolar chains along

the direction of electric field (z axis).

Figure 1.2: Stacked and staggered configuration. Two dipolar chains interacting through

the (a) stacked interaction (b) the staggered interaction.

The interaction between two chains is attractive at close distances if they are half

a particle diameter out of phase along the field direction z (“staggered”) and repulsive

if the particle positions in the chains are “in phase” or “stacked” along z (Fig. 1.2)

[32]. The attractive interaction between chains leads to the formation of sheets (along

the z axis), which are metastable. At high densities and high electric field (i.e., high

dipolar strength), the body-centered tetragonal (bct) phase is known to be the stable

structure. The bct structure manifests as an in-plane structure (perpendicular to the
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electric field) with four-fold symmetry [26, 33, 34, 25, 35, 36]. The dipolar interaction

is tunable in strength and instantly switchable. The dipole-dipole interaction between

the particles separated by the displacement vector R = (r, θ) is expressed as [32],

Udip(r, θ)

kBT
=
λ

2

(σc
r

)3 (
1− 3 cos2 θ

)
. (1.5)

Here, θ is the angle that r forms with the z axis along the direction of the electric

field as shown in Fig 1.1(a) and λ is the dimensionless prefactor. λ is also called the

dipolar strength parameter,

λ =
4πε0εsβ

2σ3
cE

2

2kBT
, (1.6)

where E is the electric field, ε0 is the permittivity of vacuum and εs is the dielec-

tric constant of the solvent. The polarizability of the particles in the suspension is

determined by β,

β =
εc − εs
εc + 2εs

, (1.7)

where εc is the dielectric constant of the particles.

The dipole-dipole interaction energy scales with the particle volume (σ3
c ) and the

square of the external electric field (E) (eq. 1.6). According to equation 1.5, colloids

attract if θ < 54.7◦ or θ > 125.3◦, and repel otherwise.

The addition of long-range or electrostatic repulsion to the colloidal suspension

can keep particles separated and stable against aggregation. Yethiraj et al. [35] and

Leunissen et al. [37] explored ordered crystalline phases in real space using confocal

microscopy in a charged and sterically stabilized colloidal suspension consisting of

PMMA spheres, stabilized by polyhydroxystearic acid, and dispersed in a solvent
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mixture of cyclohexyl bromide (CHB) and decalin. This solvent mixture matches

both refractive index and density of the particle, allowing bulk 3D measurements

with little sedimentation. They showed that combining electrostatic repulsion and

field-induced dipolar interparticle interactions gives rise to a rich phase sequence that

includes body centered tetragonal (bct), face-centred cubic (fcc), body-centred cubic

(bcc) and body-centred orthorhombic (bco) phases.

Agarwal et al. reported that chains of particles aggregate to form a well-defined

stable cellular network, possibly due to weak van der Waals attractions competing

with dipolar interactions [38]. Field-switchable dipolar interactions have also been

used to uncover path-dependent routes for crystal-to-crystal phase transformation ki-

netics in ultrasoft microgel colloids [39], and this is an example of how combinations

of interactions help drive the development of new classes of materials. Field-induced

interactions can be further useful for understanding and finding applications for elec-

trorheological fluids. When an electric field at sufficiently high field strength is applied

to a colloidal suspension with dielectric constant mismatch, the chain-like or columnar

sructures formed results in changes to the rheological properties of the system. This is

known as the electro-rheological effect [25, 34]. The electric field is used as a pseudo-

thermodynamic temperature to study the dynamics of the melting transition of a bct

crystal into a string fluid phase. The study of phase diagrams in such a system helps

in understanding the mechanisms by which equilibrium and non-equilibrium phase

transitions take place.

1.2.2 Depletion Interaction

The order-disorder transition of particles having purely repulsive interactions becomes

richer when attractive interactions are added [11]. Such attractive interactions lead to
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a gas-liquid phase transition. There are many ways to control colloidal interactions,

discussed above in this section. In a colloidal suspension, the addition of electrolytes

to screen the electrostatic repulsion between charged particles can induce aggregation

due to van der Waals attractions. This onset of aggregation further obscures the

equilibrium gas-liquid transition. An alternative approach to produce a weak, long-

range attraction between colloids is to add non-adsorbing polymer to a suspension

[11, 40]. The addition of a non-adsorbing polymer induces an effective “depletion”

attraction between the particles, first predicted by Asakura and Oosawa [41], leading

to a separation between colloid-rich (liquid-like) and colloid-poor (gas-like) phases.

There is a spherical shell of thickness σp/2, referred to as a depletion zone, around the

colloidal particles from which the mass centers of the polymers are excluded (Fig. 1.3).

Each colloid reduces the free volume available to the polymer by an amount Vex,

Vex =
4π

3

(σc
2

+
σp
2

)3
=
π

6
(σc + σp)

3, (1.8)

When two colloidal particles approach each other sufficiently closely (r < σc+σp), the

individual excluded volumes overlap. This overlap leads to an increase in available

free volume to the polymer. The extent to which this increase in volume available to

the polymer is favoured entropically can be modelled through an effective interaction

potential U , given by [42]

U =


∞ r ≤ σc

−ΠVoverlap σc < r ≤ σc + σp

0 r > σc + σp

(1.9)
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where Π is the polymer osmotic pressure, V overlap is the overlap volume of the depletion

zones, r is the distance between the particle centers, σc is the diameter of the colloidal

particles, and σp = 2Rg is the effective diameter of a polymer with radius of gyration

Rg. The depletion interaction may thus be seen to emerge by the creation of a

polymer “vacuum” in Voverlap, and thus an imbalance of the force on the colloids from

the polymer osmotic pressure. The depletion interactions between colloidal particles

is easy to manipulate by varying the interaction range set by the polymer size (2Rg)

and depth of the potential, which is well controlled by the polymer concentration, cp.

In the Asakura and Oosawa model (AO-model), the colloids are considered as hard

spheres and polymers as small spheres with no internal conformational degrees of

freedom and are excluded from the colloids by a centre-of-mass distance of (σc + σp)/2.

As polymer chains are added, attraction between colloidal particles increases causing

the colloidal suspension to phase separate into a colloid-rich (colloidal liquid and

crystals) and colloid-poor (colloidal gas) region at high polymer concentrations. Such

microscopic interactions between particles can control the phase stability of colloid-

polymer mixtures. According to the AO-model, the colloid-colloid attraction increases

monotonically with cp.

In the 1980s, Napper [43] and Vincent [44] suggested that the restabilization of

the colloidal dispersions occurs at high polymer concentrations. This is due to the

presence of the polymer chains that hinders colloid-colloid interactions and thus avoids

the aggregation as cp increases. It was further studied by Yethiraj et al. [45] where

they modeled a colloid-polymer system such that colloid particles were treated as

hard spheres and the polymer as a string of freely jointed hard spheres suspended in a

solvent that doesn’t interact with either colloids or the polymer. Their study proposed

the existence of non-monotonic behaviour in the attraction between particles as cp
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increases. At a moderate cp, particles aggregate whereas at high cp, restabilization

was observed [45]. Hence, it contradicts the AO approach at large cp due to polymer-

polymer interactions [46].

Figure 1.3: Depletion Interaction. Two hard spheres of size σc are surrounded by the

depletants of size σp. The excluded volume per particle Vex (eq. 1.8) is indicated by the

dashed line (spherical shells) around the colloidal spheres (shown in green). The polymers

impose an osmotic pressure on the colloids which results in an attractive interaction when

there is an overlap of the excluded volumes (Voverlap).

In the absence of polymer, a fluid phase exists at a low volume fraction, φ < 0.494,

and for 0.494 < φ < 0.545, fluid and crystal coexist. For φ > 0.58, an amorphous

phase or a glassy state is observed [12]. In 1983, based on the AOmodel, Gast et al [47]

found that the addition of polymer expands the fluid-solid coexistence region when

Rg < σc. In addition, for sufficiently large ξ = Rg/σc, a stable fluid-fluid and a three-

phase coexistence of colloidal gas, fluid and solid was observed. For ξ < 0.3, the fluid-

crystal coexistence region broadened, whereas a fluid-fluid phase transition was found

for ξ > 0.3. For ξ ≈ 0.4, a coexisting gas-liquid-solid three phase system was predicted

based on the theory of Lekkerkerker et al. (polymer-polymer interactions are ignored)

[48]. This three-phase coexistence region was further experimentally demonstrated

by the work of both Pusey et al. [49] and Leal-Calderon et al. [50]. Subsequently,
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Ilett et al. [51] experimentally determined the phase diagrams of colloid-polymer

mixtures with ξ = 0.08, 0.24 and 0.57. At ξ = 0.08, gas-solid coexistence and at ξ

= 0.57, gas-liquid coexistence was observed that was consistent with the result from

the theory of Lekkerkerker et al. [48]. At ξ ≈ 0.24, a crossover between the two

topologies, gas-solid coexistence and gas-liquid coexistence, was found.

In past years, phase diagrams with similar topologies as functions of ξ and cp have

been extensively studied theoretically, experimentally, and with computer simulations

[18, 52, 53, 51, 54, 55, 19]. It was found that the phase diagram of colloid-polymer

mixtures has a sensitive dependence on ξ and cp. Dibble et al. [18] observed the

structure of a colloid-polymer system on increasing the short-range interactions by

varying cp. Their experimental model system consisted of monodisperse sterically

stabilized PMMA spheres dispersed in density and refractive index matched solvent

mixtures (CHB and cis-trans decalin) that minimized the effects of sedimentation, and

van der Waals forces. In such a system, where the screening parameter κσc = 1.39

(note: such a relatively small value means this is not a hard-sphere system), turning

on polymer-induced short-range attraction, with ξ= 0.043, gives rise to a network of

particles and clusters. The non-adsorbing polymer used as the depletant is monodis-

perse polystyrene (PS), a linear polymer, of molecular weight Mw=900,000 g/mol

with Rg = (43± 1) nm. As the depletant concentration is further increased, clusters

become increasingly immobile [18]. In this thesis, we have used confocal microscopy

and a similar experimental model system with ξ= 0.066, and κσc = 13.7 ± 1.1 (which

indicates a more hard-sphere-like system).

Campbell et al. [55] explored the phases as a function of the particle volume

fraction φc and cp. A phase change from a fluid of small, spherical stable clusters to

the clusters forming a solid connected network of particles at high cp was observed
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[55]. This network of densely packed strings of particles with no change in local

structure was identified as a gel [55, 18]. A substantial amount of work has been done

to understand the dynamics of gels [56, 57, 20, 58]. Gels are arrested amorphous

materials characterized by the presence of an open percolating network that forms at

low volume fractions [51, 18, 55]. Controlling the state point by varying cp in a colloid-

polymer mixture results in a gel state at high cp [18, 59]. The onset of cluster and

gel formation in a system with short range attractions can be parameterized by φc, ξ

and strength of attraction, U/kBT . This framework for attractive colloids has been

discussed by Lu et al. in Fig. 4 of Ref. [19] where three phases: fluid, fluid of clusters

and gel phase were observed in a three-dimensional state diagram. For colloids with

short-range attractions comparable to kBT , the gelation boundary coincides with the

equilibrium liquid-gas transition and gel formation appears to be driven by spinodal

decomposition [59].

Colloidal gels have been extensively studied theoretically, experimentally and with

computer simulations [42, 51, 53, 54, 18, 19, 59, 55]. Stronger inter-particle bonding

results in non-equilibrium kinetics with power-law cluster size distributions [60, 58].

While there is some understanding of mechanisms of gel formation, gel aging (a slow

dynamical process where the properties of a gel continue to change with time) and

failure are less understood. There have been reports of multi-scale dynamics [20], an

increase in gel strength up to the point of failure [61], and dynamic precursors for the

catastrophic failure under constant load [62], but a coherent understanding is lacking.

While one can drive phase change or gelation with depletion interactions, obtaining

the true interaction potential (U/kBT ) in such a system is a challenge. Interaction

between particles results in a fluid to solid transition depending on the magnitude of

U/kBT . Teece et al. [2] and Dibble et al. [18] have reported values for U/kBT by
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using the AO theory [41] that seem unrealistic. These values are very high compared

to the previous reported range of well depths obtained via experiments [63] as well

as simulations [64] for the onset of aggregation and phase separation. In contrast, Lu

et al. [19] experimentally determined U/kBT using the cluster mass distribution of

particles and report much more reasonable values (i.e., the right order of magnitude)

that are in agreement with both experiments and simulations.

In this thesis, we discuss experiments on a unique set of colloidal interactions

where field-induced dipolar and attractive depletion interactions are added together

to hard sphere colloids. Introducing an interaction with fine, tunable control to a

colloidal-polymer suspension increases the degree of control over phase behaviour.

In such a system with multiple interactions, we have also experimentally set up a

dynamical method to determine U/kBT from a known cp that defines the state in a

phase diagram.

1.3 Thesis Outline

In Chapter 2, we focus on the properties of colloids suspended in a solvent of in-

termediate polarity and the tools we use to study them. In Chapter 3, we report

experiments and analysis of the phase behaviour while varying both the polymer

concentration (depletion interactions) and field strength (dipolar interactions). We

study the phase transitions in the dipolar-depletion phase diagram where the exter-

nal electric field is used as a switch to reversibly and repeatedly change phase in

a sample. On applying switchable dipolar interactions to depletion colloids, we re-

port a new “dipolar-depletion” phase diagram (Chapter 3). In this phase diagram,

we encounter both an ordering regime where depletion attraction results in stronger
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dipolar ordering, and an inverted ordering regime where stronger depletion attrac-

tion results in disordering. In Chapter 4, with the help of a control parameter i.e.,

an external electric field, we probe reversibility in both the ordered and disordered

regime in the phase diagram. We also accelerate the aging phenomenon by cycling

through the field. Here, an external field is used as a switch to achieve reversible

control of interparticle interactions such that we can cycle through a phase transi-

tion several times, resulting in better quantitative studies of phase transition kinetics

(Chapter 4). To further investigate aging in our system, we also study the dynamics

that show an interesting transition from a liquid-like to a gel-like behaviour. We also

measure the charge on colloids that we use to study the phase diagram in Chapter

3 and 4. In Chapter 5. we discuss a technique called micro-electrophoresis that we

use to measure charge in our refractive index matched system. We use two different

micro-electrophoresis methods i.e., AC and DC. We compare these two methods to

understand the polarization effect in a non-aqueous solvent by measuring the velocity

v of colloids in an electric field E and compute the electrophoretic mobility (µe) as a

function of frequency.



Chapter 2

Characterization and experimental
techniques

2.1 Introduction

In the experiments discussed in this thesis, we use fluorescent-labeled polymethyl

methacrylate (PMMA) spherical colloids suspended in the solvent mixtures of cy-

clohexyl bromide (CHB) and cis-trans decahydronapthalene (decalin). The density

of the solvents is matched with the particle density by tuning the mass ratios of

CHB and cis-trans decalin to reduce the sedimentation. At density matching, the

refractive index of the solvent mixture and PMMA particle is nearly identical. This

minimizes the light scattering and fluorescence confocal microscopy can be used to

look into the bulk of such a suspension. Therefore, PMMA colloids suspended in such

a non-aqueous solvent mixture have been used widely as a model system in colloid

science.

This chapter outlines the properties of PMMA and the solvent mixtures of CHB

and decalin that are being extensively used in the experiments described in other
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chapters. It also addresses experimental techniques and particle tracking methods

used for the characterization and analysis. The particle tracking method is used to

extract the two dimensional (2D) or three dimensional (3D) particle coordinates from

confocal microscopy image stacks.

