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Abstract

We study the dynamics of rod-like colloidal particles during sedimentation using ex-

periments and simulations. The experiments are performed using a laser scanning

confocal microscope and the simulations using Dissipative Particle Dynamics (DPD)

and rigid body dynamics. We observe clustering of the particles in both experiment

and simulation, an effect that is reminiscent of a clustering instability predicted by

Crowley in 1971 [1], and observe that the colloids seem to cluster more when held

in a vertical orientation by an electric field. Additionally, using DPD we simulate a

number of simple systems to test the behavior of hydrodynamic effects such as the

Crowley instability on colloidal particles at different Péclet numbers. We observe that

the random motion becomes significant enough to disrupt hydrodynamics when Pe

<100, which fits with the definition of the non-Brownian domain (Pe >100).
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Chapter 1

Introduction

The term colloid is, for a scientific term, rather ambiguous in definition. While the

term colloidal suspension can be used without ambiguity to refer to a system in which

insoluble microscopic (10−9 to 10−6 m in size) particles of one substance are dispersed

throughout another substance, the term colloid can be used to refer to either the sys-

tem in its entirety or the dispersed substance alone. For reasons of convenience and

habit, we fall into the latter camp and will use colloid to refer to the dispersed par-

ticles, against the recommendations of some chemists [2].

The physics of colloids have been the subject of study for well over a century since

they were first described by Thomas Graham in the 1860s [3]. Recent research on col-

loidal systems has been directed at problems such as improving our understanding of

the physics of biological systems and creating novel “soft” materials. One property of

colloids that has attracted interest from researchers is their ability to “self-assemble”

into complex structures, such as crystals, chains, and clusters, through both Brownian
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motion and as a result of being driven by outside forces [4, 5]. In the past, research

on colloidal self-assembly has largely been focused on near-equilibrium systems [4]

and spherical colloids for reasons of practicality. However, research has increasingly

shifted towards the study of more complex non-equilibrium colloidal systems, such as

those under electromagnetic fields [5].

One important set of non-equilibrium systems are those in which colloidal parti-

cles are driven by a gravitational field (also known as sedimentation). Historically,

sedimentation has been an important tool used to study colloidal suspensions and

continues to be a useful near-equilibrium system for studies of colloid physics and

self-assembly [6]. In addition, with improvements to techniques for synthesizing non-

spherical particles, studies have begun to study the self-assembly of such particles

during sedimentation [7, 8] which have demonstrated interesting phase behavior in

concentrated suspensions of rod-like colloids. However, successfully creating colloidal

structures using sedimentation can be difficult, as doing so can be very time consum-

ing and delicate and often requires a high degree of control over the colloidal suspen-

sion. This means that inducing controlled self-assembly in non-spherical colloids is an

even more delicate process, since the additional rotational degrees of freedom further

complicate the dynamics of the sedimenting colloids, increasing the care needed to

create colloidal crystals and other structures. We seek to help address this problem
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by using experiments and simulations to study how the decrease of particle sizes to

the colloidal domain affect various hydrodynamic effects observed in the dynamics

of sedimenting particles in the hydrodynamic domain. In doing so we hope to get

a better understanding of how anisotropy changes the dynamics of colloids during

sedimentation.



Chapter 2

Background and Theory

2.1 Colloidal Hydrodynamics

Due to the complexity of hydrodynamic interactions between particles, understanding

the dynamics of sedimenting colloids is a difficult task. The fact that hydrodynamic

interactions tend to be long-ranged in the case of Stokesian drag (∝ 1/r) [6, p. 310]

means that the complexity of the hydrodynamics of a system increases rapidly as the

number of particles is increased. This is especially true when dealing with systems

like ours, where we are dealing with hundreds of particles. Indeed, when dealing

with groups of sedimenting particles, the flow of the fluids results in the chaotic

motion of particles even when thermal Brownian motion is negligible [6, p. 298]. As

a result, analytic hydrodynamic predictions can only be obtained for systems with

few particles or many particles distributed with a high degree of regularity. Among

the hydrodynamic effects we are interested in studying is an instability observed
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in sedimenting particles that results in the clustering of the particles, known as the

Crowley instability [1,9,10], and the periodic rotational motion of pairs of anisotropic

particles during sedimentation [11]. We seek to investigate the role of the introduction

of the rotational degree of freedom and Brownian motion on these effects.

When studying the dynamics of particles in the colloidal domain, it is necessary

to take into account the influence of Brownian motion. Brownian motion results in

thermal diffusion which become increasingly important as the particles decrease in

size and the suspension increases in temperature. This additional contribution to the

dynamics of the particles further complicates analytic solutions to the motion of the

particles, making simulations a much more viable strategy for studying our systems

theoretically (see Chapter 4).

2.1.1 Péclet Number

When discussing the movement of colloidal particles in suspension, one useful quantity

used to describe such a system is the Péclet number, Pe. The Péclet number is defined

as the ratio between the advective and mass diffusive transport rates (or equivalently

the product of the Reynolds and the Schmidt numbers) [12] and in the case of colloidal

suspensions serves as a measure of the relative strengths of hydrodynamic and thermal

Brownian forces. For a spherical particle of radius a moving at speed u through an
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unbounded fluid the Péclet number is

Pe =
ua

D
(2.1)

where D is the thermal diffusion constant of the particle [6].

When Pe � 1 the dynamics of the system are dominated by hydrodynamic in-

teractions (macroscopic systems) while when Pe � 1 the dynamics of the system

are dominated by Brownian motion (microscopic systems). However, in the case of

mesoscale colloidal systems such as those we examine (0.01 < Pe < 100), it is nec-

essary to take into account the effects of both interactions. We use the definition of

the non-Brownian domain as any system in which Pe >100 [6].

If we consider the case of a spherical particle under Stokes drag, which diffuses ac-

cording to the Stokes-Einstein equation, the terminal speed of the particle is uterm = F
Γ

and the thermal diffusion constant is D = kBT
Γ

where Γ is the drag coefficient of the

particle, T is the temperature, kB is the Boltzmann constant, and F is the force driv-

ing the colloid. These relations give the following equation for the Péclet number:

Pe =
Fa

kBT
(2.2)

meaning that the Péclet number does not depend explicitly on the form of the drag

coefficient Γ for the system. This unusual result means that, other than temperature,
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Pe does not depend on the characteristics of the solvent; a property that we will utilize

to modify the Péclet numbers in our simulations of sedimenting colloidal particles.

In order to calculate the Péclet numbers of rod-like colloids, the equations used

are the same as in the case of spherical particles. However, the radius a becomes

the effective hydrodynamic radius RH , which must be modified to reflect the non-

spherical shape of the particles. In the case of a cylindrical particle of length L and

diameter d, S. Hansen [13] the calculated hydrodynamic radius RH using Monte Carlo

simulations and found that

RH = RS(1.0304 + 0.0193x+ 0.06229x2 + 0.00476x3 + 0.00166x4 + 2.66× 10−6x7)

(2.3)

where x = ln(L/d), RS = ( 3
4π
V )1/3, and V is the volume of the particle. Using

this result we can estimate the drag coefficient Γ = 6πµRH , where µ is the dynamic

(shear) viscosity, and thereafter the Péclet number for a rod-like colloid.

2.1.2 Crowley Instability

One interesting observation made in studies of the hydrodynamics of macroscopic

particles during sedimentation is the fact that particles tend to cluster together when

sedimenting at low Reynolds numbers. This effect, known as the Crowley insta-
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𝐹𝑑𝑟𝑎𝑔 𝐹𝑑𝑟𝑎𝑔
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𝐹𝐿𝐶,𝑡𝑜𝑡𝑎𝑙

Figure 2.1: Illustration of the line of center and drag forces on a group of three
sedimenting spherical particles.

bility, was first theorized and experimentally demonstrated by Joseph Crowley in

1971 [1] and has been studied using hydrodynamic theory and experimentation in the

case of the sedimentation of 2D lattices of spherical particles [10] and 1D lattices of

anisotropic particles [9].