2.2 General properties of the solvent mixture

We use a refractive index and density matched system consisting of spherical PMMA

colloids in a solvent mixture of CHB (80wt%) and cis-trans decalin (20wt%). To

“clean” the solvent, we de-ionize the solvent before use by first adding activated alu-

mina (Al2O3; 58A, ∼ 150 mesh, Sigma-Aldrich) and keep the solvent in a rotator for

a day. We then centrifuge the solvent for 10 minutes such that alumina sediments to

the bottom, and remove the clean solvent to another vial. After that, we add molec-

ular sieves (4A, 10-18 mesh, Acros Organics) to the solvent and keep it undisturbed

for 2 days [65]. The physical properties of the solvent mixture are summarized in

the table below. The rheometer in our lab (MCR 301) was used to determine the

viscosity of the solvent mixture. The refractive index measurement was done using a

refractometer on loan from Anton Paar.

Table 2.1: General properties of a solvent at T = 23◦C. The dielectric constant value is

taken from the dielectric constant plot in Fig. 6 of Ref. [1]

solvent mixture
viscosity, η
(mPas)

density,
ρ

(kg/l)

dielectric
constant, εs

Refractive
Index

CHB/cis-trans decalin 2.12 ± 0.05 1.17 6.1 ± 0.3 1.49 ± 0.01
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2.3 Conductivity measurements on the solvent

The conductivity of a solvent is linked to the concentration of ionic solutes in the

suspension. Therefore, it is related to the Debye-Hückel screening length, κ-1.

2.3.1 Debye-Hückel screening length

An exponential distance dependence of the electric potential arises from the lin-

earized Poisson-Boltzmann equation, with a characteristic lengthscale that is called

the Debye–Hückel screening length (discussed in Section 1.2),

κ−1 =

√
εsε0kBT

2NAcie2
. (2.1)

In the above, e = 1.6×10−19 C is the elementary charge, NA = 6.022 × 1023 is

Avogadro’s number, εs = (6.1 ± 0.3), the relative dielectric constant of the solvent,

ε0, the permittivity of the vacuum (8.85× 10−12 F/m) and ci is the concentration of

dissociated ions in the solvent. The ion concentration in a suspension is estimated

from the conductivity by using the following relation,

ci =
σ

Λ0
, (2.2)

where σ = 18000 × 10−12 S/cm (1 Siemen is 1 Ω−1) is the conductivity and Λ0 =

22.65 cm2S/mol, is the molar conductance of the electrolyte at infinite dilution. The

conductivity measurements are performed on a Scientifica model 627 conductometer.

It works for conductivities ranging between 0.1 pS/cm and 20000 pS/cm. The solvent

CHB with dielectric constant ε ≈ 7 can be classified as a partially-polar solvent in
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which charge dissociation occurs spontaneously in comparison to apolar solvents with

ε ≈ 2 [65]. The ionic species H+ and Br− present in CHB arise from a partial

decomposition of CHB and are the major species that contribute to the conductivity

[66, 65]. We use available literature values to obtain a rough estimate for Λ0 for HBr

in CHB by using Walden’s rule [67]. Walden’s rule states that the product of viscosity

η and Λ0 for a solvent is the same for different solvents.

Λ0
1η1 = Λ0

2η2, (2.3)

where Λ0
1 is the (unknown) molar conductance in CHB, Λ0

2 is the (known) molar

conductance in reference solvent 2 and η1 and η2 are the viscosities of the respective

solvents. Here, the reference solvent 2 is ethanol (Λ0
2 = 88.9 cm2S/mol and η2 =

1.08 mPas) and the unknown Λ0
1 of CHB is calculated using eq. 2.3 where η1 =

2.26 mPas at T = 293 K is from the literature [68].

We determine the Debye length ( κ−1) of the solvent mixture containing 20 wt%

cis-trans decalin in CHB using eq. 2.1. For ci = 7.95 × 10−7 mol/L, we calculate

κ−1 = (0.095± 0.005) µm.

2.3.2 Electrolyte screening by adding tetrabutylammonium bro-

mide salt

Cleaning of the solvent significantly reduces the amount of HBr acid in the CHB,

resulting in a long Debye length, up to ∼10 µm. However, for the experiments dis-

cussed in this thesis, hard sphere system like behavior is required. Such interactions

were controlled by tuning the Debye screening length by adding salt, tetrabutylam-

monium bromide (TBAB). The concentration of TBAB added to the suspension is
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73± 2 µM. The addition of salt increases the conductivity, resulting in smaller Debye

lengths. The extent of screening in such a low-polar solvent can be determined by

the electrolyte concentration.

2.4 Colloid-polymer suspension

2.4.1 Suspension Preparation

The solvent mixture of CHB/cis-trans decalin is added to dry PMMA particles in

a small vial. The PMMA particles used in the experiments were synthesized by

Andrew Schofield [69]. They are sterically stabilized with poly-12-hydroxystearic

acid (PHSA). The suspension is then mixed on a vortex mixer for a few minutes until

no trace of dry particles is visible. PMMA particles are porous, and when suspended

in CHB/decalin, they swell slightly over time. Therefore, the suspension is kept for

at least 2 days to equilibrate before an experiment. The diameter (σc) of PMMA

in the CHB-decalin mixture used in the experiments is 1.3 µm. The suspension was

found to be density and refractive index-matched in a mixture of 20 wt% cis-trans

decalin in CHB. To induce a short-range attractive depletion interaction in a system,

a stock solution of non-adsorbing polystyrene polymer was added to the dry PMMA

colloidal particles and then the mixture is vortexed for 5-10 minutes. As reported in

the literature, the solvent mixture of CHB-decalin is a good solvent for the polymer

polystyrene [18]. In a good solvent, polymer behaves like a random coil whereas in a

poor solvent a single polymer chain collapses [70].
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2.4.2 Experimental characterization of polymer

The non-adsorbing polymer used to induce an effective attraction between colloids

is monodisperse linear polystyrene (Pressure Chemical, Pittsburgh, PA) of molecular

weight Mw = 9.0 × 105 g/mole and polydispersity Mw/Mn ≤ 1.10. The range and

magnitude of attraction interaction in a colloid-polymer suspension is controlled by

varying polymer size i.e., radius of gyration, Rg, and concentration, cp. Therefore, it

is important to characterize the Rg and overlap concentration c∗, of the non-adsorbing

polymer. The overlap concentration is one of the most important characteristic prop-

erties of a polymer solution. At concentrations c < c∗, the so-called dilute regime,

the steric and frictional interactions due to neighboring polymer coils are negligible

[71]. The concentration at which the imaginary spheres circumscribing neighbour-

ing polymer coils are close enough to overlap is termed as the overlap concentration

[72, 18],

c∗ ∼=
3Mw

4πR3
gNA

. (2.4)

To calculate c∗, the Rg of the polystrene is determined by using two different tech-

niques, nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). Both

these techniques measure the diffusion coefficient (D) of the particle. Then using the

Stokes-Einstein equation, one can calculate the hydrodynamic radius (RH),

RH =
kBT

6πηD
, (2.5)

where, kB is the Boltzmann constant, T is the temperature and η = (2.12 ± 0.05)

mPa.s is the solvent viscosity .
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Figure 2.1: Measurement of the hydrodynamic radius (RH) of the polymer (polystrene)

using NMR yields a value of (27.5 ± 0.7) nm. This is consistent, within uncertainties, with

the apparent radius from dynamic light scattering (DLS).

Pulse-field-gradient NMR measures the molecular self-diffusion coefficient whereas

dynamic light scattering (DLS) measures the mutual diffusion coefficient. Interactions

between the polymer molecules can be reduced by diluting the polymer solution.

Hence, for DLS measurements, as the concentration is lowered, thus reducing the

polymer-polymer interactions, the measured diffusion coefficient approaches the value

expected for the self-diffusion coefficient. However, practically, reducing polymer

concentration also increases the measurement errors.

For DLS experiments, we have used a series of polymer concentration as shown

in Fig. 2.1. At higher polymer concentration, RH is computed from the mutual

diffusion coefficient, which is not the true polymer size. The RH calculated at lower

concentration is in agreement, within the uncertainty, with the value obtained from

the NMR (self-diffusion coefficient), dashed line. The NMR experiment was carried

out at c = 0.8 mg/ml. The hydrodynamic radius thus obtained is (27.5 ± 0.7) nm.
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The solvent mixture of CHB and cis-trans decalin is a good solvent for polystyrene

[18]. For a good solvent, Rg=1.59RH [73, 74]. Therefore, the experimentally calcu-

lated value of Rg is (43 ± 1) nm. Using Equation 2.4, we find that c∗= 4.5 ± 0.1

mg/ml, not too different from the value, i.e., c∗= 5.3 mg/ml, reported in Dibble et

al. [18].

2.4.3 Electric-field cell preparation

Figure 2.2: Schematic diagram of a top-view of an electric field cell. The sample space that

is filled with colloidal suspension is shown in green.

We use electric field cells made of two optically transparent ITO (indium-tin-oxide)

coated conducting slides with electrodes and a 0.15 mm thick glass spacer (a strip of

#1 coverslip) between the conducting slides, shown in Fig. 2.2. A first conducting

slide (conducting slide facing up) is glued to the microscopic slide using an ultraviolet

curing optical adhesive (Norland Optical Adhesive 61) and dried under the UV lamp

(UV lamp Spectroline model SB-100P) for 15-20 min. A second conducting slide

(with conducting side facing down) is placed on top, with the spacer in between, is

glued on. The connecting wires (0.05mm Ni 95/(Al + Mn + Si)5 thermocouple wire

from Goodfellow) are glued to the conducting plates and dried under the UV lamp.

Then the connection of wires to the conducting plate is made by using a conductive
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silver paint from SPI supplies. The thickness of the sample is measured using a

micrometer gauge. The thickness of the electric field cells used in the experiments is

approximately in the range between 180 µm - 195µm. We apply an AC electric field,

a sinusoidal AC voltage to the cell at frequency 1 MHz. The field strength is in the

range between 0 V/µm and 0.53 V/µm (discussed in Chapters 3 and 4).

2.5 Confocal laser scanning microscopy (CLSM)

In 1957, Minsky first described the principle of confocal microscopy [75]. Confocal

laser scanning microscopy (CLSM) has been used to study the fluorescent dyed col-

loid particles in a suspension discussed in this thesis. In CLSM, laser light is focused

on the colloids using the objective lens which excites the fluorescent dye of colloids.

The sample used for the experiments reported in this thesis was labelled with a flu-

orescent dye, 7-nitrobenzo-2-oxa-1,3 diazole (NBD), that is excited with the laser of

wavelength 488 nm. It excites with blue light and emits green light. For illumination

and detection, the fluorescent dye is matched with the appropriate sets of excitation

and emission filters. The emitted light from the fluorescently labeled particles is then

passed through a dichromatic mirror that transmits light of a longer wavelength and

finally focused on a pinhole and detector as shown in Fig 2.3. The standard single-

point-scanning confocal microscope uses two pinholes, unlike bright field microscopy.

One of these pinholes is placed in the back focal plane of the objective in front of the

light source, and the other one is in the focal plane in front of the detector. Both

these pinholes lie in a focal plane that is conjugate to the plane of the sample in fo-

cus, hence it is called confocal. Therefore, by having a confocal pinhole, light excited

from any point outside the focal plane is efficiently rejected by the detector. Thus,
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Figure 2.3: Schematic diagram of a confocal microscope
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it reduces the noise due to other elements. A 2D image of a slice in the sample is

made by lateral scanning the point through the focal plane at a particular depth. The

sample is imaged point-by-point in a confocal microscope, and only a small portion of

the sample is illuminated, excluding out-of-focus light. When a colloidal suspension

is not refractive-index matched, multiple scattering makes the suspension opaque (an

example is milk). Refractive index matching makes the suspension transparent, and

the particles are only visible because of their fluorescent labeling. The depth of imag-

ing in a refractive-index matched system containing fluorescently labeled particles is

determined by the working distance of the objective lens. This technique can also

be used for the 3D analysis of a colloidal suspension by scanning many thin sections

through the sample at different focal depths [76, 77], thus allowing for both 2D time

series (xyt) and 3D z-stack (xyz). All the images are recorded in one grey-scale im-

age in the range from 0 to 256 for 8-bit recording. The confocal image stack series

are then analyzed to extract the spatial coordinates of the particle using a particle

tracking algorithm written in IDL (Interactive Data Language) [78].

We have used two confocal microscopes, namely a Nikon C1 confocal unit (con-

figured on the front port of a Nikon Eclipse 80-i upright microscope), and a Visitech

VT-Infinity3 confocal unit (configured on the left port of a Nikon TE-2000U inverted

microscope). In the Nikon C1, there is a single pinhole that is scanned, and the de-

tection is also done with a point (photomultiplier tube) detector that is placed behind

a confocal pinhole. In the VT-Infinity3, there is an array of 2500 pinholes that are

simultaneously scanned, and the detector is a fast (pco.Edge 5.5) scMOS camera. For

regular confocal imaging of structure (Chapters 3 and 4) we used the C1 confocal,

while in applications that require rapid imaging of dynamics (Chapter 5) we used the

VT-Infinity3.
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Figure 2.4: (a) Confocal image of PMMA in a solvent mixture (b) Analyzed image using

particle tracking algorithm in IDL.

2.6 Particle Tracking

The microscopy images discussed in this thesis have been analyzed using particle

tracking algorithms described by Crocker and Grier [78, 79]. Colloidal particles in

a suspension are in Brownian motion such that their positions constantly change in

time. Therefore, a sequence or series of images obtained from confocal microscopy

is used to reconstruct the particle trajectories by extracting the particle coordinates.

Particles need to be identified in successive frames to obtain good trajectories to study

the dynamics of a colloid suspension.

For 2D analysis, xy coordinates and time are extracted from a stack of tiff images.

One such image is shown in Fig. 2.4 (a). First, a stack of tiff images are read by

using a function called readtiffstack.pro. Then, the positions of all the local intensity

maxima in the image are identified using the feature finding function, feature.pro.

A circular mask of diameter slightly greater than the particle diameter in pixels is

placed around each of the local maxima, Fig. 2.4(b) and the x and y centroids of
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particles are calculated within the circular mask. The x-y centroids are calculated in

pixels using standard image convolution and the size of a pixel is used to convert the

position coordinates to microns. The information about all the particle positions from

feature.pro is then tracked using track.pro where the input is an estimated maximum

distance moved by a particle in a single time interval. When there is a steady drift,

for example, in the DC electrophoresis experiment (Chapter 5), the magnitude of

the mean drift is subtracted from the position before determining the particle ID,

but then is added on to calculate the mean square displacement. The maximum

displacement moved in a single time interval is quickly estimated by eye during the

image acquisition process using image visualization software, Fiji. The output from

track.pro contains a list of data sorted into a series of trajectories, and track.pro also

assigns a unique identity (id) number to each identified trajectory. The analysis for

a 3D data set is done in a way that is analogous to that for a 2D + time dataset,

with the correlation of features in subsequent frames being used to identify the z

coordinate rather than to obtain dynamical information.



Chapter 3

The dipolar-depletion phase diagram

3.1 Introduction

In this chapter, we explore the phase behavior when polymer-induced depletion inter-

actions and field-induced dipolar interactions are added together to hard-sphere-like

colloids. In our experiments, we use a widely-used simple model system amenable to

both theory and experiment that is composed of micrometer-sized PMMA colloidal

particles and polystyrene (PS) polymer dispersed in a solvent mixture of CHB and

cis-trans decalin at a fixed φ = 0.10 and ξ = 0.066. We have demonstrated exper-

iments on both colloidal suspension and colloid-polymer solution at different field

strengths. We establish a new dipolar-depletion phase diagram and quantify different

regimes in the phase diagram using the radial distribution function and local bond

order parameter in the 2D xy plane for field along z−direction.