The Crowley instability is the result of two hydrodynamic effects. The first is that

if a sphere is placed near another sphere, the Stokes drag force on both particles is

effectively reduced to approximately

FD = 6πµau

(
1− 3

4

a

d

)
(2.4)
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for a/d � 1, where µ is the dynamic viscosity and d is the separation between the

spheres. The second is that when two spheres sediment near each other, there is a

force FLC between them in the direction of the line joining them. If θ is defined as in

figure 2.1, then the magnitude of this line of centers force is

FLC = 6πµau

(
3

4

a

d

)
sin(θ). (2.5)

If there are only two spheres, there is no relative motion between them as the

line of centers force and the Stokes drag reduction apply to both spheres equally.

However, if there are three or more spheres, there will be relative motion between the

particles due to the line of center force. As can be seen in figure 2.1, in the case where

one sphere is ahead of two others, the line of center forces bring the trailing particles

together. When many particles sediment together, these forces cause instabilities in

the particles and ultimately the formation of clusters of particles.

2.1.3 Dynamics of Anisotropic Particles

When dealing with non-spherical particles, the introduction of rotational degrees of

freedom further increases the complexity of the hydrodynamics of sedimentation. For

example, in [11] it was shown using experiments that when two anisotropic particles

sediment next to one another at low Reynolds numbers and high Péclet numbers,
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the particles rotate periodically in phase as illustrated in figure 2.2. When a third

particle is added to such a system such that the particles are slightly perturbed from

a symmetric placement, these periodic rotations disappear. This type of interaction

demonstrates that the dynamics of systems of many anisotropic particles are consid-

erably more complex than those of spherical particles.

The question of how the anisotropy of the particles affects the Crowley instabil-

ity of particles was addressed in [9] wherein the Crowley instability was observed

in experiments with 1D arrays of disks when these disks begin perpendicular to the

direction of motion. Interestingly, this work found that when the disks began in a

vertical position the disks tended to spread outwards, demonstrating that the effects

of rotational degrees of freedom can oppose the effects of the Crowley instability.

Figure 2.2: Diagram of the expected periodic rotational motion of a rod particle based
on the findings of [11]. The yellow arrow indicates the direction of motion/sedimen-
tation



Chapter 3

Experimental Setup

3.1 Experimental Setup

3.1.1 Colloidal Suspension

For our experiments, we used rod-like silica colloids synthesized by Thijs Besseling

of the University of Utrecht. The colloids consist of a non-fluorescent core, followed

by a 58 nm fluorescent shell, and then a 137 nm non-fluorescent shell. In total, the

colloids are about 3.38±0.2 µm in length and 0.631±0.023 µm in diameter. Methods

used for synthesis of the rod colloids and the fluorescent labeling are detailed in [14]

and [15] respectively.

In order to get good quality confocal images of the colloids, it is necessary to

suspend them in a solvent with a matching refractive index (n = 1.45). Failing to

do so would result in the scattering of light in the sample, which would degrade the

image quality. For our work we are interested in the dynamics of the colloids, so to be
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Colloid Properties

Length 3.38± 0.2 µm
Width 631± 23 nm
Aspect Ratio 5.36
Refractive Index 1.45

Solvent Properties
Glycerol Content 85% wt
Density 1.22 g/cm3

Viscosity 89 mPa/s

Table 3.1: Information on the properties of the colloids and solvents at 25◦C [16].

able to successfully track the rotational dynamics of the colloids, we would like to be

able to create very high-speed movies of the colloids. However, due to the limitations

of the imaging systems, this is not always possible. An alternative solution to this

issue is to slow down the motion of the colloids by choosing a viscous solvent. We

decided to take this route and opted to use a mixture of 85% by weight glycerol and

water which has a refractive index of 1.451 and high viscosity of µ = 109 mPa · s [16]

at 20.0◦ C . Some information on the solvent and the colloids is listed in Table 3.1.

Because we are interested in the dynamics of the rod-like colloids in a dilute

system, we dilute the original suspension provided by Thijs Besseling to about 1/100th

of the initial colloid concentration of 1 colloid per ∼ 40 µm3, resulting in a suspension

with ∼ 1 colloid per 4000 µm3. This was done by mixing 5 µL of the original colloidal

mix into 245 µL of the glycerol-water mixture and sonicating the suspension.
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3.1.2 Experimental Sample

For experiments without electric fields, the colloidal suspension was placed in 0.1mm

thick glass capillary tubes which were glued to a standard glass microscope slide and

sealed using UV curing glue. For experiments in which electric fields were used, the

prepared colloidal suspensions were placed into a sample cell constructed using in-

dium tin oxide (ITO) coated glass miccroscope covers as shown in 3.1.

To construct the electric field sample slides we first use a UV curing glue to glue

an ITO coated cover slides onto a larger glass microscope slide with the ITO facing

up. Then two strips of 0.1mm thick plastic spacer are placed across the cover slide

about 1cm apart and a second ITO slide is glued on top, with the ITO coating facing

downward. This second slide is offset from the first such that there is a section of ITO

exposed on both slides. Once the glue is cured, colloidal silver paste is used to make

contact with the ITO coatings on the two cover slides which are then connected to

wires. Finally, the gap left between the spacers is filled with the colloidal suspension

using capillary action and the sample is sealed by putting glue on the open ends and

curing it under UV light while keeping the suspension itself covered to prevent the

colloids from bleaching. An example of a completed sample slide is shown in figure 3.2.
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Figure 3.1: Top: Illustration of a side-on cross section of the experimental setup.
Bottom: Illustration of the whole sample cell mounted on a microscope slide.

3.2 Confocal Image Analysis

In order to analyze the 3D confocal images of our rod-like colloids, it is necessary to

be able to identify the colloids and determine their positions and orientations. There

are a number of ways to approach this problem: a simple method would be to take an

intensity threshold for the image and use the central moments of contiguous groups of
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Figure 3.2: Image of a completed experimental sample. The sample suspension is
placed between the yellow spacers.

pixels to determine their centroids and the direction of their primary axis. Another

method developed by Besseling and Hermes et. al. [17] finds local maxima in the

image and links them to find the backbones of the rod-like colloids. In our case,

we have opted to use a method in which an intensity threshold is applied and the

minimum volume enclosing ellipsoid is found for each contiguous group of pixels above

the threshold. This was done by writing a Python implementation of the Minimum

Volume Enclosing Ellipsoid MATLAB code developed by Nima Mostagh [18].

All image processing performed in this section was done using Python 2.7 along

with the following Python packages:

• Numpy (http://www.numpy.org/) > 1.9.2
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• Scipy (http://scipy.org/) > 0.16.0

• scikit-image (http://scikit-image.org/) > 0.11.3

• tifffile (https://pypi.python.org/pypi/tifffile) > 0.7.0

• pandas (http://pandas.pydata.org/) > 0.17.0

• matplotlib for plotting (http://matplotlib.org/) > 1.5.1

3.2.1 Description of Algorithm

Figure 3.3: xy slice of a sample raw image.
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Preprocessing

Figure 3.4: Sample image after the Gaussian filter is applied.

The images we get from the confocal microscope are 8bit grayscale Tagged Image

File Format (.tif) stacks where each image in the stack is the xy plane at a different

z coordinate. The package used to read the image stacks, tifffile, assumes that the

colloids have a high intensity (white) on a low intensity (black) background. To start

processing the image stacks, they are read using tifffile and converted into a Numpy

array.