This chapter is organized as follows. First of all, we describe our experimental

approach and data analysis methods in Sections 3.2 and 3.3, respectively. In Section

3.4, we discuss results with respect to the dipolar-depletion phase diagram (3.4.1) and

quantitative analysis of the phase diagram (3.4.2). Finally, we summarize our main
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conclusions in Section 3.5.

3.2 Experimental Section

We use fluorescently labeled polymethyl methacrylate (PMMA) spheres obtained

from A. Schofield (Edinburgh). The particles are fluorescently labeled with 7-nitrobenzo-

2-oxa-1,3 diazole (NBD). The PMMA colloids of diameter σc = 1.3 µm are dispersed

in a refractive index and density matched solvent mixture of CHB and cis-trans

decalin. To obtain a hard-sphere-like system, we add salt, tetrabutylammonium bro-

mide (TBAB), to the solvent mixture that screens the electrostatic interactions. Non-

adsorbing polymer, polystyrene of molecular weight, Mw=9.0×105 g/mol, Rg = (43

± 1) nm and ξ = 2Rg/σc = 0.066 is used as a depletant. The size of polystyrene

is measured using dynamic light scattering (DLS) and nuclear magnetic resonance

(NMR) (discussed in Chapter 2). The Debye screening length of particles, κ−1, in a

suspension with TBAB, is (0.095 ± 0.005) µm, and κσc = 13.7±1.1. The conductivity

of the solvent is measured using a Scientifica model627 conductivity meter.

We prepare colloidal suspensions with φc = 0.10 by mixing dry particles with

the stock solution of the polymer at different cp and then vortexing the mixture

for 5-10 min. Before experiments, a particle suspension is allowed to equilibrate for

at least 3-4 days. The suspension is then transferred to an electric-field cell where

two ITO (indium-tin-oxide) coated slides with electrodes and a 0.15 mm thick glass

spacer in between is used (Fig. 2.2, Chapter 2). Samples are visualized using a Nikon

C1 confocal microscope using a 60x magnification oil immersion objective lens with

numerical aperture NA = 1.4 and an excitation wavelength of 488nm. Images are

recorded at a scanning speed of approximately 1.49 frames per second where 2D xy
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cross-section images have a field of view 256×256 pixels (1 pixel has a side length of

0.276 µm). The centres of particles are located using particle tracking routines by

Crocker and Grier [78]. For an electric field experiment, the field strength E (peak

amplitude of a sinusoidal oscillation at 1MHz wave) ranges between 0 V/µm and 0.53

V/µm. The electric field is generated using a function generator (Tektronix AFG

3022) at a constant peak-to-peak voltage, i.e, 5 V and a wide band amplifier (Krohn-

Hite7602M) is used to vary the gain to yield a zero-peak potential difference ranging

from 0 to 100 V, yielding a zero-peak field strength in the range between 0 V/µm

and 0.53 V/µm.

3.3 Data Analysis

3.3.1 Radial distribution function

In a colloid-polymer mixture, fluid structure can be affected by adding anisotropic

dipolar interaction to the system and varying cp as well. The change in the structure

is reflected in the radial distribution function (g(r)). For a dilute colloidal dispersion,

g(r) = exp(−U(r)/kBT ) (3.1)

where U(r) is the pair interaction and kBT is the thermal energy. It gives information

about the average spacing between the particles and thus, the structure of a system.

We characterize the positional order through g(r) by analysing the position of particles

in two dimensions [78]. We compute the 2D g(r), in the 2D xy plane of a 3D system

where the electric field is applied along the z-axis, by analyzing a sequence of 100

images with a 256 × 256 pixels field of view at different field strengths. In the 2D
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Figure 3.1: Radial distribution function (g(r)) at different field strengths (E). a) cp =

0 mg/ml at E = 0.37 V/µm and 0.53 V/µm b) cp = 3 mg/ml at E = 0.37 V/µm and 0.53

V/µm. c) cp = 5 mg/ml at E = 0.37 V/µm and 0.53 V/µm. Height of the first peak of

g(r) denoted by g(r1) in the graphs varies E and cp. Regions of interest shown are of size

128×128 pixels in the x-y plane with the field applied perpendicular to the plane of images.
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Figure 3.2: Field dependence of g(r). Radial distribution function (g(r)) at different field

strengths (E) and polymer concentrations a) cp = 0 mg/ml b) cp = 3 mg/ml c) cp =

5 mg/ml and d) cp = 10.3 mg/ml. The cut-off distance dc (black dotted line) is optimally

a value slightly less than the second g(r) maximum.

g(r) analysis, first, we count all particles that are in a spherical shell of thickness dr

at a distance r away from a reference particle. This total count is further divided

by the total number of particles (N) and then it is divided by the volume of the

spherical shell which is 2πrdr for a two dimensional g(r). Further, the calculated

g(r) is normalized by the particle number density. The resolution along the depth

direction, i.e., along z, is not as good as the xy resolution due to the larger point

spread function (PSF) along z. Therefore, at high fields when we have dipolar chains

with particles in contact, we restrict ourselves largely to imaging in two dimensions.

Fig. 3.1 shows both 2D snapshots, for different cp at field amplitudes E = 0.37 V/µm

(left panel) and 0.53 V/µm (right panel), and the corresponding 2D g(r), from which

the height g(r1) of the first peak, at r = r1, is determined. We observe, for cp =

0 mg/ml, 3 mg/ml and 5 mg/ml, that g(r1) increases when the field is increased from

E = 0.37 V/µm to E = 0.53 V/µm. The individual particles in the 2D snapshots

are actually chains in the field direction (z-axis, into the page) as shown in Fig. 3.3

(b, right panel). The height of the first peak of the radial distribution g(r1) function

quantifies the nearest neighbor particle in a first coordination shell.
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In addition, Fig. 3.2 shows g(r) for cp = 0 mg/ml, 3 mg/ml, 5 mg/ml and

10.3 mg/ml at different E. For cp = 0 mg/ml, there is an initial decrease in the

height of the g(r1) peak, along with a small increase in the peak position r = r1. This

is likely because of the formation of dipolar chains, which would repel each other. At

the highest field, however, the peak position shifts back towards lower r1 and the peak

height increases. This indicates the formation of chain-chain clusters, which require

neighbouring chains to be offset in registry by half a particle diameter (“staggered”

[32]). The chain-chain interaction is repulsive if the particle positions in the chains

are “in phase” or “stacked” along z, while the interaction is attractive if they are

half a particle diameter out of phase (“staggered”). At cp = 3 mg/ml, 5 mg/ml and

10.3 mg/ml, g(r1) increases as field strength increases from 0 V/µm to 0.53 V/µm

due the formation of ordered and disordered structures in the xy plane (discussed

below in Section 4.4.1).

Further, we quantify the symmetry in a structure by considering the neighboring

particles of a given particle. A cut-off filter is applied: the distance between two

particles must be less than a cut-off distance dc in order for them to be considered

neighbours. The value of this cut-off distance is set to dc = 3.3 µm≈ 2.5×σc (Fig. 3.2);

this value is obtained by examining the g(r) at zero field and picking a value just less

than the second maximum of g(r) such that it also includes some second nearest

neighbor particles. The sensitivity of this method was fine-tuned by using more than

one dc and then comparing images that are labeled with the obtained local order

parameter with the actual image of particles. This is shown next.
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Figure 3.3: Microscopy images captured in the a) xy and b) xz plane for cp = 0 mg/ml at

E = 0.00 V/µm and 0.53 V/µm respectively. At E = 0.53 V/µm particles form long chains

along the direction of electric field.

Figure 3.4: Identifying nearest neighbors using the Delaunay triangulation. a) 2D mi-

croscopy image of colloidal particles with a field of view 139×56 pixels (1 pixel = 0.276 µm)

at cp = 3 mg/ml and E = 0.53 V/µm. Tracked particles are marked with an id. b) Nearest

neighbors are identified using both the Delaunay graph (black) and Voronoi diagram (red).

Local bond order parameter ψ̄s when b) s = 4 and c) s = 8. Blue color particles indicates

a high order parameter i.e., when ψ̄s > 0.5 and low order (ψ̄s ≤ 0.5) is indicated by a green

color.
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Figure 3.5: Bond order parameter (ψ̄8) for cp = 3 mg/ml at different field strengths (E).

a) 2D Images captured in the xy plane at different E with field of view 256×256 pixels

b) Structure becomes more ordered, i.e., high 8-fold symmetry as E increases. Blue color

denotes ψ̄8 ≥ 0.5 and green indicates ψ̄8 ≤ 0.5.

3.3.2 Bond order parameter

We assess the orientational order by determining the bond order parameter from

the retrieved positions of the colloidal particles. The bond order parameter helps in

distinguishing between a particle in the fluid and the solid phase by extracting infor-

mation about the local symmetry around each particle [80, 81]. In our experiments,

we determine the local order around particles at different cp and E using the average

bond order parameter [82]. We begin by defining a complex quantity for each particle

k [36, 83],

ψks =

∣∣∣∣∣ 1

Nk

Nk∑
j=1

eisθkj

∣∣∣∣∣ , (3.2)

where Nk is the number of nearest neighbors of particle k, and θkj is the angle between

the line connecting particle k to a neighbouring particle j and a reference axis, here
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taken to be the x-axis. Applying the ideas of Ref. [82] to two dimensions, the average

bond order parameter for each particle is then defined as,

ψ̄s(k) =
1

Nk + 1

Nk+1∑
j=1

ψks . (3.3)

The sum runs over all the nearest neighbors of particle k and particle k itself. Hence-

forth, we usually omit the argument of ψ̄s(k), and simply write ψ̄s, understanding

that it is a quantity defined for an individual particle. While we calculate ψ̄s for

s = 2, 4, 6, and 8, we find that s = 8 is a robust indicator of local 4-fold symmetry

with disorder (Fig. 3.4) as it precludes the need to distinguish between the nearest

and next-nearest neighbors [84, 85].

In order to identify the neighbors, we first perform a Delaunay triangulation [86].

In this process each particle coordinate is connected to its neighbors such that it

forms triangles where no circumcircle of any triangle contains any particle coordinate.

After this first step of identifying neighbors of particles, we use dc obtained from g(r)

(Fig. 3.2) as a second parameter to further filter the non-neighbors. Fig. 3.4 shows

the neighbors identified for a 2D microscopy image of particles, shown in Fig. 3.4(a),

using both the Delaunay triangulation (black lines) and a Voronoi diagram (red lines).

In the Delaunay triangulation, a 4-fold structure can sometimes encounter diagonal

bonds as shown in Fig. 3.4(b) where, for example, particle 2 and 5 are diagonally

connected to particle k = 10. These diagonal bonds can be accommodated by using

s = 8 for 4-fold symmetry as shown in Fig. 3.4(c) [10, 36]. Green color particles

indicate a disordered structure when ψ̄s is less than a certain threshold parameter (t),

that we set to be 0.5, and blue is for an ordered structure with high 4-fold symmetry

where ψ̄8 is greater than t. In Fig. 3.4, where t = 0.5, it is clear that setting s = 8

does a notably better job of identifying regions with high four-fold symmetry.
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We calculate ψ̄8 for each particle at different cp and E. Fig. 3.5 shows more

ordered structure with 8-fold symmetry i.e., a steady increase in regions with high ψ̄8

(blue particles) with increase in field. In particular, there is a sharp increase at E =

0.47 V/µm and 0.53 V/µm, compared with E ≤ 0.42 V/µm.

We see in Fig. 3.4(b and c) that ψ̄8 captures the square symmetry of the bct crys-

tallite rather well. Nevertheless, it can be seen that even in the samples of highest

crystallinity (for example the right-most image in Fig. 3.5), a large fraction of the

sample is composed of sheets (colored green or low ψ̄8 by the local bond order color-

ing). We thus find that the fraction of the image containing high-ψ̄8 order, denoted

as f8, is a very useful metric.

The fraction fs is a global order parameter. Another global order parameter is

〈ψs〉 =
1

N#

N#∑
k=1

ψ̄s(k), (3.4)

where N# would normally be the total number of particles in the image N . In

our work, we find it useful to use an alternative, i.e., N# = fsN . This follows the

analysis and discussion in previous work on polycrystalline colloidal films [83]. In

the bct crystals, e.g., in the right-most image in Fig. 3.4, the latter choice selects

just the crystallites (blue particles) and not the sheets (green particles) joining the

crystallites.

In summary, we characterize the structure of our experimental model system

through a two-dimensional g(r), ψ̄s, the fraction of particles in a 2D image with

high ψ̄s, denoted as fs, and 〈ψs〉 For detection of bct order in 2D images, we use

s = 8.
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3.4 Results and Discussion

In a colloid-polymer mixture, transitions between the fluid, cluster phases and the

gel are governed by several factors [18, 19, 87, 88]. In our experiments, we vary

cp and the dipolar strength by changing the electric field E, but keep fixed both

ξ = 2Rg/σc = 0.066 and φ = 0.10.

3.4.1 Dipolar-Depletion Phase Diagram

We summarize the “dipolar-depletion” phase diagram, new to our experiments, in

Fig. 3.6(a). With increasing cp and at zero field (column 1 of Fig. 3.6(a)), one increases

only the strength of the depletion interaction. This results in isotropic clustering of

particles at larger cp. In the rest of the phase diagram (columns 2 to 8) the depletion

strength increases from cp = 0 mg/ml to 10.3 mg/ml and the electric field increases

from E = 0.11 V/µm, (2nd column from left) to 0.53 V/µm (right-most column).

With increasing electric field, a subtle difference in focus is seen between E = 0

V/µm and 0.37 V/µm due to the formation of dipolar chains along the direction of

electric field in the xz plane. In the latter case, most particles are simultaneously in

focus. At field amplitudes of E = 0.37 V/µm or higher, each particle in the 2D field

of view is a long chain in 3 dimensions (chains along z) as can be seen in Fig. 3.6(b)

and (c).

As already hinted at in Fig. 3.1, there are two distinct dipolar-depletion regimes.

The dilute polymer regime, cp < c∗, where c∗ = 4.5 mg/ml is the polymer overlap

concentration for our system, and the semi-dilute polymer regime, cp > c∗. Increasing

the depletion strength, by increasing the polymer concentration from cp = 0 mg/ml to
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Figure 3.6: The dipolar-depletion phase diagram. a) 2D microscopy images of a colloid-

polymer mixture as a function of polymer concentration, cp and electric field strength, E.

Each image ROI shown here is 128 pixels × 128 pixels (1 pixel = 0.276 µm). cp increases

from 0 mg/ml (top row) to 10.3 mg/ml (bottom row) as a function of external electric

field (E) from 0 V/µm in the left-most column to 0.53 V/µm in the right most column.

Green, yellow and red arrows qualitatively show the different regimes in the phase diagram

and shifts in the field threshold (E) with cp for observing ordered and disordered colloidal

structures. Green and red arrows: field threshold lowers for cp = 0 mg/ml to 3.00 mg/ml and

cp = 7.3 mg/ml to 10.3 mg/ml. Yellow arrows: field threshold increases for cp = 4.00 mg/ml

to 6.00 mg/ml. c∗ (red, dashed line) is the overlap polymer concentration. b) 3D views

(20.24×34.64×40.63 µm3) (generated using OVITO [89]) and inset, 2D confocal microscope

images of the suspension, at cp =3 mg/ml for no-field (0 V/µm, left) and maximum field

strength (0.53 V/µm, right) respectively. c) 3D view and 2D confocal image of a single

spanning cluster at cp =10.3 mg/ml for 0 V/µm (left) and 0.53 V/µm (right).