Before starting the analysis of the confocal images, it is necessary to process the
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image in order to make them more suitable for analysis. The first step in the image

analysis process is to smooth the image by convolving with a 3D Gaussian function

with a standard deviation of 1.0px. This is done in order to smooth out the effects

of white noise, making the background more uniform and ensuring that smaller or

dimmer rods don’t get split apart when the intensity threshold is taken. Afterwards,

if the distance between z-slices is different from the size of the pixels in the xy-slices,

the image is stretched and interpolated to make the pixels cubes.

Image Threshold

To determine what pixels in the image belong to the colloids, an intensity threshold

is found and applied to the image. There are numerous methods for finding a suitable

threshold for the images. If the rods are relatively dispersed and there is a significant

difference in intensity between the rods and the background then one might opt to

use Otsu’s method [19], which is best suited for finding thresholds for images with

bimodal intensity distributions. This is the method we use most often on our images,

as our experiments use relatively dilute suspensions of colloids. Figure 3.5 is an

example of an image where the threshold was found using the scikit-image Otsu’s

method function.

If there is a variation in the background intensity that is difficult to remove, as
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Figure 3.5: Sample image after an intensity threshold found using Otsu’s method [19]
is applied.

can be the case when there is a variation in the colloid concentration in the image,

one can use local threshold methods which calculate the threshold for subsections of

the image. Another method that can be used if the image has a high concentration

of colloids and the colloids fill most of the image, is to find a threshold intensity by

identifying the threshold value that maximizes the number of contiguous regions of

pixels above the threshold that are larger than a given minimum volume. Finally, if

the approximate dimensions of the colloids are known, the threshold can be refined by

iteratively taking the threshold, identifying contiguous regions of pixels in the image
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that are above the threshold and are too large to be a colloid, isolating such regions,

and computing new thresholds in order to break these regions apart. These methods

are most useful when finding the threshold of images where the concentration of the

colloids is high, reducing the amount of background and making Otsu’s method less

effective.

Ellipsoid Fitting

Figure 3.6: The intersection of the minimum volume enclosing ellipsoids with the
plane of the image. The intersections of the ellipsoids and the plane of the image
were calculated using an extension of the method described in [20] and the code used
to do so is in Appendix A.2
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Once the thresholding of the image is completed, groups of contiguous pixels with

intensity above the threshold are identified and their sizes are found. For each group

larger than a user defined minimum size (10 to 20 pixels in our images), we find the

minimum volume ellipsoid that encloses the points in the group (the MVEE). The

ellipsoids are calculated using an iterative algorithm developed by Nima Moshtagh [18]

for MATLAB which was converted to Python using Numpy (see Appendix A.1).

MVEE is an iterative numerical method, so there is a user defined tolerance value

which is used to stop the algorithm. For our images we use a tolerance value of 0.01.

Finding the MVEE for a group of points works well when the points are in a shape

that is near ellipsoidal, like our rods, but for other cases, such as if two or more rods

are stuck together, some points may end up outside the ellipsoid.

Once the ellipsoids are found, they are analyzed to get information like their

lengths, orientations, and positions, which is then converted to a Pandas DataFrame

and saved to a .csv file. Once a time series of 3D confocal images with adequate time

resolution has been processed, it is possible to track the trajectories of the colloids

using the centroids of the fitted ellipsoids and the Python particle tracking package

trackpy [21], which is based on an set of IDL routines developed by Crocker and

Grier [22].
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3.3 Experiments

3.3.1 Experimental Procedure

In order to investigate the dynamics of the rod-like colloids, we obtained and analyzed

3D time series confocal images. During the course of the experimentation phase of

our research, we performed three main types of experiments:

• Colloids begin lying horizontal and can freely rotate during sedimentation

• Colloids are initially held vertical by an electric field, which is turned off shortly

after the colloids began to sediment, allowing the colloids to freely rotate.

• Colloids are held vertical by an electric field while the colloids sediment, pre-

venting the colloids from rotating.

In particular, by comparing the results from the experiments in which the colloids

were held vertical by the electric field and those in which they were not, it is possible

to get an idea of how the introduction of a rotational degree of freedom might affect

the dynamics of the colloids during sedimentation.

These experiments tended to follow the same basic procedure. First, the exper-

imental sample is placed upside down to allow the colloids to sediment to the top

wall of the sample. This typically takes 6 to 8 hours due to the high viscosity of

the solvent. If the experiment being performed requires that the colloids start in a
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vertical position, an AC electric field is applied to the suspension as the colloids sedi-

ment. To prevent electric field induced movement of the ions in the solvent, whenever

an electric field is applied to a suspension, we use a high frequency (>100kHz) AC

field. Furthermore, the field must be strong enough to keep the rods vertical while

not so strong as to cause the rods to line up end to end due to induced dipoles in

the colloids [5]. After some testing, we were able to determine that the fields used in

the experiments should have a potential between 5V and 20V in a cell of thickness

0.1mm when the field has a frequency of 1MHz. Figure 3.7 shows confocal images of

vertical and freely rotating rod-like colloids.

After the colloids have been allowed to sediment, the sample is flipped and placed

under the microscope. The microscope is focused as quickly as possible in order to

start the imaging soon after the colloids begin to sediment. In the case where the

colloids are initially vertical and then allowed to freely rotate during sedimentation,

the electric field in the suspension is turned off after the first time series image.

3.3.2 Experimental Images

For most of the experiments, the images were obtained using a 60x or 100x oil immer-

sion objective, in which case we set the laser scanning confocal microscope (a Nikon
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Figure 3.7: Left: xy (A) and yz (C) slices of a confocal image of freely rotating rods.
Right: xy (B) and yz (D) slices of a confocal image of rods being held vertical by an
electric field. Both sets of images were taken using a 100x objective.

C1 plus, mounted on a Nikon Eclipse 80i) to get pixel sizes of 0.414µm × 0.414µm

and 0.248µm× 0.248µm respectively. Generally, the size of the z-increments is made

to match these pixel sizes as closely as possible in order to get cubic pixels, though

occasionally larger z increments are used when we are interested in larger scale effects

rather than the dynamics of individual colloids. Sample images taken using the 60x

and 100x objectives can be found in figure 3.8 .

One of the main problems that arises when using confocal imaging is that bright

spots tend to be blurred more in the z direction compared to the blurring in the
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x-y direction, a result of the Point Spread Function (PSF) of the system [23]. It is

important to take this effect into account when analyzing confocal images, since a

large PSF can make it difficult to determine the orientation of the rod colloids in

our system unless the images are extensively pre-processed (e.g. deconvolving the

image using an approximation to the PSF). The leftmost examples in figure 3.8 are

from one such image, where the PSF more than doubles the diameter of the colloids

in the z direction. Thankfully, after some testing of confocal images using various

objectives we found that in both the 60x and 100x oil immersion images (center and

rightmost columns in figure 3.8), the PSF does not distort the images of the colloids

to the point where the orientation cannot be determined to a reasonable degree of

accuracy (though the blurring in the z direction is larger for the 60x image), as the

blurring in the z direction is less than the rod diameter. Thus, it is not necessary to

apply any complicated pre-processing techniques to our images. Because the blurring

in the z direction is larger when using a 60x oil immersion objective, most of the

systems we analyze are imaged using a 100x oil immersion objective. However, if we

are interested in large scale effects (such as the Crowley instability), the larger field

of view provided by the 60x image can be useful.

When taking time series images, the upper limit on the frame rate of the time

series was set by the time it takes to take a single 3D image. For the microscope
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Figure 3.8: Comparison of the Point Spread Functions for three different image set,
one in which the PSF is large (A - xy, D - xz) and two sample images taken using a
100x (B - xy, E - xz) and 60x (C - xy, F - xz) oil immersion objectives.

used for these experiments, a single 512 × 512 pixel image takes 1.20 seconds to

take. Thus for a 3D image composed of 40 2D images, the image takes 48 seconds to

complete. This means that the frame rate on our time series images is far larger than

the timescales of Brownian diffusion (∼ 10−3 s). On average the colloids sediment

at a rate of around 0.4µm/min for the freely rotating rods and 1.5µm/min for the

vertical rods. This means we can get fairly good tracking of the translation motion of

the freely rotating rods as they generally only move around half a particle diameter

between time frames, though we may not be able to see the details of the rotational
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motion of the rods. On the other hand the vertical rods are a bit trickier, moving

on average 1.5 rod diameters in the z-direction between time frames, and often more

than that in the xy direction meaning it is important to be careful when tracking the

movement of the particles, especially given that particles are often within two rod

diameters of one another.
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Simulation Theory and Setup

All the simulations in this thesis were performed using the GPU molecular dynam-

ics package HOOMD-Blue (Highly Optimized Object-Oriented Molecular Dynam-

ics) [24], which is capable of simulating Dissipative Particle Dynamics much faster

than comparable CPU packages [25]. Both the spherical and rod-like colloids used in

our simulations were modeled using the rigid body NVE (microcanonical) integrator

provided by HOOMD-Blue [26]. These simulations were in part carried out using

GPU facilities provided by SHARCNET and Compute Canada. Sample code used

for generating the initial .xml files can be found in Appendix B and sample code used

to run the simulations can be found in Appendix C.

In discussions of the simulations all values are given relative to the model unit

parameters σ (length), τ (time), m (mass), and ε (energy). For convenience, the

temperature of the systems is expressed in energy units, so we let the Boltzmann

constant kb = 1 in our simulations. The simulations were set up by generating .xml



4.1 Dissipative Particle Dynamics 29

files containing the initial coordinates of the particles in the fluid and colloids (the

Python scripts used to generate these .xml files are included in Appendix B). Note:

using integrators other than NVE integrators results in unphysical behaviour as the

DPD interaction serves as a thermostat [25].

4.1 Dissipative Particle Dynamics

When looking to model the dynamics of fluids, the scale of the problem in question

factors heavily into deciding which methods to use. In microscopic simulations in

which the actions of individual particles are important one might use methods like

molecular dynamics, while in the macroscopic case one might treat the fluid as a con-

tinuum and use partial differential equation methods to model the dynamics of the

fluids. In between these two domains are mesoscopic methods which are designed to

model fluid interactions with characteristic length scales ranging from 10−7 to 10−4

meters and characteristic time scales ranging from 10−9 to 10−3 seconds. Among these

methods is Dissipative Particle Dynamics (DPD), which is a coarse-grained method

for simulating mesoscale fluid dynamics that is Galilean invariant and conserves mo-

mentum [27]. Due to the fact that it is computationally cheaper than microscopic scale

simulations and more flexible than alternative mesoscale simulation methods (such
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as Lattice-Boltzmann) [27], DPD has seen use in research on a number of mesoscale

systems, including studies of polymers and colloids [28–30]. As the practice of using

DPD to simulate colloidal systems has been well established, we decided to use it to

study the dynamics of colloidal particles during sedimentation.

The simulation systems used in this chapter were based on the system used by

Zhou and Schmid [30] in which the simulation system consists of two main parts:

fluid particles and colloids. The colloidal particles are modeled as rigid bodies whose

surface is covered with DPD interaction points. This method achieves the realization

of the no-slip boundary condition on the colloid surface and takes full consideration

of hydrodynamic interactions and Brownian motion, making it a good choice for our

own systems.

Dissipative Particle Dynamics Theory

In our simulations, the position (~ri) and velocity (~vi) of a given fluid particle of mass

mi fluid particle satisfy the equations

d~ri
dt

= ~vi and mi
d~vi
dt

= ~Fnet,i (4.1)

where ~Fnet,i is the net force on the particle.

DPD forces are the main interaction force between particles, with the DPD force
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between particles i and j being defined as

~FDPD,ij = ~FD,ij + ~FR,ij (4.2)

with a dissipative component

~FD,ij = −γω2(rij)(r̂ij · ~vij) (4.3)

and a stochastic component

~FR,ij = −θij
√

3

√
2kbTγ

∆t
ω(rij)r̂ij, (4.4)

where rij is the distance between particle i and particle j, r̂ij is the normalized vector

from particle i to particle j, ~vij = ~vi − ~vj, θij is a uniformly distributed random

number between -1 and 1, and

ω(rij) =


(1− rij

rcut
) rij < rcut

0 rij ≥ rcut

(4.5)

The drag coefficient γ, temperature T , and cutoff radius rcut have values that depend

on the system of interest and are user defined. The stochastic component of the force

acts as a thermostat when integrated using an NVE integrator.
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DPD fluid

In our simulations we use γcolloid-fluid = 10.0m/τ , γfluid-fluid = 5.0m/τ , rcut = 1.0σ, and

kbT = 1.0ε, unless otherwise specified. The fluid particles have mass 1.0m each and

a number density ρ = 3.0σ−3. Using these settings, Zhou and Schmid found that the

fluid has a dynamic viscosity of µ = 1.23± 0.01m/στ [30].

When generating the system initialization .xml files, the fluid particles are dis-

tributed randomly in the simulation box. Around each colloid and wall in the sys-

tem, there is an empty buffer of 0.5σ to 1.0σ which prevents any fluid particles from

being placed into high potential regions and flying out of the simulation. When the

simulations are started, there is a warmup period (> 10τ) during which the colloids

are held fixed by turning off the integration of their movement while the fluid reaches

the correct temperature and fills the buffers around the colloids. After the system

has warmed up, we unfreeze the colloids and start to apply constant forces to the

particles to cause the colloids to sediment.

4.2 Rigid Body Simulations

As mentioned in the preamble to the simulations section, the colloids used in our

simulations were modeled using the rigid body procedures provided in the HOOMD-
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Blue package [26]. Rigid body methods work by keeping the points in a body at a

fixed position with respect to one another and calculating the net forces and torques

on the body by summing over the component particles.

In HOOMD-Blue, a rigid body is defined by its center of mass ~R, velocity ~V ,

mass M , moment of inertia I, angular momentum ~L, and orientation quaternion q.

The orientation quaternion is defined as q = cos(θ/2) + sin(θ/2)(uxi + uyj + uzk),

which corresponds to a rotation through an angle θ about the unit vector (ux, uy, uz)

and i, j, and k are imaginary components defined by i2 = j2 = k2 = ijk = −1.

Quaternions are used in part because, unlike the Euler angles, it avoids the issue of

gimbal lock [31, p. 12]. The force on a body is given by

~Fb =
N∑
k=1

~fk (4.6)

and the torque is given by

~τb =
N∑
k=1

(~rk − ~R)× ~fk (4.7)

where N is the number of component particles in a body, ~fk is the force on the kth

particle, and ~rk is position of the kth particle. These values are then used to update the

body’s velocity, position, angular momentum, and orientation using microcanonical

NVE integration.



4.2 Rigid Body Simulations 34

One of the primary concerns when setting up rigid body simulations is how to

create the bodies themselves in order to ensure they have the right properties. In the

following subsections are descriptions of how the colloid rigid bodies were constructed

for our simulations.