41

3 mg/ml ( Fig. 3.1), we see at E = 0.53 V/µm that the dipolar structure is enhanced

and g(r1) increases from 1.6 at 0 mg/ml to 5.5 at 3 mg/ml. Curiously, increasing cp

from 3 mg/ml to 5 mg/ml results in a significant decrease in order and a lower value

of g(r1) is observed at 0.53 V/µm.

For cp between 0 mg/ml and 3 mg/ml (i.e., less than c∗) and E > 0.42 V/µm, more

ordered clusters are observed as we increase cp. In this regime, combining depletion

with dipolar interactions enhances the formation of ordered structures i.e., the field

threshold for the formation of ordered structures decreases as we increase cp. This

is indicated by green arrows in Fig. 3.6(a) where the field threshold is lowered for

cp = 0 mg/ml to 3 mg/ml. On the other hand, for 3 mg/ml < cp < 6 mg/ml and

E > 0.42 V/µm, structural order decreases with increasing cp and the field threshold

for the onset of ordered structures increases: this is indicated by yellow arrows in

Fig. 3.6(a).

A third structuring regime is observed at cp = 7.3 mg/ml and 10.3 mg/ml. We ob-

serve clusters and individual particles coexist when no field is applied (E = 0 µm). At

E = 0.53 V/µm, big clusters with larger voids are observed. Occurrence of these net-

work of clusters and large voids is observed at lower field strength for cp= 10.3 mg/ml,

i.e., the increase in cp decreases the field threshold for the formation of disordered

clusters.

Therefore, we can visually classify the phase diagram at Emax = 0.53 V/µm into

3 different regimes (Fig. 3.6(a). Different regimes are shown by green, yellow and

red arrows in the phase diagram. We show, in Fig. 3.6(b, left), a 3D image of the

colloid-polymer mixture in the fluid phase for a sample with cp = 3 mg/ml at E =

0 V/µm. This fluid phase transitions to dipolar chains in the z direction and bct

crystals in the xy plane (Fig. 3.6(b, right)) as field strength increases to 0.53 V/µm.
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Figure 3.7: Three different regimes in the dipolar-depletion phase diagram at Emax ≈ 0.53

V/µm, quantified by displaying a) g(r1), b) 〈ψ8〉, 〈ψ6〉 and c) f8, f6 as a function of cp.

Three different regimes are marked by different colors in the graph, DIO : depletion induced

ordering (green), DID : depletion induced disordering(yellow), DCG: dipolar chain gels (red).

The fluid phase undergoes arrest to a gel phase as cp is increased to 10.3 mg/ml at

E = 0 V/µm (Fig. 3.6(c, left)). The gel undergoes structural rearrangement and

clusters diffuse to form large aggregates in the xy plane and dipolar chains in the z

direction at E = 0.53 V/µm as shown in Fig. 3.6(c, right).
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Figure 3.8: The height of the first peak of radial distribution function, g(r1) and fraction

of particles with high ψ̄8 (f8) varies with the field strength. a), b) At Emax = 0.53 V/µm,

where phase transition happens, g(r1) increases from cp = 0 mg/ml to 3 mg/ml due to

increase in the ordering of the structure and local orientational order, f8, increases as well.

c), d) Both g(r1) and f8 decreases in the second regime (DID). e), f) g(r1) again increases

in the third regime (DCG) from cp = 6 mg/ml to 10.3 mg/ml whereas f8 further decreases

in this regime due to the formation of large disordered structures.
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3.4.2 Quantitative analysis of the ordering, disordering and

gel regimes

Fig. 3.7 helps quantify the above observations using the 2D g(r) peak amplitude

at r = r1 (corresponding to the nearest-neighbor maximum) at E = 0.37 V/µm

(intermediate field strength) and Emax = 0.53 V/µm (high field strength) respectively.

Different regimes are shown by green, yellow and red shading in the graph, which

correspond to the green, yellow and red arrows in the phase diagram (Fig. 3.6).

In Fig. 3.7(a), we compute the 2D g(r) by analysing a sequence of 100 images

with a field of view of 256×256 pixels at different field strengths (Fig. 3.7(a)). We

see at high field (E = 0.53 V/µm) that g(r1) (the height of the g(r) peak at r = r1)

increases in amplitude with increasing cp for cp < 3 mg/ml. No such increase is seen

at lower field (E = 0.37 V/µm). We also report the global order parameters (〈ψ8〉

and 〈ψ6〉) in Fig. 3.7(b) and the fraction of particles with high ψ̄8 and ψ̄6 denoted

as f8 and f6 respectively in Fig. 3.7(c). For cp < 3 mg/ml, 〈ψ8〉 increases while

〈ψ6〉 decreases. This implies that the dipolar ordering is enhanced, in this regime, by

increasing depletion strength. We call this the depletion-induced ordering (or DIO)

regime.

Between cp = 3 mg/ml and 6 mg/ml, the opposite trend is seen. g(r1) decreases

for large E with increasing cp (yellow shaded regime in Fig. 3.7(a)) and so does 〈ψ8〉

(blue shaded regime in Fig. 3.7(b)). In this regime, increasing depletion strength

weakens dipolar order. We call this the depletion-induced disordering (DID) regime.

For cp > 6 mg/ml at E = 0.37 V/µm and at higher fields, an increase in g(r1) is

coupled with a continued decrease in 〈ψ8〉 to a value of 0.58 comparable to the value

of 〈ψ6〉. This signifies the formation of disordered clusters. Note that these clusters
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at high field are clusters in the xy plane of dipolar chains (along z). We call this the

dipolar chain gel (DCG) regime.

In Fig. 3.7(c), we notice that f8 and f6 follows the same trend as seen for 〈ψ8〉 and

〈ψ6〉 shown in Fig. 3.7(b). The fraction of particles in each image that shows high

ψ̄8, denoted as f8 is a clear indicator of square symmetry, which in our experiments

denotes bct order. Sheets (along z axis), which show up as linear structures in these

2D images have low ψ̄8 beacuse the crystallites are small. Therefore, f8 is in fact a

robust order parameter, which we use in all that follows.

In Fig. 3.8, we plot g(r1) and f8 as a function of E, for the different sets of cp

that correspond to the different ordering regimes, DIO, DID and DCG. By examining

the E dependence of these structural quantities, we hope to better understand the

non-monotonic behaviour of g(r1) with cp at 0.53 V/µm shown in Fig. 3.7(a).

At lower fields, for E < 0.37 V/µm, there is a decrease in g(r1) with E (Figs. 3.8(a)

and (c)), and an increase of f8 with E (Figs. 3.8(b) and (d)), in both the DIO and DID

regimes. Even at these weaker fields, there is still a tendency to form chains along the

z-axis, chains that feel a dipolar repulsion except at very close distances. Thus, in this

low-field regime, increasing E increases chain-chain repulsions. This spreads out the

first peak in the 2D g(r) and pushes it out to larger r, and so effectively increases the

packing fraction. In weakly repulsive colloidal systems, one can recover hard-sphere-

like behavior simply by using an effective hard-sphere diameter, i.e., Reff = κ−1 +R.

Thus, one can rationalize the increase in chain-chain repulsions as increasing the

effective packing fraction. This in turn is consistent with an increase in f8.

At higher fields, E > 0.37 V/µm, where formation of sheets and dipolar (bct)

structure is observed, as shown in Fig. 3.6, g(r1) behaves differently for the cp ranges

corresponding to DIO and DID. For DIO (0 ≤ cp ≤ 3.0 mg/ml), in Fig. 3.8(a),
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g(r1) rise more steeply with E as cp increases: depletion enhances ordered crystal-

like dipolar structures. This trend is also reflected somewhat less precisely in 〈ψ8〉,

as shown in Fig. 3.8(b). In contrast, for DID (3 ≤ cp ≤ 6.0 mg/ml), the trend is

reversed; g(r1) rise more steeply with E as cp decreases. For DID, depletion reduces

dipolar ordering.

How do we rationalize the non-monotonic concentration dependence of g(r1) seen

in Fig. 3.7(b) and above E = 0.4 V/µm in Fig. 3.8(a) and (c)? First, the universal

decrease in g(r1) at low fields in the DIO and DID regimes arises from in-plane dipo-

lar repulsion between colloids. As the field approaches 0.4 V/µm, system-spanning

chains form along the field direction. Above 0.4 V/µm, we can rationalize the observa-

tions as a competition between dipolar chain-chain repulsions and depletion-induced

attractions. The chain-chain interaction is repulsive if the particle positions in the

chains are stacked along z, while the interaction is attractive if they are half a par-

ticle diameter staggered: see Figures 1 to 3 in Almudallal et al [32] for a pictorial

discussion. There is thus an energetic barrier, i.e., stacked chains must stagger, in

order to form sheets or a bct crystal. In this picture, in the DIO regime, increasing

polymer concentration increases the strength of attractions, lowering the chain-chain

repulsive barrier to forming sheets and bct crystals, while in the DID regime, the

isotropic attractions are strong enough to create disordered stacked chain-chain clus-

ters that compete with bct ordering. Additionally, while dipolar interactions strongly

favor linear chains along z, isotropic attraction strongly favors compact clusters, the

formation of which would disrupt the dipolar chains.

The above rationalization of the non-monotonic cp dependence of dipolar struc-

turing assumes that attraction increases monotonically with cp. Previously reported
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non-monotonicity in the depletion interaction itself [44, 45], while an intriguing pos-

sibility, is expected to arise only at concentrations much larger than the overlap

concentration.

For polymer concentrations corresponding to the DCG regime, cp = 7.3 mg/ml

and 10.3 mg/ml, in Fig. 3.8(e) we see that g(r1) once again rises more steeply with

E as cp increases. However, the morphology of the system is quite different. Even

in the absence of a field at E = 0, depletion-induced clusters coexist with free par-

ticles. When we apply an electric field, disordered large-scale clusters (composed

of electrode-spanning columns along z) with much bigger voids are formed. While

dipolar structures dominate in the DIO regime and dipolar and depletion structures

compete in the DID regime, the DCG regime is depletion-dominated. Thus, at the

highest concentration cp = 10.3 mg/ml, significant ordering, as measured by f8, is

not achieved in Fig. 3.8(f), even at E = 0.53 V/µm.

3.5 Conclusion and future work

In conclusion, we have experimentally uncovered a new phase diagram by applying

switchable dipolar interactions to depletion colloids. The competition between dipolar

and depletion interactions gives rise to a rich phase behaviour that includes ordered

(DIO) and disordered (DID and DCG) regimes. In the dilute regime of polymer

concentration, depletion enhances ordering in the colloidal structures whereas in the

semi-dilute regime, disordered structures are observed at higher field strengths. At cp

= 7.3 mg/ml and 10.3 mg/ml, we observe clusters diffuse and form large aggregates

in the xy plane, and dipolar chains along z as field strength increases.

The refractive-index and density matched properties of the fluorescently labeled
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PMMA-in-CHB and cis-trans decalin allowed us to estimate the relevant parameters

from two-dimensional stack of images obtained via confocal microscopy. In particular,

we analyzed the 2D radial distribution functions and local bond order parameters of

the colloidal structures in the phase diagram. In this way, we found the positional cor-

relation and orientational order as a function of field strength and quantified different

regimes in the phase diagram as DIO, DID, DCG.

This work can be extended to simulation studies where colloids can be modeled as

a hard sphere and the polymer as freely jointed chains. The effect of polymer flexibility

or chain configuration around a sphere can be taken into account when the polymer

is modeled as a free chain. Doing simulations in such a system by using the same

parameters as discussed in this thesis, one can find out if a non-monotonic behavior

is observed as reported by other researchers [45, 46]. Further, phase behavior can

be explored by combining dipolar and depletion interactions where polymer chain

configuration is considered. According to AO theory, the polymer is assumed to

be a hard sphere of size smaller than the size of colloids. Therefore, considering

depletant conformations would extend our understanding of dipolar-depletion beyond

AO theory.

We can also use switchable dipolar interactions as a tool to examine the kinetics

and probe reversibility in different regimes of the phase diagram that we discuss in

Chapter 4.



Chapter 4

Dipolar-depletion: time-dependent
phenomena

4.1 Introduction

The kinetics of phase transitions has been a subject of study for quite some time.

They have been studied experimentally via microscopy and scattering techniques.

Colloidal suspensions have been used to study the kinetics of crystal nucleation from

the fluid [90], crystal-crystal transitions [35, 91, 39] and dynamics in glassy systems

[92]. Presently, the underlying kinetic mechanism of such transitions is poorly un-

derstood because of the challenges of controlling the parameter that governs the

phase transition. One way of controlling the interactions between colloidal particles

is adding non-adsorbing polymer to the suspension. Adding a polymer induces an

attraction between the colloidal particles on a scale much shorter than their diameter

[41, 48]. This short-range attraction results in non-equilibrium states not seen in

molecular systems, such as so-called attractive glasses and gels arising from arrested

phase separation [93, 94, 95, 96, 97, 12, 98].
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In the previous chapter, we discussed the structural changes in the phase di-

agram on combining field-induced dipolar and attractive depletion interactions to

hard sphere colloids. We have shown that the local structure of the system is a

strong function of both cp and E in the fluid state. In a hard-sphere colloidal sus-

pension, dynamical studies have characterized the formation of glass due to caging

where dynamics is slower than its liquid precursor [12]. Similarly, understanding

the effect of manipulating control parameters on dynamics could be a key to un-

derstanding gelation. To this end, Dibble et al. [18] have correlated structure to

dynamics in the gel regime where the probability distribution of displacements shows

non-Gaussian behavior as cp increases. They have described a dynamic transition

predicting a strong localization due to strong short-range depletion interactions in a

colloid-polymer mixture.

In this chapter, we focus on two kinds of time-dependent phenomena: the transient

kinetics during phase change from ordered or disordered structures to a steady state,

on one hand, and steady-state colloidal particle dynamics, on the other. First, we

report on reversibility in both ordered and disordered regimes of the phase diagram by

turning off the electric field after structures have formed in its presence. We determine

the structural relaxation time, τ , associated with the 2D structures coming apart upon

turning off the external electric field as a function of cp. Using the dependence of τ on

cp, we establish a dynamical method to determine the attractive potential strength

(U0/KBT ) from a known cp. We also investigate whether cycling through the field

can accelerate aging in the gel state.

We also study the change in colloidal particle dynamics in the dipolar-depletion

phase diagram by determining the mean squared displacement (MSD) and probability

distribution of displacements (P (x)) as a function of both cp and E.



51

4.2 Data analysis

4.2.1 Mean square displacement

The mean square displacement (MSD) describes the magnitude of the particle’s mo-

tion over a specific time interval. The MSD grows linearly with time (t) as,

〈r2〉 = 2dD0t, (4.1)

where r is the displacement, d is the dimensionality of the system, and D0 is the

Stokes-Einstein diffusion coefficient of the colloidal particles [4]. D0, for colloidal

particles of radius Rc in a solvent of viscosity η at temperature T , is given by

D0 =
kBT

6πηRc

, (4.2)

where kB is the Boltzmann constant. In a plot of MSD as a function of t in 2-

dimensions, if MSD ∝ t then the slope of the line is equal to 4D0 and the system is

said to be diffusive.

The mean-squared displacement can also take on a more general scaling form,

MSD = 2dDαt
α where Dα is the generalized diffusion constant [Dα] = m2s−α, and α

is the scaling index [99]. The colloidal particles are in Brownian motion if α = 1, which

is the normal diffusion of Eq. 4.1. If α 6= 1, there is a deviation from the linear time

dependence of the MSD and it is called as anomalous diffusion. There are different

domains of anomalous diffusion: sub-diffusive, when α < 1, and super-diffusive, when

α > 1.
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In this chapter, we analyse MSD in different regimes of the phase diagram as

a function of field strength (E). We determine the time-averaged MSD from the

analysis of time series movies obtained from the confocal microscope as shown in

Fig. 3.6 (Chapter 3). We plot log (MSD) vs log(t) to determine the type of diffusion

occuring in a given system.

One can also understand diffusive motion from probability theory by applying the

Central Limit Theorem to the random walk problem. The Central Limit Theorem

implies that the probability distribution P (r, t) for a particle, initially at the origin,

undergoing a random walk to be at position r is a Gaussian at time t, given by,

P (r, t) = (4πDt)−d/2 exp

(
−r2

2dDt

)
(4.3)

This Gaussian probability distribution function (PDF) shows that the mean square

displacement is equal to the variance of the PDF and increases linearly with t [100],

∫
r2P (r, t)dr = 2dDt. (4.4)

4.3 Experimental details

In this chapter we use the same sample used for the phase diagrams in Chapter 3

to study the kinetics during phase change (Section 4.4.1) and steady-state colloidal

dynamics (Section 4.4.2).

To study accelerated aging at high cp, we use fluorescently labeled PMMA spheres

of size σc = 1.3 µm and polymer as a depletant with Rg = (43 ± 1) nm. As described

before, we prepare colloidal suspensions with φc = 0.10 by adding the stock solution
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of the polymer at cp = 7.0 mg/ml to the dry colloidal particles and then vortex the

mixture for 5-10 min. Before experiments, the particle suspension is allowed to equi-

librate for at least 3-4 days. The suspensions is then transferred to an electric-field

cell as shown in Fig. 2.2 (Chapter 2) with cell thickness ≈ 180µm. Samples are visu-

alized using a Nikon C1 confocal microscope using a 60x magnification oil immersion

objective lens with numerical aperture NA = 1.4 and an excitation wavelength of

488nm. Images are recorded at a scanning speed of approximately 1.49 frames per

second where 2D xy cross-sectional images have a field of view 256×256 pixels (1

pixel is 0.2762 µm2).

The electric field in the experiment is generated using a function generator (Tek-

tronix AFG 3022) and a wide band amplifier (Krohn-Hite7602M).

4.4 Results and Discussion

4.4.1 Kinetics during phase transition from ordered/disordered

structures to a steady state

Reversibility in different regimes

We have examined reversibility in the colloidal structures observed in the dipolar-

depletion phase diagram in Chapter 3 (Fig. 3.6(a)). All the experiments described

have been carried out by increasing the field amplitude from 0 to 0.53 V/µm in 7 steps

(as shown in Fig. 3.6). In this section, we do the same, but examine the zero-field

structures both in the absence of history, and at the end of one cycle, i.e., with the field

turned off. Fig. 4.1(a,b,c), at cp = 3 mg/ml, 6 mg/ml and 10.3 mg/ml, respectively,
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shows radial distribution functions g(r) (black and red curves at left). The black

curve corresponds to the middle images in Fig. 4.1(a,b,c), which is taken from the

left-most column of Fig. 3.6(a) with no history of applied field in the sample. The

maximum field in the phase diagram experiments was 0.53 V/µm, images of which

are shown in the right-most column of Fig. 3.6(a). The red curve corresponds to the

right image in Fig. 4.1(a,b,c), which is obtained 300 s after turning off the field from

0.53 V/µm to 0 V/µm.

At cp = 3 mg/ml (Fig. 4.1(a)), the black and red curves are similar, with coinciding

peaks at r ≈ 1.6 µm or 1.2σc, which means the original structure is observed again at

the end of cycle 1, implying no history or memory in the sample after turning off the

field. At cp = 6 mg/ml (Fig. 4.1(b)), the no-history peak is still at 1.6 µm (1.2σc),

but the red (cycle 1) peak becomes smaller and shifts to r ≈ 2 µm (1.5σc), with a tiny

peak at r ≈ 1 µm for cycle 1 which is due to string-like structures observed during

cycle 1 as shown in the 2D image on the right. The fact that the cluster peak occurs

at r < σc is an artifact due to the 2D g(r) analysis of a 3D cluster. There is thus

a small remnant effect of the field applied during cycle 1. At cp = 10.3 mg/ml with

no history (Fig. 4.1(c), black curve), there is once again a peak at r ≈ 2 µm and a

small peak in g(r) at r ≈ 1 µm. After cycle 1, the g(r) peak at r ≈ 2 µm becomes

more extended, owing to particle aggregation, and the string-like clusters are readily

apparent (increasing the g(r) peak at r ≈ 1µm). Hence, history or memory effects

due to field cycling are significantly enhanced at higher polymer concentrations.

In order to quantitatively understand the reversibility in a colloidal structure

when the applied field is turned off, we determine g(r1) as a function of time at

r1, i.e., the position of first peak, for all the polymer concentrations (Fig. 4.2(a)).

g(r1) exponentially decays with time, yielding a characteristic time τ for the colloidal
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Figure 4.1: Reversibility in the dipolar-depletion phase diagram. Comparison of the radial

distribution function, g(r), and representative snapshots, with no history and after one

cycle of turning the field on and off at (a) cp = 3 mg/ml, (b) 6 mg/ml and (c) 10.3 mg/ml

respectively. The black g(r) curve denotes no history of electric field in the sample, i.e.,

before the field is applied, while the red g(r) curve is cycle 1 (field OFF). 2D images (64

pixels × 64 pixels) corresponding to the graphs are captured before turning ON the field

(no history) and after turning OFF the field (Cycle 1)
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Figure 4.2: a) Structural relaxation kinetics g(r1, t) for all the cp after field is turned off is

well fit to an exponential decay with time constant τ . b) The characteristic decay time (τ)

taken by colloidal structures to disintegrate and reach a steady state increases exponentially

with cp. c) Comparing g(r) (no history) with its value after cycle 1 i.e., g1 − g0, provides
a quantitative measure of reversibility: g1 − g0 is zero (reversible) in the DIO regime, but

non-zero at higher cp.

structure to come apart and reach a steady-state plateau value g1 = g(r1, t → ∞).

We extract τ and g1 as functions of cp from exponential fits like those shown in

Fig. 4.2(a). We find that τ increases with cp (Fig. 4.2(b)), and the increase is well fit

to τ = τ0 exp
(
cp
c2

)
with τ0 = (3.2± 1.9) s and c2 = (3.0± 0.6) mg/ml which is close

to c∗ = 4.5± 0.1 mg/ml.

Kilfoil et al. and Teece et al. used the delay time (τ) of sedimentation profiles at

fixed volume fractions and varying cp [101, 2, 102] to determine the increase in the

interparticle interaction energy with cp. They found that the delay time exponentially

increases with cp i.e., τ = τ0 exp(βcp), with β depending on φ. For our system,

β = 1
c2

where c2 = 3.0 mg/ml ≈ 0.256 wt%. Comparing the expected Arrhenius form

τ = τ0 exp(U0/kBT ) of any structural relaxation time with our observed exponential

dependence of τ on cp, we obtain the strength of the attractive potential U0/kBT ≡

cp/c2. The Arrhenius expression is assumed to be valid for an increase in thermal



57

energy having an order of few kBT . This is tabulated in Table 4.1. For example, for

cp = 3 mg/ml, where the system is in the fluid state at zero field, U0/kBT = 1.0,

while for cp = 10.3 mg/ml, where we see a transition from a cluster liquid to a gel

state, U0/kBT = 3.4. These estimates of U0/kBT are more reasonable than the much

larger values (27 and 85 respectively) that are implied by free-volume theory (column

3 in Table 4.1). The reason for unphysically large U0/kBT is possibly related to

the breakdown of the simple free-volume-theory in the semi-dilute regime of polymer

concentration [103]. They are also consistent with previous experiments [63] as well

as simulations that report the range of well depths for the onset of aggregation and

phase separation [64].

Table 4.1: Polymer concentration (cp) and corresponding attractive potential strength

(U0/kBT ) estimated from the equation, U0/kBT = cp/c2 where c2 is the fitting param-

eter obtained from the graph in Fig.4(e) and UFV T /kBT from the Free-Volume Theory

(FVT) model [2]

cp
(mg/ml)

U0/kBT UFV T/kBT

0 0 0

0.5 0.2 4.1

1.2 0.4 10.5

2.2 0.7 19.6

3.0 1.0 26.6

4.0 1.3 35.0

5.0 1.7 43.2

6.0 2.0 51.2

7.3 2.4 61.4

10.3 3.4 84.5
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The attractive potential strength has previously been quantified [18, 2] in the

context of the free-volume/Asakura-Oosawa theory [41, 48], and phenomenologically,

using cluster-size distributions [19]. It is challenging to quantify an interaction poten-

tial strength for a system with multiple interactions. Therefore, we use the relaxation

time of structures coming apart upon turning off the field to calculate the strength

of the depletion attraction strength.

Next, in Fig. 4.2(c), we plot the difference in g(r1) between the steady state zero-

field structure after cycle 1 (g1) and zero-field structure prior to field application (i.e.,

no history, g0). A structure is reversible, showing no history dependence, when g1−g0

is 0. At cp < 5 mg/ml, colloidal structures exhibit no history dependence, whereas

for cp ≥ 5 mg/ml, g1−g0 deviates from 0, i.e., we begin observing effects of aging, i.e.,

dynamically arrested and irreversible structures. At cp = 6 mg/ml (Fig. 4.1(f)), there

is a significant negative dip due to the formation of string-like structures as shown

in the cycle 1 image in Fig. 4.1(b). It should be noted that the primary g(r) peak

contain only part of the information for cp > 3 mg/ml because of the emergence of

the cluster peak at r = 1 µm. At cp > 6 mg/ml, g1−g0 is greater than 0 and increases

further at higher cp as structures remain aggregated during cycle 1 (Fig. 4.1(c)) and

shows a strong dependence on the history of the applied field.

Accelerated Aging

Given the above aging effects, it is reasonable to ask if cycling the field can accelerate

the natural aging in the gel state. To this end, we use field cycling to probe kinetic

pathways at cp = 7 mg/ml where fluid and small clusters coexist at E = 0 V/µm.

We apply an external field to the sample from E = 0 V/µm to 0.42 V/µm, just

before the onset of large aggregates (Fig. 3.6(a), 2nd last row), and then turn off the
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field (E.F. OFF) to 0 V/µm as shown in Fig. 4.3(a) with the corresponding images

in the xy plane for each cycle. First, we record a movie of time length 300 s before

turning ON the electric field (E.F. ON) and we call it “no history”. Then we switch

the field to E = 0.42 V/µm, and when we turn it OFF (E.F. OFF) after 15 min,

g(r1) exponentially decays with time and plateaus in a few seconds (Fig. 4.3(a)); this

plateau region is labelled cycle 1. We repeat the same procedure on the same sample

by again turning ON the field (E.F. ON) to E = 0.42 V/µm and turning it off (E.F.

OFF) to 0 V/µm to obtain the plateau region that is shown in different colors in

Fig. 4.3(a) for each cycle. We record a movie with a 256×256 pixel field of view for

four cycles. We observe g(r1) vary with the number of cycles as shown in (Fig. 4.4(a)).

g(r1) is greater for cycle 4 as clusters persists even after turning off the field, whereas

for no history and cycle 1, g(r1) remains the same. Cycling through the field ages the

structures, which take longer to relax to a steady state (increasing τ in Fig. 4.4(b)),

and the steady state in turn increasingly deviates from the original state increasing

gn − g0 with increasing cycle number n in Fig. 4.4(c).

In order to check if the particles during cycle 4 (Fig. 4.3(a)) return to their original

state with no history, i.e., if the cycling is progressing irreversibly towards a gel state,

we kept the sample undisturbed for a few days. On day 7 we captured the image shown

in Fig. 4.3(b) where emergence of a big network of clustered particles is observed.

Field cycling consequently accelerates particle aggregation, facilitating the formation

of large networks of non-equilibrium immobile gel-like clusters in the field-off state.

We also quantify aging in the structure by determining τ from the exponentially

decaying g(r1) with time (Fig. 4.3(a)). In Fig. 4.4(b), the increase in τ with no. of

cycles shows stronger attraction strength between particles as it takes longer for the

particles in a cluster to come apart. Also, the structural measure of reversibility,
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Figure 4.3: Multiple times cycling through the field. a) Kinetics at cp = 7 mg/ml to probe

reversibility is labeled by number of cycles with corresponding 2D microscopy images of size

128×128 pixels for no history and different cycles. Four colors indicate different cycles of

the experiment. Cycle 1 (red) starts when the applied field is turned off for the first time

and is denoted as E.F. (OFF). The experiment is repeated multiple times by turning on

(E.F. ON) and off (E.F. OFF) the electric field to obtain g(r1) as a function of time (t). b)

2D image (256×120pixel) of the same sample captured on day 7 and averaged over a time

of 13.5 sec showing immobility in the network of clusters.
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Figure 4.4: Accelerated aging. a) The first peak of g(r) for cycle 4 increases as compared

to no history and cycle 1, as clusters in cycle 4 persist for a long time after turning off the

field. b) Decay time (τ) for colloidal structures to come apart in each cycle increases with

number of cycles, showing progressive aging in structure during cycle 4. c) structures are

far away from equilibrium as we increase the number of cycles. During cycle 4, colloidal

structure becomes immobile and takes much longer to return to its original state with no

history.

g1 − g0 is shown in Fig. 4.4(c), that is much larger for cycle 4 compared to the first

three cycles.

4.4.2 Steady-state colloidal dynamics in an external electric

field

The dynamical properties of a system can be quantified using single particle trajec-

tories. A common parameter to quantify the dynamics is the mean squared displace-

ment, MSD. In this section, the MSD in both zero field and at different electric fields,

and the probability distribution of displacements, P (x), is discussed.
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Sub-diffusive behaviour in an electric field

Anomalous diffusion is most commonly observed in living systems. It can arise when

particles interact with the medium in which they move [104] or due to strong cor-

relations in diffusive motion [105]. In a living system, the high density of the cell

environment creates many obstacles for the molecule along its path that leads to

anomalous diffusion [106, 107]. Therefore, it is likely the result of obstacles to dif-

fusion, i.e, particles are intermittently trapped in multiple locations for a period of

time, with traps having a distribution of binding energies or escape times [107].

In a colloidal system, anomalous kinetics is observed near the glass transition.

The local motion of the particles give rise to subdiffusive behaviour for a range of

time scales [92, 108, 109, 110]. The experimental study by Weeks and Weitz [110]

showed that the temporal correlations in the particle motions are due to the cage

effect of glassy systems. This particle caging is directly connected to the subdiffusive

motion. On the other hand, the long time behaviour of the MSD is diffusive, where

cage rearrangements allow particles to move large distances. Furthermore, Zaccarelli

and Poon [109] discussed that each diffusing particle carries with it memory of its

bonded neighbors and hence leading to a subdiffusive behavior.

In this section, we characterize the dynamics of the system under an external

electric field for different cp. First, we calculate the two-dimensional MSD, 〈∆r2(t)〉,

from particle centroids as a function of time. We then fit the data to a power law,

〈∆r2(t)〉 = 4Dtα, where α is the exponent. For normal Brownian motion, α = 1,

while motions that are sub-diffusive result in α < 1.

Consider the example of a sample at cp = 3 mg/ml at different fields (Fig. 4.5).