4.2.1 Spherical Colloid Setup

Figure 4.1: An example of a spherical colloid with 162 surface DPD interaction points
in blue along with a handful of fluid particles in red. The beads in the image have a
diameter of 1.0σ

For our spherical colloid simulations, the colloids were modeled by placing DPD
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interaction points on a spherical geodesic grid, an example of which is in figure 4.1,

using the method a Python implementation of Teanby’s geodesic grid generation

algorithm [32]. This gives a set of equally spaced interaction points on the surface of

a sphere. In addition, there is a particle at the center of the colloid which interacts

with the fluid particles through a shifted Lennard Jones potential

V (r) =


4εLJ

[(
σLJ

r−∆

)12 −
(
σLJ

r−∆

)6
]

r < rcut + ∆

0 r ≥ rcut + ∆

(4.8)

where ∆ = (di+dj)/2−1, di is the diameter of particle i, and rcut = 6
√

2σ. When simu-

lating multiple colloids, the colloids also interact with each other through the shifted

Lennard Jones potential between their central particles. The central LJ potential

makes the colloids act like hard spheres. In all our spherical colloid simulations,

the surface interaction points were gridded on a level 2 geodesic grid, resulting in

162 points. For the single sphere simulations in section 6.1 the particles had radius

R = 3.0σ, mass M = 100m, and moment of inertia I = 360mσ2 which corresponds

to a uniformly distributed mass density.

To get the correct moment of inertia and mass values for a solid sphere using points

on the surface of the sphere, we need an extra mass at the center of the colloid. Given

that the moment of inertia of a spherical shell is Ishell = 2
3
MR2 to get a moment of
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inertia of Isolid = 2
5
MR2 = 360mσ2 (the moment of inertia of a solid sphere of mass

M = 100m and radius R = 3.0σ) , we require Mshell = 3·360
2·R2 mσ

2 = 60.0m. Thus,

each surface interaction point was given a mass mshell = 60.0/162 = 0.370370 . . .m

and the central particle was given a mass mcentral = 40.0m to bring the total mass to

the required 100m.

4.2.2 Rod-like Colloid Setup

Figure 4.2: An example of a simulation rod-like colloid (length 12, radius 2) composed
of spherical caps with a geodesic grid of points and a cylindrical center.

For our rod-like colloid simulations, the colloids used were cylinders with hemi-

spherical caps, similar to our experimental rod-like colloids. The points on the caps

are distributed using a geodesic grid, with each cap consisting of points z ≥ 0 and

z ≤ 0 respectively (for a sphere centered at the origin). Note that both caps include

points in the xy plane, which is important when distributing points on the surface
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to get the correct moment of inertia. The points on the cylinders are distributed as

a series of circles of points wherein each circle is separated by 0.5σ and the spacing

between points on the circles is ≈ 0.5σ, see figure 4.2 for an example. In addition,

a series of particles are placed in a line on the primary axis of the cylinders which

interact with the fluid particles and other colloids through a shifted Lennard Jones

potential as described in equations 4.8 with a diameter equal to that of the rods. The

space between these central LJ points is set to 0.3̄σ in order to make the excluded

volume of the shifted Lennard Jones potential similar to the shape of the rod. In the

case of a rod with length L = 12σ, we use 36 such central LJ points.

Determining proper values for the moment of inertia for a rod is a bit more com-

plicated than the case of a sphere. Setting the z-axis as the direction of the primary

axis of the rod, we can use symmetries in the shape of the rod and the parallel axis

theorem to find that the components of the moment of inertia tensor of a solid rod

Isolid
xx = Isolid

yy = 2(Isolid
xx,hemi +M solid

hemi(
1

2
H +

3

8
R)2) + Isolid

xx,cyl (4.9)

Isolid
zz = 2Isolid

zz,hemi + Isolid
zz,cyl (4.10)

Isolid
xy = Isolid

yx = Isolid
xz = Isolid

zx = Isolid
yz = Isolid

zy = 0 (4.11)

Given R = D/2, H = L− 2R, mass density ρ, M solid
hemi = 2

3
πρR3, and M solid

cyl = πρHR2
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the moment of inertia tensor of a solid hemisphere about its center of mass is

Isolid
xx,hemi = Isolid

yy,hemi =
83

480
ρπR5 and Isolid

zz,hemi =
4

15
ρπR5 (4.12)

and the moment of inertia tensor of a solid cylinder about its center of mass is

Isolid
xx,cyl = Isolid

yy,cyl = ρπR2H(
1

4
R2 +

1

12
H2) and Isolid

zz,cyl =
1

2
ρπR4H (4.13)

Thus the expression for the moment of inertia of a solid cylinder capped with two

solid hemispheres is

Isolid
xx = Isolid

yy =
1

60
πρR2(5H3 + 20H2R + 45HR2 + 32R3) (4.14)

Isolid
zz =

1

30
πρR4(15R + 16H) (4.15)

Isolid
xy = Isolid

yx = Isolid
xz = Isolid

zx = Isolid
yz = Isolid

zy = 0 (4.16)

Again, setting the primary axis of the rod to be the z axis and using symmetry

arguments and the parallel axis theorem, we get that a rod shell has moment of inertia

Ishell
xx = Ishell

yy = 2(Ishell
xx,hemi +Mhemi(

1

2
H +

1

2
R)2) + Ishell

xx,cyl (4.17)

Ishell
zz = 2Ishell

zz,hemi + Ishell
zz,cyl (4.18)

Ishell
xy = Iyx = Ishell

xz = Ishell
zx = Ishell

yz = Ishell
zy = 0 (4.19)

As we must solve for two different equations (Izz and Ixx = Iyy), we require two free
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variables. Thus we allow the masses of the caps and the cylinder, Mhemi and Mcyl

respectively, to have different values. As the force and torque on a rigid body are

calculated without regard to the mass of individual particles and instead use the total

mass and moment of inertia of the body, having the masses of the cap and cylinder

particles differ does not affect the movement of the colloid.

Since the moment of inertia tensor of a hemispherical shell about its center of

mass is

Ishell
xx,hemi = Ishell

yy,hemi = Mhemi
5

12
R2 and Ishell

zz,hemi = Mhemi
2

3
R2 (4.20)

and the moment of inertia tensor of a cylindrical shell about its center of mass is

Ishell
xx,cyl = Ishell

yy,cyl = Mcyl(
1

2
R2 +

1

12
H2) and Ishell

zz,cyl = McylR
2 (4.21)

the moment of inertia tensor for a cylindrical shell capped by two hemispherical shells

Ishell
xx = Ishell

yy =
1

6
Mhemi(5R

2 + 3H2 + 6HR + 3R2) +
1

12
Mcyl(6R

2 +H2) (4.22)

Ishell
zz =

4

3
MhemiR

2 +McylR
2 (4.23)

Ishell
xy = Iyx = Ishell

xz = Ishell
zx = Ishell

yz = Ishell
zy = 0 (4.24)

By equating the inertia tensor components, we solve for Mhemi and Mcyl and then

use that ρ = Mtot

4πR3/3+πHR2 to find expressions for the required total masses of the
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hemispherical caps and the cylindrical shell

Mhemi =
3Mtot(15H3 + 104H2R + 180HR2 + 96R3)

20(7H2 + 18HR + 12R2)(3H + 4R)
(4.25)

Mcyl =
3MtotH(25H2 + 58HR + 36R2)

10(7H2 + 18HR + 12R2)(3H + 4R)
(4.26)

These masses are evenly distributed on the DPD interaction points which approximate

a continuous shell. As in the case of the spherical colloid, adding these masses does

not give the total mass Mtot, so an additional mass Mcent = Mtot −Mcyl − 2Mhemi

is added to the center of mass of the particle in order to give the colloid the correct

mass without changing the moment of inertia.

Typically, we use rods with a diameter of D = 4.0σ, an end to end lengths of L =

12.0σ, a mass of Mtot = 500m, and a moment of inertia equal to the moment of inertia

of a solid rod with uniform mass density and total mass 500m (equations 3.6 to 3.8).

This gives a mass per interaction point of 0.300720m for the 425 points comprising

the cylinder and 0.924387m for the 178 points comprising the hemispherical caps.

This distribution of points produces a center of mass and total mass that are within

0.01% of the desired values and the moment of inertia tensor components differ from

the desired values by 5%. These discrepancies are the result of the fact that we are

attempting to model a continuous shell using discrete points and can be reduced by

increasing the number of surface interaction points.



Chapter 5

Experimental Results and Discussion

5.1 Experiments Performed

In table 5.1, we list some information on the experiments we performed. Unfortu-

nately, not all the experiments can be used for analysis. The 40x oil image sets had

large point spread functions that make it difficult to get information on the orienta-

tions of the colloids, while image sets 5, 6, and 7 cannot be used because the colloids

in the image were stuck to the glass at the top of the sample. Image sets 9, 11, 12, 13,

15, and 16 were taken using large z-steps so that we could capture larger scale effects

such as clustering, however this means that we cannot get good orientation data from

them, as the image pixels are 2 to 4 times longer in the z direction compared to the

xy directions. In addition, the clustering effects we observe in our systems occur at

the bottom of the sedimenting rods and only after some time has elapsed. Thus, the

clustering of colloids can only be clearly observed in longer experiments (image sets
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# mm/dd/yy Type Objective XY size (µm) Z size (µm) Time Colloids
1 05/04/15 FR - 1 100x Oil 128 x 64 6 to 40 1:19hr ∼ 350
2 05/04/15 FR - 2 40x Oil 317.4 x 158.7 15.5 to 88.04 3:03hr ∼ 400
3 05/06/15 FR - 1 40x Oil 316.8 x 316.8 15.6 to 48.6 1:13hr ∼ 700
4 05/06/15 FR - 2 40x Oil 316.8 x 316.8 30.6 to 100.8 3:03hr ∼ 4000
5 08/02/15 FR - 1 100x Oil 128 x 128 6.25 to 10 0:34hr ∼ 40
6 08/02/15 FR - 2 100x Oil 128 x 128 10 0:29hr ∼ 40
7 08/02/15 IVR 100x Oil 128 x 128 10 0:08hr ∼ 40
8 08/02/15 FR - 3 100x Oil 128 x 128 10 0:21hr ∼ 100
9 08/02/15 IVR - 2 60x Oil 209.9 x 209.9 8.2 0:13hr ∼ 130
10 08/05/15 FR - 1 100x Oil 128 x 128 10 0:14hr ∼ 400
11 08/05/15 FR - 1 60x Oil 209.9 x 209.9 34 0:31hr ∼ 800
12 08/10/15 IVR - 1 100x Oil 128 x 128 20 0:13hr ∼ 200
13 08/11/15 IVR - 1 60x Oil 209.9 x 209.9 20 to 27 0:26hr ∼ 450
14 08/11/15 VR - 1 100x Oil 128 x 128 20 0:13hr ∼ 550
15 08/11/15 VR - 2 100x Oil 128 x 128 27 0:33hr ∼ 500
16 08/12/15 VR - 1 100x Oil 128 x 128 20 0:14hr ∼ 425
17 08/12/15 IVR - 2 100x Oil 128 x 128 10 0:26hr ∼ 250

Table 5.1: Some information on the experiments performed. FR - an experiment
with freely rotating rods, VR - An experiment where the rods are held vertical by
an electric field, IVR - An experiment where the rods are initially vertical, but then
allowed to freely rotate
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1, 2, 3, 4, 11, and 15).

5.2 Péclet number

As noted in section 2.1.1, one important quantity to know when dealing with colloidal

systems is the Péclet number of the colloids. To find the Péclet number for our

suspensions, we used the formula

Pe =
uRH

D
(5.1)

where u is the speed of the particle, RH is the hydrodynamic radius, and D is the

diffusion constant. Since our systems have very low Reynolds numbers

Re =
2ρuRH

µ
< 10−10 (5.2)

where ρ is the density of the solvent and µ is the dynamic viscosity, we assume that

the drag force on the particles is described by the Stokes drag. Note, since there

are many colloids in the systems, this is not quite accurate due to the mutual drag

reduction of particles when they are near one another. Thus using the Stokes-Einstein

equation, we can find the diffusion constant D using the formula

D =
kBT

6πµRH

(5.3)
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where µ is the shear viscosity. Thus, we express the Péclet number as

Pe =
6πµuR2

H

kBT
. (5.4)

Using equation 2.4 in section 2.1.1 and the rod colloid dimensions in table 3.1, we

calculate the approximate hydrodynamic to find RH = 0.788µm = 1.27RS, assuming

the rod colloids are the shape of a cylinder with hemispherical caps.

In order to calculate the Péclet number of our colloids, we need to know the ter-

minal velocity of the particles u. To find this, we plot the mean z-coordinate of the

colloids in a number of experiments (vertical rods - experiments 14 and 16, freely

rotating - experiments 8, 10, 12, and 13) over time in figure 5.1 (Note: positive z

is in the direction of gravity in figures 5.1 and 5.2). Since the mean z coordinate

increases linearly with time for all the systems at early time periods, we perform a

linear fit on each plot to determine the average sedimentation rate of the systems.

The results of these linear fits are listed in table 5.2. We find that even among experi-

ments of the same type there is a significant amount of variation in the sedimentation

rates of the colloids. For freely rotating colloids, the sedimentation rates vary from

0.00562µm/s to 0.0142µm/s and for the vertically held colloids, we get sedimenta-

tion rates of 0.0154µm/s and 0.0230µm/s. Note, the plateauing of some of the plots

at later times is likely the result of colloids exiting the frame of the image as they
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sediment. This is demonstrated in figure 5.3, where we see that the distribution of z

coordinates in the August 11 vertical rod experiment is cut off at the bottom edge of

the image resulting in a shift in the average of the z coordinates to values lower than

the actual average z coordinate. Note, this effect is entirely a result of the imaging

and not because the colloids have reached the bottom of the sample, since the sample

is ∼ 100µm deep and experiment 11 images only captures a range of 20µm.

We do not know the cause of the discrepancies in the measured sedimentation

rates of the various experiments. However, since the two freely rotating colloid exper-

iments that yield lower sedimentation rates (August 2 and August 5) cover a smaller

range in the z direction compared to the experiments which yield higher sedimen-

tation rates (August 10 and August 11), the discrepancy between the two sets of

experiments may be due to rods missing from the statistics of the experiments with

smaller fields of view. Performing further experiments would allow us to get a better

estimate for the sedimentation speed of our colloids. Nonetheless, based on the sedi-

mentation rates listed in table 5.2, it seems as though the rod-like colloids sediment

faster when held in a vertical orientation. If this is the case, it is likely because the

surface area facing in the direction of motion is smaller in the case of the vertical

rods.

Using the values for the sedimentation rate we found and equation 4.3, we cal-
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Figure 5.1: Mean z coordinate of the rod-like colloids over time for various experi-
ments. Red points - experiments wherein the colloids rotate freely (including those
in which they begin vertical and are subsequently allowed rotate). Blue points - ex-
periments wherein the colloids were held vertical by an electric field. Information on
the linear fits to the data can be found in table 5.2.
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culate the approximate Péclet numbers of the experiments, which are listed in the

rightmost column of table 5.2. In all our experiments Pe >1, which indicates that

hydrodynamics are the most important contribution to the dynamics of the colloids,

however the fact that all the calculated Pe are less than 10 means that Brownian mo-

tion is still quite significant. Notably, we find that the Péclet numbers of the vertical

colloid experiments were higher than those of the freely rotating colloid experiments,

meaning hydrodynamics tend to be more dominant when the rods are held in a ver-

tical orientation.