For E = 0, MSD ∝ t, and one can obtain the diffusion coefficient from the slope,
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Figure 4.5: Mean square displacements for cp = 3 mg/ml at E = 0 V/µm, 0.32 V/µm,

0.42 V/µm, and 0.53 V/µm.

D = 0.078 ± 0.001 µm2/s. Very similar behaviour is observed for E = 0.11 and

0.21 V/µm. As one increases the field above E = 0.21 V/µm, the dependence becomes

sub-linear. In Fig. 4.5, we show a linear plot of MSD vs t where at E = 0 V/µm

diffusion is Brownian and becomes subdiffusive at E > 0.21 V/µm for cp = 3 mg/ml.

Fig. 4.6 shows log (MSD) as a function of log(t) for cp = 0 mg/ml, 3 mg/ml,

5 mg/ml and 7.3 mg/ml (column 1 of Fig. 3.6, Chapter 3) at different field strengths.

For cp = 0 mg/ml and E = 0 V/µm (no field) (Fig. 4.6(a)), we observe that α =1,

indicating normal diffusion. As the field strength increases, the dynamics become sub-

diffusive with α < 1. In Fig. 4.6(a), above E = 0.2 V/µm, α decreases significantly

and is always less than 1. The decrease in α as E increases can also be seen in Fig. 4.7,

where we plot α as a function of E.

In our system, we change the particle interaction strength by varying cp and E

while keeping the particle density constant. For cp = 0 mg/ml (Fig. 4.6(a)), the

deviation from normal diffusion, α < 1, is observed above E = 0.2 V/µm where
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Figure 4.6: Mean square displacements at (a) cp = 0 mg/ml (b) cp = 3 mg/ml (c) cp =

5 mg/ml (d) cp = 7.3 mg/ml. Solid black line at the top of each graph is a reference line of

slope α = 1.
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particles rearrange themselves to form chains in the z-direction. An increase in E

increases the particle-particle interaction leading to an increase in the local packing

fraction. With an increase in E, growth of dipolar chains along the direction of the

field increases and prevents particles in a chain from moving large distances. This

restricted motion at high E due to stiffness in chains and increase in local packing

fraction of particles leads to subdiffusive motion. Similarly, for cp = 3 mg/ml and

5 mg/ml, sub-diffusive behavior in particle dynamics increases with E (Fig. 4.6(b)

and (c)).

The dependence of dynamics and structure of the system on both the particle con-

centration and the magnitude of an oscillating field is discussed in Ref. [111]. Firstly,

the authors observed that an increase in particle concentration leads to subdiffusive

behavior. At higher concentrations, particles are trapped in small cages, resulting in

slowing down of the dynamics. Secondly, in the presence of a magnetic field, the mo-

tion is diffusive at lower fields, and becomes subdiffusive as the field increases. They

report that this subdiffusivity is due to the slowing down of the particle dynamics (via

a smaller diffusivity) and is expected as the magnetic field induces chain formation

in the direction of the field. At high magnetic field, particle positions are correlated

with the initial positions, causing subdiffusivity.

In our experiments, the attractive interaction between the particles is further

increased by adding more polymer. At cp = 7.3 mg/ml and E = 0 V/µm, there is

a coexistence of small clusters and individual particles. This increase in depletion

strength slows down the particle motion, and clustering induces strong correlations of

particles with their initial positions. Therefore, at cp = 7.3 mg/ml when no external

field is applied, α = 0.865±0.001, as shown in Fig. 4.6(d) and Fig. 4.7. As E increases,

chain formation starts in the z direction, leading to the formation of big aggregates
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Figure 4.7: The anomalous exponent, α, decreases as the field strength increases. The black

dashed line indicates the cross-over regime where the dynamics of the system change and

becomes subdiffusive.
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Figure 4.8: MSD at E = 0 for cp from 0 to 5 mg/ml. a) MSD increases linearly with t where

α ∼ 1. b) Diffusion coefficient D is obtained from the slope of MSD vs t plot where α ≈ 1.

in the xy plane where particles are trapped and do not move large distances. Thus

we observe a further decrease in α. In Fig. 4.7, a dashed line shows the cross-over

region beyond which α significantly decreases.

What causes subdiffusive motion, i.e., α < 1, as opposed to just slower diffusivity

with α = 1? Subdiffusion could be due to steric and energetic barriers to particle

diffusion with a broad distribution of escape times, here attributable to heterogeneous

environments within clusters [104]. Further, each diffusing particle may carry along

with it a remnant of its initial geometric cage because of the existence of interparticle

attraction [109]. Within the temporal range probed in our experiments, we observe

subdiffusivity.

Fig. 4.8(a) shows the linear increase in MSD as t increases for cp ranging from 0 to

5 mg/ml. In this range of polymer concentrations α ∼ 1 (Fig. 4.7). At cp = 0 mg/ml,

D ≈ 0.160± 0.001 µm2/s (Fig. 4.8(b)) and the radius obtained from Stokes-Einstein

equation (Eq. 2.5) is close to 1.3 µm.
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Probability distribution function

We determine the probability distribution of particle displacements (P (x)) in the x

direction in the different regimes of the dipolar-depletion phase diagram (Fig. 4.9).

P (x) is calculated in the steady state from particle trajectories by averaging over

multiple time origins. In Fig 4.9, we show P (x) for cp = 0 mg/ml, 3 mg/ml, 5 mg/ml,

7.3 mg/ml and 10.3 mg/ml at t = 10.095 s and at different field strengths: no field

(0 V/µm), intermediate (0.32 V/µm) and high (0.53 V/µm). We measure P (x) only

for relatively short times as the statistics get poorer for longer times. We observed

for cp ranging from 0 mg/ml to 7.3 mg/ml that P (x) has a Gaussian form, as shown

in Fig. 4.9(a)-(d), consistent with liquid-like structure. In contrast, in Fig. 4.6 (a,

b and c), we notice that the MSD as a function of time on a log− log plot shows

subdiffusive behavior, and furthermore the degree of subdiffusivity increases with E.

For example, at E = 0.21 V/µm, α decreases from 0.96 to 0.69 with increasing cp,

while at E = 0.53 V/µm, α decreases from 0.55 to 0.33 with increasing cp. Also, for cp

= 7.3 mg/ml (Fig. 4.6 (d)), we observe subdiffusive behaviour even for E = 0 which

becomes more subdiffusive at high E. For cp = 0 to 5 mg/ml, the Gaussian behavior

indicates that each particle experiences the same homogeneous environment with no

signs of non-Brownian motion in a system that is also consistent with MSD vs t for

no field as shown in Fig. 4.8(a) [112]. Thus, P (x) does not yet look significantly non-

Gaussian at times up to 10 s while the sub-diffusive MSD vs t looks non-Brownian.

This behavior seems interesting and warrants further study.

For cp = 10.3 mg/ml, in Fig. 4.9(e), the distribution is distinctly non-Gaussian

(in fact, exponential, with a cusp at zero displacement) where gel-like clusters are

observed and becomes more non-Gaussian with increasing E. Therefore, a transition

of probability distribution from liquid-like structure to a gel can be seen already
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Figure 4.9: Probability distribution of displacements at t = 10.095 s and different field

strengths: 0 V/µm, 0.32 V/µm (intermediate), 0.53 V/µm (high) for a) cp = 0 mg/ml b)

cp = 3 mg/ml c) cp = 5 mg/ml d) cp = 7.3 mg/ml e) cp = 10.3 mg/ml.



70

at t =10.095 s in Fig. 4.10(a). P (x) has a Gaussian form if a particle experiences

Brownian motion [99]. Therefore, the non-Gaussian dynamics at cp = 10.3 mg/ml

is due to the immobilized clusters that is also a characteristic of a gel-like structure.

Similar phenomena were reported (in the absence of a field) by Dibble et al. [18],

who discussed the slow dynamic behavior and strong departures from a Gaussian

distribution due to immobile clusters at high depletion strength (or cp).

To further quantify the accelerated aging observed in Fig. 4.3 and Fig. 4.4, we

measure P (x) for cp = 7 mg/ml at t = 10.095 s. We calculate P (x) for the case

where no external field is applied (no history), and for all the four cycles where g(r, t)

plateaus as shown in Fig. 4.3(a). P (x) for no history shows Gaussian behaviour

(Fig. 4.10(b)). As we cycle through the field, the interparticle attraction increases:

this is reflected in the increase of τ with cycle number shown in Fig. 4.4(b). Addition-

ally, P (x) becomes progressively and significantly more non-Gaussian (Fig. 4.10(b))

with each cycle. This highly non-Gaussian behaviour shows particles become progres-

sively more localized with each cycle. We further examine this surprising behaviour

by analysing the 2D mean-squared displacement (MSD). We find that the 2D MSD

also becomes increasingly sub-diffusive after each cycle (Fig. 4.10(c)).

4.5 Conclusion and future work

We have provided the first experiments exploring colloidal kinetics using switchable

dipolar interactions as a tool to probe reversibility in both ordered and disordered

regimes of the phase diagram. We find that the structural relaxation time at E =

0 increases exponentially with concentration through all three regimes. Thus, the

breaking apart of structures upon turning off the field takes longer as cp increases.
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Figure 4.10: From Gaussian to non-Gaussian. a) Transition from a Gaussian distribution to

non-Gaussian in a gel-regime for cp ≈ 10.3 mg/ml at t = 10.095 s when no field is applied.

b), c) show probability distribution of displacement and mean square displacement (MSD)

for repeated cycling of the external field that is labeled with cycle no. as shown in Fig. 4.3(a)

at cp ≈ 7 mg/ml and t = 10.095 s.

We use this relaxation time (τ) of structures coming apart to calculate the potential

strength that gives more realistic values compared to free-volume theory [11, 50] (as

shown in Table 4.1). We determine τ as a function of cp, finding that τ exponentially

increases through all three regimes. A static structural measure of reversibility, g1 −

g0, clearly identifies only the lowest cp (DIO) regime as exhibiting reversibility. A

dynamic measure, the probability distribution of displacements, exhibits a crossover

from Gaussian, at low cp, to non-Gaussian with increasing cp, and the mean-squared

displacements also become progressively more sub-diffusive.

We can accelerate aging by repeated field cycling. This is shown for a sample at

cp = 7 mg/ml, that at zero field (no history) is in a cluster liquid state. All quantities

probed show consistent behaviours with increasing cycle number n. The structural

relaxation time τ increases. A structural measure of reversibility, gn − g0, deviates

further from zero. The distribution of displacements goes from near-Gaussian to



72

strongly non-Gaussian (exponential with a cusp at zero displacement). The mean-

squared displacement becomes increasingly sub-diffusive. A week after the end of

field-cycling, the structure is still that of a gel, only somewhat more coarsened.

As an example application of our aging method, in some gels, the time required

to see gel collapse can be months or even years, making the study of such collapse

untenable. Our accelerated aging may allow such studies.

In our experiments, we determine interaction energy from τ that varies exponen-

tially with cp at φ = 0.1. As a further study, one can experimentally find how τ

varies at different volume fractions as a function of cp. In an experimental study

by Kilfoil et al. [101], delay time τ depends exponentially on cp for a single φ, i.e,

τ = τ0 exp(βcp), where β shows the dependence on φ. Therefore, in our system such

scaling behaviour of τ with φ can also be expected. This relation between τ and φ

as a function of cp can determine the onset time for instability or irreversibility in a

colloid-polymer system.

Furthermore, electrorheology (ER) experiments at high cp can help to under-

stand the gel formation from the yield stresses at which the behaviour changes from

liquid-like to solid-like. Such field-induced interactions can be useful in exploring new

materials for electrorheological fluids.



Chapter 5

Study of electrokinetics in a colloidal
suspension using microelectrophoresis

5.1 Introduction

In the early 19th century, Reuss was the first to observe electrokinetic phenomena

[113]. Reuss carried out two simple experiments with an apparatus consisting of a

U-tube with two electrodes [114]. In the first experiment, he put a plug of clay in the

U-tube and observed that the water level rose in one part of the tube on application

of an electric field. This phenomenon is electro-osmosis. In another experiment, he

put quartz sand above the clay plug and observed the field-driven directional flow of

suspended clay particles through the sand layer, which is known as electrophoresis

[115].

In this chapter, we study the electrophoresis phenomenon for a colloidal suspension

in a solvent mixture of CHB and cis-trans decalin that contains the salt, tetrabutyl

ammonium bromide (TBAB), used to control the Debye length. In such a system,
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colloidal particles can attain surface charges in multiple ways: dissociation of the sur-

face group on the colloidal particle, and adsorption of tetrabutyl ammonium ions from

the solution. Therefore, applying an electric field can be useful for manipulating and

characterizing the behavior or properties of the system. The electric field affects the

interaction between the components in a system in many ways, such as polarization

of charges (discussed in Chapter 1). The interactions in a system includes short-range

interactions like the excluded volume and van der Waals interactions, and long-range

interactions, such as electrostatic and hydrodynamic interactions. These interactions

strongly affect the equilibrium and dynamical properties of a system. Studying such

a system has applications in the real-world, such as xerography, where the applica-

tion of an electric field moves charged particles to a charged surface that forms a real

image on the electronic template, and related but more recent, electronic paper.

Colloidal particles in a suspension are surrounded by an electric double layer of

oppositely charged ions due to the electrostatic interaction. Some ions in a suspension

strongly bind to the surface of colloids, which is called the Stern layer, whereas the

diffuse layer is characterized by weakly bound, mobile ions. The thickness of the

diffuse layer is of the order of Debye screening length, κ−1. When an electric field

is applied to the suspension of negatively charged particles, the particles will move

towards the positively charged cathode, whereas surrounding ions in the double-layer

will move in the opposite direction. This process is known as the electrophoresis.

Therefore, the presence of electrical charges at the particle surface and in the solvent

cannot be neglected.

In an aqueous solution, the motion of double-layer ions in the opposite direction

to that of particle motion exerts a friction force on the particles. The electrophoretic

mobility, µe, of the particle in such a system is given by the ratio between the terminal
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velocity, v and the applied electric field, E.

µe =
v

E
. (5.1)

The electrophoretic mobility of a particle depends on the particle size (σc), κ−1

and the electric potential at the boundary of the double layer, known as the zeta

potential. The zeta potential is denoted by the Greek letter ζ. The relation between

µe, and the ζ-potential is reasonably well captured by the Smoluchowksi and Hückel

formulae and the Henry formula (described below).

Smoluchowksi obtained the following relation between µe, and ζ–potential for the

screening length, κσc � 1 (thin double layer):

µe =
εζ

η
, (5.2)

here ε = εsε0 is the permittivity of the solution and η is the shear viscosity of the

fluid. For the opposite extreme condition, i.e. κσc � 1 (thick double layer), Hückel

derived the following equation,

µe =
2εζ

3η
, (5.3)

where retardation and polarization forces due to the movement of counterions were

neglected. Henry derived an expression for the varying double-layer thickness due

to screening of charges by adding salt or intermediate values of κσc with the elec-

trophoretic mobility taking the form [116],
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µe =
2εζ

3η
f1(κσc) (5.4)

where f1(κσc) is a scaling function that interpolates between the Smoluchowski and

Hückel formulae. One may write a dimensionless ζ−potential, Ψ = ζe/kBT and a

dimensionless mobility M = 3ηeµe/2εkBT ; in these units,

Ψ =
E

f1(κσc)
. (5.5)

It is possible to determine the particle’s surface potential and charge using elec-

trophoresis measurements. The surface potential and charge can be determined from

the electrophoretic mobility of a particle. Electrophoretic mobilities can be measured

using several techniques like laser Doppler anemometry, optical tweezers, and confocal

microscopy. In this chapter, we discuss a refractive index and density matched sys-

tem, which allows the use of confocal microscopy for measuring mobility at different

depths, and hence this method is known as microelectrophoresis. This is an excel-

lent method, because one can establish the entire depth-dependent particle velocity

profile, which is composed of both particle electrophoresis and a spatially varying

electro-osmotic fluid flow.

Previously, microelectrophoresis studies have been done on the non-aqueous col-

loidal suspension discussed in this chapter, by Vissers et al. [117] and Hayden et al.

[1]. Vissers et al. [117] studied the effect of strong DC electric fields on the elec-

trophoretic mobility in a concentrated suspension at different depths in a capillary.

Hayden et al. [1] showed the extension to microelectrophoresis through AC mea-

surements in a non-polar solvent. They discussed the frequency-dependent colloid

microelectrophoresis using AC fields at a layer close to the top surface of a capillary
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and also reported, using impedance spectroscopy, that the electrode polarization ef-

fects become significant below a characteristic frequency fc. In aqueous systems, there

have been suggestions that the internal electric field should be suppressed because of

the charge accumulation on the electrodes (electrode polarization) [118, 119]. Ma et

al. [120] have also perfomed AC electrophoresis experiments in aqueous systems at

different frequencies using a technique based on optical tweezers. In their paper, they

do not account for electrode polarization and show a linear regime where mobilities

are independent of frequencies for f between 1 Hz and 100 Hz.

In our experiments, we report mobility values at much lower frequencies i.e., f <

1 Hz where attenuation of the internal electric field is expected to be appreciable

(based on impedance spectroscopy carried out by Hayden et al. [1]). In non-aqueous

colloidal systems there has, to our knowledge, been no prior examination of electrode

polarization at all (except [1]). Therefore, there is a reasonable expectation that the

DC mobilities could be affected due to electrode polarization. In order to know the

effects induced by charge accumulation, we perform AC microelectrophoresis as a

function of frequency. In a review article by Zhou and Schmid [121], the advantages

of AC electrophoresis over DC electrophoresis are highlighted. In AC electrophoresis,

it is possible to tune the frequency and the phase of AC fields, unlike in the DC

method, to study the dynamical process on a selective time scale [122]. Also, the

AC experiment enables checking for and possibly eliminating electrode polarization

effects as well as electro-osmotic flows [121]. Therefore, we need to have a better

understanding of the inter-relationship between the methods.

In this chapter we address the questions: does a DC measurement provide realistic

values of electrophoretic mobility for charged PMMA colloids in a low-polar solvent

mixture of CHB and decalin? What is the frequency dependence of the electrophoretic
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mobility? We use both AC and DC microelectrophoresis to measure the charge on

a colloidal particle and also to see if the results obtained from both the methods

agree with each other. We first calculate electrophoretic mobilities at the stationary

layer from the parabolic profile in a closed capillary (discussed in section 5.1.1 and

5.3). We then compare the mobilities obtained from both the AC and DC methods.

Finally, we switch the waveform of AC driving from sinusoidal to square-wave - the

peak amplitudes should differ by a factor of π/2 – as a crosscheck of consistency.

Once we know the electrophoretic mobility of particles in both AC and DC fields,

it is easy to calculate the zeta-potential of a particle by using the O’Brien and White

scheme, which numerically obtains the nonlinear relationship between the dimension-

less ζ potential Ψ and the dimensionless mobility M as a function of κσc (Eq. 5.5)

[123]. Thereafter, the ζ potential can further be converted into a particle charge Z,

by using the following empirical relation [65, 1]

Z = 4πεsεo
kBT

e
κa

[
2 sinh

(
Ψ

2

)
+

4

κa
tanh

(
Ψ

4

)]
. (5.6)

Here, εs is the dielectric constant of the solvent, ε0 is the vacuum permittivity, kB

is the Boltzmann constant, T is the temperature, κ−1 is the Debye length, a is the

particle radius and Ψ=ζe/kBT .

In this chapter, we first discuss the electrophoresis phenomenon in a closed cap-

illary and the method of calculating velocity at the stationary layer in section 5.1.1.

Further, in section 5.1.2, we discuss the phenomenon of electrode polarization. The

experimental details, including sample and sample cell preparation, are discussed in

section 5.2. Section 5.3 reports the results and includes a discussion of all the meth-

ods used to obtain the mobilities for the case of DC electrophoresis (section 5.3.1)
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and AC electrophoresis with sinusoidal driving (section 5.3.2). In the same section,

we also report the charge on a particle. In section 5.4, we present our conclusions.

5.1.1 Electrophoresis

Figure 5.1: The electrophoretic flow in a closed rectangular glass capillary

The application of an electric field to a sample in a closed capillary sets the

counterions near the charged wall in motion. These counterions then drag along the

fluid (near the wall), resulting in an electro-osmotic flow (EOF) as shown in Fig. 5.1.

To counterbalance this flow, a counterpressure builds up, and a parabolic Poiseuille

flow (PF) arises in the opposite direction that causes a zero net flow at a stationary

layer (zs) on either side of the midplane of depth zc (Fig. 5.1). Thus, the velocity of

colloidal particles (vp) at depth z and height h due to the electric field, in a rectangular

capillary, is the sum of their true velocity (ve) and the local liquid velocity (vl(z))

(section 4.1.3 of Ref. [124]),

vp(z) = ve + vl(z)

vp(z) = ve +
veo
2

(
3z2

h2
− 1

) (5.7)

where veo is the electro-osmotic velocity and h is the distance from the centre, zc, of
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the rectangular capillary to either of the walls. Therefore, near the wall the particle

velocity must be,

vp(±h) = ve + veo (5.8)

and on the axis (centre) of the cell is,

vp(0) = ve −
veo
2

(5.9)

At the stationary layer, zs = h√
3
, the effects of the flow cancel, giving

vp(zs) = ve. (5.10)

The above assumes that the rectangular capillary has a very large ratio of width to

depth (k). In general, for a rectangular capillary zs = zc ± zstat, where zstat is [116]

zstat
h

=

√
1

3
+ 4

(
2

π

)5
1

k
. (5.11)

In our experiment setup, we use a rectangular capillary having a cross-section of 2 mm

× 0.1 mm that has k = 20± 1, the ratio between the major and minor cross-section,

h = 50 µm is the distance from the center of the channel to either of the walls, and

zstat is the distance from the center of the channel to one of the stationary layers

(Fig. 5.1). zstat for our rectangular glass capillary is 29.75±0.24 µm, and is measured

from the center of the capillary.
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5.1.2 Electrode Polarization

An external electric field applied to a sample in a rectangular capillary with electrodes

on both ends of the capillary, shown in Fig. 5.2, sets the particles in motion. The

cloud of ions surrounding the particles will become distorted, leading to a change in

both the local electric field and deformation of the double-layer around the particles.

When an oscillatory electric field (AC field) is applied, there will be charges near

the electrodes within the partly developed double layer that compensate the charges

due to the external electrical field [125]. Hence, electric field will be screened over a

distance of the order of the Debye length. Therefore, due to electrode polarization,

the electric field in bulk, Eint is always smaller than the applied electric field, E. Kang

and Dhont [125] have derived an expression for an electric field Eint, in terms of E

and an attenuation factor γe accounting for electrode polarization, i.e., Eint = γeE,

where

γe =
Ω√

4 + Ω2
. (5.12)

Ω = f/fc is a dimensionless frequency, with fc = D/(2πLκ−1), L is electrode spacing,

D is the ion diffusion coefficient and κ−1 is the Debye screening length. The experi-

mental work of Hayden et al. [1] have estimated the electrophoretic mobility of a par-

ticle by taking electrode polarization into account. In our work, D ∼ 0.5× 10−9m2/s,

L = 5.4± 0.1 mm, and κ−1 = (0.095± 0.005)µm, so fc ∼ 0.15 Hz. At 0.15 Hz in our

system, the attenuation factor would be predicted to be γe ∼ 0.5. Indeed, Hayden

et al. suggested that DC measurements, such as by Vissers et al. [117], should be

very strongly affected by electrode polarization effects. In the experiments discussed

in this chapter, we make a direct test of this and compare the raw, measured AC
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Figure 5.2: Schematic diagram of a rectangular glass capillary with cross-section dimensions

0.1 mm × 2 mm

electrophoretic mobility values with the DC values.

5.2 Experimental Details

Dry PMMA particles are dispersed in a clean solvent mixture of 20 w% of cis-trans

decalin in CHB with salt (TBAB) added to it. Particles suspended in a low polar

solvent mixture slightly swell over time as particles soak up some of the solvent.

Therefore, suspension is allowed to equilibrate for at least two days prior to the

experiments. We use fluorescently labeled colloidal particles of diameter 1.3 µm and

φ = 0.008 for the electrophoresis measurements. The Debye length of the solvent

is 0.095 ± 0.005 µm. The particle suspension is transferred to a rectangular glass

capillary (Vitrocom 0.1 × 2.00 mm), shown in Fig. 5.2 and Fig. 5.3, such that no

air bubble emerges. Fig. 5.2 is a 3D schematic diagram of a field cell used in the

experiments as shown, from a top view, in Fig. 5.3. Fig. 5.3 shows a rectangular glass

capillary equipped with two 50 µm diameter nickel alloy wires (Goodfellow) bent

twice into 90◦ angles, at the opposing ends, and the space between the electrodes

L = 5.4 ± 0.1 mm. Then, the sample cell is filled with colloidal suspension and
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Figure 5.3: A rectangular glass capillary with cross-section dimensions 0.1 mm × 2 mm

filled with colloidal suspension and two nickel alloy wires at the opposing ends with a space

between the electrodes L = 5.4± 0.1 mm.

electrodes are connected on both ends of the capillary. The capillary is then sealed

using UV-glue (Norland optical adhesive, N68) and the UV glue is cured with UV light

(λ = 350 nm, UVGL-58 UV lamp) for 10-15 min. During this process, the sample area

is covered with aluminum foil to protect the suspension from UV radiation to avoid

the bleaching of particles. All the electrophoretic measurements are done using the

Visitech confocal microscope (λ = 488 nm), using a 60x magnification oil objective

lens with numerical aperture NA = 1.4.

A low-frequency electric field is generated using a function generator (Tektronix

AFG 3022) and a wideband amplifier (Krohn-Hite, Model 7602M). The sample is

mounted on the stage, the distance between the capillary walls (upper and lower wall)

in the z-direction is determined using the z-stage on the confocal microscope. For the

mobility measurements, time series of images are recorded at different depths along

the z-axis of the capillary. We typically probe 9 different positions along the z axis of

the capillary. Then using a particle tracking algorithm, the velocity of the particles

in the electric field at different depths is determined by extracting the trajectories of

particles from a sequence of images obtained using the confocal microscope. Thus,
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we obtained a velocity profile that is well fitted to a parabolic function to obtain the

velocity and electrophoretic mobility at the stationary layer. Images are recorded

with a field of view 480 × 480 pixels at a scanning speed of 20 frames/second at low

frequencies and 100 frames/second at higher frequencies and 1 pixel is 0.108 µm.

5.3 Results and Discussion

In this section, we describe and compare AC and DC electrophoresis methods to

calculate µe. We use this quantity to calculate the ζ-potential and charge on the

colloidal particles.

5.3.1 DC electrophoresis

In the DC electrophoresis experiment, we must change the direction of motion of

particles periodically in order to avoid accumulation of particles at one electrode.

This change in direction of the field thus has an associated time scale. Therefore, no

experiment is truly DC. An electric field in a capillary directs the flow of particles in

one direction (along x). In an example DC experiment, we first apply an offset voltage

of -20V that leads the particles to flow towards the positive electrode. It shows our

colloidal particles are negatively charged. We first wait for 30 s and then, record

a movie with 295 frames for 30 s. After recording the movie, we switch the offset

voltage to +20V (colloids begin to move in the opposite direction) and again wait for

30 s. Then, we record a 30 s movie in the other direction. Using this timescale, we

estimate the frequency based on the time over which the experiment is carried out

i.e., 60 s of movie recording and 60 s of waiting time, we calculate a frequency f ≈

0.008 Hz.
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To identify the particles and extract their trajectories, some changes were made

to the existing tracking algorithm. Due to the driving electric field, a particle moves

more than one diameter between successive frames [117]. This can result in incorrect

identification. First, a uniform displacement was estimated between the successive

frames using Fiji (imaging software). Then, the average displacement is added to a

particle’s (x, y) coordinate in frame i such that it is close to the (x, y) coordinate of

the particle in the next frame i + 1. If we add the correct average displacement to

each particle in frame i then the mean square displacement to their nearest particle

in frame i + 1 will be minimal. In this way, we correct for the average drift of the

particles.

In the presence of an electric field, the mean-squared displacements (MSD) along

the x and y directions are,

〈x2(t)〉 = 2Dt+ v2t2 , 〈y2(t)〉 = 2Dt. (5.13)

In this discussion, x(t) is in fact the displacement, i.e., if we denote the positions as x′,

then x(t) ≡ x′(t+ t0)− x′(t0) where t0 is the reference time. It should also be noted

that the angle brackets average over reference times t0. By subtracting the MSD

along the non-driven (y) direction from the driven (x) direction, the electrophoretic

contribution motion is,

X2
driv = 〈x2(t)〉 − 〈y2(t)〉 = v2t2 (5.14)

Using this equation, we obtain the velocity at different depths and plot a velocity

profile as a function of z in the sample at a field strength E =3.33 V/mm, Fig. 5.4(a).
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The velocity profile is then well fit to a parabolic function S(z) = Az2 + Bz + C, to

obtain the electrophoretic velocity ve near the stationary layer zs. In Fig. 5.4, the

green dashed line denotes zs and the black dashed line indicates the walls of the rect-

angular capillary that is located at h = 50 µm and −50 µm. Then, the electrophoretic

mobility µe at zs is calculated from the ratio of vp(zs) and E (Fig. 5.4(b)).

Figure 5.4: DC electrophoresis. a) Electrophoretic velocity (ve) at a field strength E =

3.33 V/mm and b) Electrophoretic mobility (µe) profile as a function of z in a closed

capillary of depth z = 100 µm at a frequency f =0.008 Hz. The walls of the rectangular

capillary are located at h = +50 µm and +50 µm, and the stationary layers zs indicated by

green dashed line. Parabolic fits to the measured profile is drawn as solid blue line.

5.3.2 AC electrophoresis

When an AC field is applied to a colloidal suspension, the particle position varies with

time as a periodic sinusoidal wave. The advantage of AC electric fields over DC fields

is that the particle motion can be efficiently controlled by adjusting field parameters

like magnitude, frequency and wave shape [126, 127]. In addition, the accumulation



87

of charged species on electrodes can be avoided using AC fields [122].

In AC electrophoresis, above a certain amplitude of voltage, the sine wave output

from the amplifier gets distorted. In our experiments for both AC and DC experi-

ments, we use E = 3.33 V/mm to avoid this problem.