In figure 5.2, the standard deviations of the z coordinates of the colloids are plot-

ted over time. In this context, the standard deviation is used as a measure of how

spread out the colloids are in the z direction. We observe that at early times the

standard deviation also increases linearly with time, and plateau at later times as the

colloids exit the frame of the image. The values of the slope and intercept obtained

by performing linear fits to the data at early times are listed in table 5.2. From these

values, it can be seen that colloids that sediment faster also tend to spread out faster

as well.
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Figure 5.2: Standard deviation of the z coordinate of the rod-like colloids over time
for various experiments. Red points - experiments wherein the colloids rotate freely
(including those in which they begin vertical and are subsequently allowed rotate).
Blue points - experiments wherein the colloids were held vertical by an electric field.
Information on the linear fits to the data can be found in table 5.2.
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Experiment
Mean zcent fit Standard Deviation zcent fit T Pe

m(µm/s) b(µm) Residual m(µm/s) b(µm) Residual (◦C)
Aug 11 VR 0.0230 4.38 0.00053 0.00637 1.676 0.0042 23.9 5.8
Aug 12 VR 0.0154 1.94 0.00045 0.00501 1.540 0.00082 22.2 4.3
Aug 2 FR 0.00562 3.49 0.00941 0.000930 1.469 0.00177 23.3 1.5
Aug 5 FR 0.00678 4.12 0.000172 0.00219 1.15 0.000184 24.5 1.7
Aug 10 FR 0.0142 4.63 0.00107 0.00480 1.684 0.00113 24.9 3.5
Aug 11 FR 0.0110 4.79 0.00906 0.00448 1.210 0.00355 22.3 3.1

Table 5.2: Information on the linear fitting (< z >= mt + b) performed on the
mean and standard deviations of the z coordinates of our sedimenting rod colloids in
various experiments and the Péclet numbers we calculate for the systems using the
sedimentation rates. Refer to figures 5.1 and 5.2 to see the data and fitted lines. (FR
- Freely Rotating, VR - Vertical Rods)

5.3 Rotational Diffusion

As we are dealing with anisotropic, axially symmetric particles, the systems we are

testing have two additional rotational degrees of freedom. This introduces complex-

ity to the dynamics of our system that we were interested in testing. One test we

performed was to do an experiment in which rod-like colloids initially sedimented

in a vertical orientation under an electric field, which was then turned off after the

colloids had sedimented for 00:19:18 hours (sedimented ≈ 20µm). By doing this we

could observe the onset of disorder in the orientations of the colloids.

In figure 5.4 we have plotted the mean cos2(θ) of the colloids over time after the

electric field was turned off (corresponding to t = 48s on the graph) where θ is the
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Figure 5.3: Distributions of the z coordinate of experimental colloids in the August
11 vertical rod experiment at selected time steps. Red vertical lines indicate the mean
value of the z coordinate at times at each time frame. For later times, the distribution
becomes cut off at the bottom of the image (z = 20µm)

polar angle measured from the z-axis. At this time, the colloids are in the middle of

sedimenting so the colloids are fairly dispersed and are clustered. The mean cos2(θ)

decays exponentially to its average value in the case of a set of completely disordered

colloids (< cos2(θ) >= 1/3) after around 350 seconds. For a particle with hydro-

dynamic radius RH in a solvent with temperature T and dynamic viscosity µ, the

Einstein-Smoluchowski-Stokes relation says that the rotational diffusion coefficient
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such a particle is

Dr =
kBT

8πµR3
H

(5.5)

where kB is the Boltzmann constant. Using the hydrodynamic radius RH = 0.618µm,

we estimate the diffusion constant to be Dr = 0.0038rad2/s. Since the rotational

Péclet number is defined to be

Per =
γ̇

Dr

(5.6)

where γ̇ ≈ v/RH we get Per ≈ 2.3, which indicates that the disordering of the orien-

tations of the colloids is largely the result of chaotic hydrodynamic motion resulting

from the many body nature of the system, while Brownian motion has a significant,

but ultimately weaker contribution to the disordering.

5.4 Clustering of Colloidal Particles

Based on qualitative examination of the confocal images of our experiments, we ob-

serve that as the colloids sediment instabilities form at the leading edge of the sed-

imenting colloids, which eventually form clusters and later columns of sedimenting

colloids, leaving voids in the xy profiles of the images. This is observed in both the
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Figure 5.4: Mean cos2(θ) over time after the electric field is switched off in a sedi-
menting colloid experiment, where θ is the polar angle measured from the z axis. An
exponential function is fitted to the data (dashed black line).

freely rotating and vertically held rod-like colloid systems. This is illustrated in fig-

ures 5.5, 5.6, and 5.7. The xy profiles of the images show rods in the bottom portion

of the full 3D images, since the clustering tends to occur at the leading edge of the

sedimenting colloids. The development of instabilities and clusters in the leading edge

of the colloids can be seen in the later time images in figure 5.6. At longer times, these

clusters eventually become columns of rods, as can be seen in figure 5.7. Generally

we find that these instabilities and clusters are on the order of 5 to 10 rod lengths
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in width. Based on the images in figure 5.5, we see that the colloids seem to cluster

more in the system in which the rods are held vertical by a field, since the voids in

the colloids are larger and clearer.

In order to quantify the degree of clustering of the colloids in our experimental

images, we generated Voronoi diagrams for the centroids of the colloids. For (x, y)

coordinates of the centroids of the colloids in an image, the Voronoi diagram par-

titions the image into regions such that for each centroid there is a corresponding

region such that any point in that region is closer to its associated centroid than any

other. The Voronoi diagrams associated with the xy profiles in figure 5.5 are shown

in figure 5.8. Our Voronoi diagrams were generated using Qhull [33].

By examining the distribution of the areas of the polygons generated by the

Voronoi diagram (excluding any that have vertices outside of the image), we can get

an idea of how clustered the rods are. When the rods are clustered, we expect the

histogram of the areas to be shifted left and to have a longer tail compared to the

histogram of the areas for the Voronoi diagram of randomly distributed points. To

analyze our images, we first divided the colloids based on whether they were above

or below the median z coordinate of the colloids in the system. We then generated

the Voronoi diagrams for the two halves of the 3D image, found the areas of the

polygons, and plotted the histograms of the areas divided by the mean area (denoted
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Figure 5.5: Images of colloids clustering during sedimentation for freely rotating
colloids (A - experiment 10, t =00:02:45hr and < z >≈ 4µm, C - experiment 11,
t = 00:21:58hr and < z >≈ 12µm) and colloids held vertical by electric field (B -
experiment 14, t = 00:01:45hr and < z >≈ 4µm, D - experiment 15, t = 00:21:05hr
and < z >≈ 30µm).
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Figure 5.6: xz profiles of images taken during experiment 3 at different times showing
the development of instabilities in the sedimenting colloids.

Avor/ < Avor >) in order to normalize against the concentration of the colloidal

particles so that we can compare the distributions to those generated from a set of

randomly placed points.

In figure 5.10 and 5.11, we have plotted the Avor/ < Avor > for experiments

11 (freely rotating colloids) and 15 (vertical colloids) soon after the colloids begin

sedimenting in the experiment and after the colloids have sedimented for about 20

minutes (through ∼ 1/3 of the cell’s thickness for the vertical rods and ∼ 1/8 of the

cell’s thickness for the freely rotating rods). Along with the histograms, we have plot-

ted the Kernel Density Estimation (KDE) function for the Avor/ < Avor > histogram

of the Voronoi diagram for a randomly distributed set of points which was calculated

using Scipy [34]. At early times, the histograms of top and bottom halves of the

points are similar to one another as well as matching fairly well with the KDE for a
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Figure 5.7: xy (A) and yz (B) profiles of clustering colloids at long times take from
experiment 1 in table 5.1 at after 1:19:00hr.

random distribution. This is because the colloids have just started sedimenting, so

we do not see any clustering and thus the colloids are fairly randomly distributed. In

later time histograms, we see that the histogram for colloids in the upper half of the

system is still similar to the KDE for a random distribution. However, the histogram

for colloids in the lower half of the system has shifted to the left considerably and has

a longer tail than the upper half histogram. That this shift only occurs for colloids

below the median z coordinate supports the observation that the formation of colloid

clusters occurs near or at the leading edge of the sedimenting colloids.