In the ACmethod, µe is extracted using a sinusoidal AC electric field in a frequency

ranging from 0.05 Hz to 5.5 Hz. In the absence of an electric field, particles undergo

diffusive motion in both x and y direction, whereas in an external field, there is also

a driven motion along the x direction (Fig. 5.5 ). In the absence of the electric field,

〈x2(t)〉 = 〈y2(t)〉 = 2Dt, (5.15)

where D is the diffusion coefficient of particles. In the presence of an electric field,

the mean square displacement along x is described as [1]

〈x2(t)〉 = 2Dt+ 2A2

(
sin

(
ωt

2

))2

, (5.16)

where ω = 2πf is the angular frequency of the electrophoretic driving motion and A

is the amplitude of the sinusoidal displacement. Similarly, in the y direction,

〈y2(t)〉 = 2Dt (5.17)

If we assume that there is no coupling between diffusion and driven motion, then

the diffusive motion is identical along x and y and the electrophoretic contribution

to the motion is given by,
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x2driv = 〈x2(t)〉 − 〈y2(t)〉

= 2A2

(
sin

(
ωt

2

))2

= A2(1− cos(ωt))

(5.18)

Figure 5.5: Response to a sinusoidal AC electric field at f = 0.15 Hz and E = 3.33 V/mm.

a) MSD along x and y direction as a function of time. b) The difference in the MSD along

the x-direction (driving field) and y-direction. We use Eq. 5.18 to fit the curve and determine

the amplitude, A.

We show in Fig. 5.5 that the mean square displacement along x is a sum of

a sinusoidal oscillatory term and a linear diffusive term. A plot of 〈x2〉 − 〈y2〉 as

a function of t, for f = 0.15 Hz and E = 3.33 V/mm, in Fig. 5.5(b) shows the

time dependence is sinusoidal with the expected frequency. To calculate the velocity,

ve = 2πfA, we fit the plot in Fig. 5.5(b) using eq. 5.18 to obtain the amplitude, A.

Next, ve is obtained at different z for each frequency. The velocity profile is then

fitted using a parabolic function, S(z) = Az2 + Bz + C to obtain the velocity near

the stationary layer zs. In Fig. 5.6, the green dashed line denotes zs and the black

dashed line indicates the wall of the capillary at z = h. Then, the electrophoretic

mobility µe is calculated the same way as for the DC method, from the ratio of ve

and E (Fig. 5.6(b)). It was independently verified that we were in a regime where
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Figure 5.6: AC electrophoresis at frequency (f) = 0.15 Hz and E = 3.33 V/mm. a) ve and

b) µe profile of PMMA particles suspended in CHB/cis-trans decalin.

Figure 5.7: AC (sine wave) and DC electrophoretic mobilities µe. The mobility profile

measured in a closed capillary with z = 100 µm at different frequencies as a function of z.

This plot shows that µe is independent of f , because the mobility values at z = zs are very

close for all frequencies.
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Figure 5.8: Electrophoretic mobilities µe as a function of f . a) The two measurements zs1
and zs2 are obtained from the two stationary layers on either side of the parabolic depth

(z) profile. The difference between the mobilities value measured at zs1 and zs2 for AC is

∼ 30 µm2/V s and for DC, it is ∼ 40 µm2/V s. Both the AC and DC mobilities are in

agreement with each other within the uncertainty. The attenuation factor γe (shown as a

dashed line that decreases to zero at low frequency) is significant for f < fc.

vE ∝ E by calculating µe as a function of E.

The mobility profiles at different frequencies as a function of z is shown in Fig. 5.7.

From the obtained mobility profiles, we calculate µe at zs as a function of f (Fig. 5.8).

In Fig. 5.8, we plot µe obtained from the two stationary layers on either side of the

parabolic profile as shown in Fig. 5.7. The red circles indicate AC measurements and

the blue diamond denotes the DC measurements. All the mobilities are in the same

range. Hence, DC and AC experiments agree with each other and µe is independent

of f .

Ma et al. [128] report a regime in an aqueous system for frequencies f < 100Hz

where µe is independent of f and above a certain frequency, µe decreases: this is
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Figure 5.9: Electro-osmotic mobilities µeo as a function of f . µeo decreases with increasing

frequency and is constant at higher frequencies, i.e, f > fc.

called the corner frequency. In their work, the corner frequency is independent of

the electrode polarization characteristic frequency fc; it is set by the time it takes for

ions to accumulate at the colloidal double layer, and possibly to form a condensed

layer of ions, as the voltage is increased. This corner frequency changes with the

salt concentration. Ma et al. also pointed out that electrode polarization is expected

to be relevant when Ω = 2πfL/Dκ ∼ 0.5, corresponding to fc ∼ 0.15 Hz in our

experiments.

We, however, observe that µe does not change much when the frequency is de-

creased. That is, we neither see evidence for a corner frequency below which the

observed mobility increases, nor the electrode polarization effect below fc (shown by

the vertical green dashed line, Fig. 5.8). Indeed, even the DC measurement gives

the same µe. A crude estimate for a lower bound for the corner frequency is simply

given by Dκ/(2πa) ∼ 1200 Hz, and would not be observable in our experiments. On

the other hand, the predicted µe, incorporating an electrode polarization correction

given by the product γe.µe, decreases below fc as shown (dashed line) in Fig. 5.8.
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Thus, contrary to our initial expectations, DC measurements provide realistic values

of electrophoretic mobilities in a low polar solvent. This could be due to less ions

present in the suspension and in a low polar solvent, we can not add salt beyond a

threshold value. In any case, charge induced effects appear to be more significant in

aqueous systems.

In Fig. 5.7, we also notice that the parabolic profiles do not overlap on the axis

(centre) of the capillary. From eq. 5.9, we know that vp(0) = ve + veo/2, hence it is

possible this non-overlap comes from the electro-osmotic contribution. We, therefore,

calculate the electro-osmotic mobility µeo using eq. 5.9 and eq. 5.10 and plot it as a

function of f in Fig. 5.9. We find that µeo decreases with increasing frequency and

remains constant at f > fc.

We carried out an additional check. The average electrophoretic mobility, calcu-

lated as 〈µe〉 = 1
2h

∫ +h

−h vp(z)dz should also give the electrophoretic mobility (Ref. [124]

in section 4.3.1) and this method uses the entire profile. These values for 〈µe〉 are

also shown in Fig. 5.8, and these values (black stars) are consistent.

Further, we switch the function generator from sine wave to square wave as that

mimics the DC driving over shorter and shorter timescales. In this method, we change

the AC sine wave to a square wave using the function generator. This means that we

do not need to manually switch the direction of particle motion like we did in the DC

experiments (section 5.3.1). Therefore, we can directly get the time associated with

the particle motion from a periodic square wave unlike the DC experiment.

In Fig. 5.10, we show an example of a square wave experiment at f = 0.05 Hz and

compare it with the AC sine wave at f = 0.05 Hz. The displacement response to a

sine wave driving should be sinusoidal, while the displacement response to a square

wave should be triangular. The MSD for a sine wave is also sinusoidal (as shown



93

in section 5.3.2). In contrast, for displacement that is a triangular wave, the MSD

should be concave. Instead, we see, once again, a response that appears sinusoidal

(Fig. 5.10). This is likely due to the fact that our MSD is averaged over start times.

Regardless, as a rough indicator of the difference between sine and square wave

driving, one can use the values of the first peak of the MSD. In Fig. 5.10, for sinusoidal

driving (at 0.15 Hz) the peak is at 147 µm2, while for square-wave driving it is at 227

µm2, and the diffusive part is 3.0 µm2 at the t corresponding to the sinusoidal peak.

This indicates an MSD ratio of (227-3)/(147-3) =1.56 and theoretically, it should be

π/2, which is 1.57 [129]. Thus the square wave response is consistent with the sine

wave response.

Figure 5.10: Comparison between AC sine and square wave experiment where output of the

AC sine wave is a sine wave (red curve) with peak at 147 µm2 and for a square wave is again

a sine wave (blue curve) with peak at 227 µm2. The diffusive part is at 3 µm2 corresponding

to the sinusoidal peak. The ratio of square and sine wave amplitudes, i.e., (227-3)/(147-3),

is equivalent to π/2.
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We conclude that the mobilities from the DC and AC experiments are in agreement

with each other. So, we average over all the mobilities and thus obtain µe ≈ (680 ±

10)µm2/Vs. We use the obtained µe to calculate the ζ-potential. For dielectric

constant ε = 6.1± 0.3 and viscosity η = 2.12± 0.05 mPas, the dimensionless mobility

M = 3ηeµe/2εsεokBT = 1.6 ± 0.1. The dimensionless zeta potential Ψ, obtained

for κa = 7.2 ± 0.1 and M = 1.6 ± 0.1 by using O’Brien and White’s plot [123] is

approximately Ψ = 1.5 ± 0.1 and the ζ-potential = ΨkBT/e ≈ (38 ± 3) mV. This is

further used to calculate the particle charge (Z) using eq. 5.6. Hence, Z = 891±117e.

5.4 Conclusions and future work

We perform AC colloidal microelectrophoresis experiments at different frequencies

that has not been carried out before in a partially polar solvent. We use a com-

bination of confocal laser scanning microscopy, electrophoresis and particle tracking

algorithms to calculate the mobility of a charged colloidal particle. Many researchers

have previously suggested that it is important to make AC electrophoresis measure-

ments in order to check for electrode polarization effects in both aqueous systems and

non-aqueous systems [1, 121, 128]. Therefore, we carried out AC measurements at

different frequencies and compared it with the DC measurements. Effectively, no mea-

surement is truly DC; we estimate our “DC” measurement has a direction-switching

frequency of 0.008 Hz. Nevertheless, it appears that at least for our non-aqueous

colloidal system (which does not have very high ion concentrations) we do not see a

noticeable electrode polarization effect at f < fc. In addition, we find that DC mea-

surements provide realistic values of electrophoretic mobilities in a low polar solvent.
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We find that the electrophoretic mobilities are independent of f whereas electroos-

motic mobilities decreases with increasing f and then saturate at f > fc (Fig. 5.9).

There is limited literature on the frequency dependence of the electroosmotic mobil-

ity. Further theoretical work would help us in understanding the effect of frequency

on electroosmotic mobility.

We report electrophoresis measurements at much lower frequencies than what Ma

et al. [128] reported in their work with aqueous suspensions i.e, f < 1 Hz and in

this regime mobilities are independent of frequency, whereas significant attenuation

of field is expected even for our non-aqueous system. For an aqueous system, Ma et al.

[128] suggested the need to consider electrode polarization when the dimensionless

frequency Ω ≈ 1. Therefore, as a future work one can perform both DC and AC

experiment for colloids in an aqueous solvent as a function of f to see any effects due

to polarization. Further, we calculate the charge Z on particles by taking average

over all the mobilities. By using the theory of electrophoresis for κσ � 1, we obtain

Z = 891± 117e.

In our experiments, in order to obtain a hard-sphere-like system, we add the salt

tetrabutylammonium chloride to the colloidal suspension (discussed earlier in this

thesis). In such a system, it has previously been reported that there is a charge

reversal on colloids when salt is added because of the accumulation of counterions

near the colloidal particles [65, 130]. In a low-polar solvent, we do not know the

threshold salt concentration at which the charge reversal happens. In the future, one

could use the AC microelectrophoresis technique to study the kinetics of particles to

determine the threshold salt concentration at which the charge reversal first occurs.



Chapter 6

Summary

Colloids are microscopic particles, with a dimension ranging from few nanometers to

several micrometers, that are suspended in a fluid and undergo Brownian motion.

When colloids are suspended in a solvent that contains positive and negative ions,

an electric double layer forms around the colloids. The inner layer consists of the

ions located on the surface or near the particles, for example, a negatively charged

particle has negative ions in the inner layer. The outer or diffuse layer consists of

the counterions and is thicker than the inner layer. The thickness of the double layer

can be varied by changing the salt concentration in the solvent. This thickness is a

measure of the distance over which the colloids interact electrostatically with other

colloids via a screened Coulomb potential.

The micron-sized colloids used in this thesis are sufficiently large to study with

light microscopy. We closely match the refractive index of the colloids and solvent

to suppress the scattering of light that allows confocal microscopy studies of colloidal

suspensions. In this thesis, confocal microscopy is used as the main experimental

technique to study the colloidal system in real-time, real space and at a single-particle

level.
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The colloid-colloid interaction can be further manipulated, for example, by adding

non-adsorbing polymer to induce the attractive “depletion” interaction or by using

various other methods to produce anisotropic interactions. Depletion interactions be-

tween colloids, first predicted by Asakura and Oosawa, lead to a separation between

colloid-rich (liquid-like) and colloid-poor (gas-like) phases, and at high polymer con-

centration, can lead to network-forming gels. A second interaction is the electric-

field-induced dipolar anisotropic interaction, that behaves as a switch and provides

active control of a colloidal system. Using these two interactions in tandem provides

fine, tunable control over colloidal phase transitions. At sufficiently large external

electric field, the polarization of the colloids due to the external field results in struc-

tural transitions.

In Chapter 1, we discuss the background theory of colloid-polymer research and

recent developments, and put them in a broader perspective. In Chapter 2, we dis-

cuss our colloidal system consisting of fluorescent-labeled polymethyl methacrylate

(PMMA) spherical colloids suspended in the solvent mixtures of cyclohexyl bromide

(CHB) and cis-trans decahydronapthalene (decalin). In such a system, it is possible

to create an electrical double layer that can be adjusted by adding the salt tetrabutyl

ammonium bromide (TBAB) to the suspension to screen the electrostatic interac-

tions. Also, we characterize the polymer and measure its size in CHB/decalin by

using NMR and DLS.

As polymer concentration increases, the colloid-colloid attractive interaction be-

comes stronger. In such a system we examine the effect of an electric-field induced

dipolar interaction. In Chapter 3, we report a new “dipolar-depletion” phase diagram

by varying both the polymer concentration (depletion interactions) and field strength
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(dipolar interactions). We present phase transitions in the dipolar-depletion phase di-

agram where the external electric field is used as a switch to reversibly and repeatedly

change phase in a sample. The competition between dipolar and depletion interac-

tions gives rise to a rich phase behaviour that includes ordered (DIO) and disordered

(DID and DCG) regimes. In our experiments, we use hard-sphere-like colloids and

polymer of size much smaller than the size of a colloid.

A switchable control parameter means that we have access to studying time-

dependent phenomena. In Chapter 4, we discuss time-dependent phenomena in the

dipolar-depletion phase diagram: both transient kinetics during phase change as well

as steady-state colloidal particle dynamics. We present the first experiments exploring

colloidal kinetics using switchable dipolar interactions as a tool to probe reversibility

in both ordered and disordered regimes of the dipolar-depletion phase diagram. In

addition, we establish a method to accelerate aging in a colloid-polymer mixture by

cycling through the field. We believe our accelerated aging may allow the studies of

processes in a system where the time required to see collapse in gels can be months or

even years. Such field-induced interactions can also be useful in finding applications

for electrorheological fluids.

Electrokinetics in colloids in aqueous media, where the dielectric constant εs ∼

80 and the electrical conductivity is large, is well studied. In apolar media, where

εs ∼ 2, the conductivity is extremely low, and such apolar systems behave like pure

dielectrics. In the partially polar solvents used in this study, with εs ∼ 6 and a small

but measurable conductivity, electrokinetics has been studied extensively. In Chapter

5, we describe micro-electrophoresis measurements at different AC frequencies: these

are the first such measurements for colloids in a partially-polar solvent. We compare

our AC micro-electrophoresis measurements with a DC micro-electrophoresis method
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that has previously been used to calculate the mobility and charge in a low polar

solvent. It has been suggested previously that effects due to accumulation of charge

on the electrodes, or electrode polarization, should be significant in static (DC) fields.

In our experiments, we find that the AC and DC mobilities are in the same range:

thus there are no effects due to electrode polarization. We also measured the electro-

osmotic flows as a function of frequency, and this does show an increase at the lowest

frequencies. As a final point, from the micro-electrophoresis measurements, we obtain

the Zeta potential and charge on the colloids, thus completely characterizing our

model system.

We hope that this model system will find extensive use in understanding the

kinetics of cluster-forming systems and systems undergoing gelation.
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