Based on qualitative assessments of the experimental images (such as those in

figure 5.5), it would seem that the colloidal particles tend to cluster more closely
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Figure 5.8: Voronoi diagram of colloids clustering during sedimentation for freely
rotating colloids (A - experiment 11, t = 00:21:58hr and < z >≈ 12µm) and colloids
held vertical by electric field (B - experiment 15, t = 00:21:05hr and < z >≈ 30µm).

when they are held vertical by an electric field than when they are allowed to rotate

freely. To quantify this effect, we plotted the histograms of Avor for the points below

the median z coordinate in figure 5.9. In this figure, data from multiple time steps

(experiment 11 t=00:21:58 to 00:30:58 hr for freely rotating colloids and experiment

15 t = 00:19:05 to 00:33:05hr for vertical colloids) were used to improve the statistics

of the histograms. From these histograms we can see that both histograms peak at

similar values, but that the freely rotating rod histogram is broader and has a lower

peak. This may support the observation that the rod colloids tend to cluster together

more tightly when held vertical, however this difference in clustering may also be
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due to the higher colloid concentration in vertical colloid images (ρvertical ≈ 0.012

colloid/µm2, ρfree ≈ 0.009 colloid/µm2). Performing further experiments using sus-

pensions with the same colloid concentration will be needed to determine the cause

of the differences in the Avor histograms. In addition, we find that the histograms of

Avor/ < Avor > (figure 5.9 inset) for the two data sets are very similar, which may

be indicative of similarities in the “structure” of the clusters.

To quantify how clustered the colloids are, we can use the skewness of the Voronoi

area histograms. The skewness is a measure of the asymmetry in a distribution and

increases as the tail grows longer in the right direction and the distribution becomes

more concentrated. Since more clustered images have histograms that are more con-

centrated near zero, we expect the skewness to increase as the colloids become more

clustered. One issue that arises when using the skewness is that it is highly sensitive

to outliers in the data, as it is calculated using the third order central moment. In

order to suppress large variations in the skewness due to outliers, we remove any Avor

larger than < Avor > +3σ where σ is the standard deviation of Avor. In figure 5.12,

the skewness of the Avor is plotted over time for three of our experiments in which

we are able to observe the formation of instabilities and clusters in the sedimenting

colloids (experiments 1, 2, and 3 in table 5.1). At early times May 4 experiment 2

and May 6 experiment 1 have high skewness values which may be caused by the fact



5.4 Clustering of Colloidal Particles 59

that the sample was slightly tilted. As a result, when the colloid centroids are split

based on z coordinate, there is a gradient in the density of the (x, y) points resulting

in a wide Avor distribution. At later times, the colloids become sufficiently spread

out such that this is no longer an issue. At these times we see that the skewness

of the Avor increases steadily for all three experiments, likely corresponding to the

increasing clustering of the colloids. However, the rates at which the skewness of

the three experiments differ considerably. Again, further experimentation would be

required to determine the cause of the differences, but possible causes could be sta-

tistical issues arising from the differing fields of view in the image and differences in

the concentrations of the colloids in the suspensions. Some statistical information on

the Voronoi area analysis of the experiments in which we observe clustering is listed

in table 5.3.
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Figure 5.9: Normalized histograms of Voronoi polygon areas Avor for points below
the median z coordinate. Multiple time steps were used to improve the statistics for
both histograms. Vertical rod histograms are in light green, freely rotating rods are
in blue, and the overlap is in dark green. Inset: Histograms of Avor divided by the
mean area < Avor >. The black dashed line is the Kernel Density Estimation for the
Avor/ < Avor > for a random distribution of points.
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Figure 5.10: Normalized histograms of Avor/ < Avor > for a freely rotating colloid
experiment initially (A - experiment 10, t =00:02:45hr and < z >≈ 4µm) and after
some time (B - experiment 11, t = 00:26:58hr and < z >≈ 14µm). The data are
divided based on whether the colloids are above (green) or below (blue) the median z
coordinate of the colloids (dark green - overlap of the histograms). The black dashed
line is the Kernel Density Estimation for the areas of the Voronoi diagram for a
random distribution of points.
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Figure 5.11: Normalized histograms of Avor/ < Avor > for a vertical colloid experi-
ment initially (A - experiment 14, t = 00:01:45hr and < z >≈ 4µm) and after some
time (B - experiment 15, t = 00:21:05hr and < z >≈ 30µm). The data are divided
based on whether the colloids are above (green) or below (blue) the median z coordi-
nate of the colloids (dark green - overlap of the histograms). The black dashed line
is the Kernel Density Estimation for the areas of the Voronoi diagram for a random
distribution of points.
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Figure 5.12: Skewness of Avor over time for experiments 1 (blue), 2 (green), and 3
(red) in table 5.1. The black solid line shows the Avor skewness for a set of randomly
distributed points averaged over 80 different random sets. The gray dashed lines are
this average value plus/minus the standard deviation of the skewnesses of the different
random sets.

System Standard Mean Skewness Area
Deviation Avor Density
Avor (µm2) (µm2) (µm−2)

Random Distribution 15.8 30.9 0.78 0.026
FR - Exp. 1 (t = 3120s) 38.4 34.6 2.30 0.015
FR - Exp. 2 (t = 9000s) 179 216 1.19 0.003
FR - Exp. 3 (t = 4390s) 318 413 1.52 0.0016

VR - Exp. 15 (t = 1318 to 1858s) 44.4 57.2 1.57 0.012
FR - Exp. 11 (t = 1145 to 1985s) 64.8 87.7 1.45 0.009

Table 5.3: Skewness of the distributions of Voronoi areas in different systems (FR -
Freely Rotating, VR = Vertical Rod).
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Simulation Results and Discussion

The single particle simulations with system sizes of less than around 100000 particles

discussed in this section were run on a Nvidia GTX 780 GPU while larger simulations

(multi-colloid) were run on SHARCNET’s monk GPU cluster, which uses Nvidia Tesla

M2070 GPUs.

6.1 Simulations of Spherical Colloids

6.1.1 Diffusion of Spherical Colloids

As noted in the Chapter 4, we are basing our method for modeling our colloids on the

method used by Zhou and Schmid in [30]. Thus, it is naturally important to ensure

that we can replicate the behaviors observed by Zhou and Schmid (who performed

simulations using ESPResSo) in our simulations performed using HOOMD-Blue. To

do this, we used a single colloidal particle with properties as specified in table 6.1 in a
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fluid with temperature kBT = 1.0ε. The dynamics of this colloid are then simulated

in a DPD fluid with parameters as specified in section 4.1 for a simulation box size

L with periodic boundary conditions.

Sphere Properties

Radius 3.0σ
Mass 100.0m

Moment of Inertia 360mσ2

Surface Points 162

Table 6.1: Properties of the simulation system for our single sphere simulations.

One important effect seen in the simulations performed in [30] was the dependence

of the diffusion constant D of the colloid on the size of the simulation box as a result

of the periodic boundary conditions. This effect can be seen in the mean square

displacement of the colloids with time, which in the diffusive regime should follow

lim
t→∞
〈(r(t)− r(0))2〉 = 6Dt (6.1)

where D is the diffusion coefficient and < · · · > signify an ensemble average. In figure

6.1, the mean square displacements of a spherical colloid in cubic simulation boxes

of varying L are plotted for both our simulations (L = 15σ, 25σ, and 30σ) and those

performed by Zhou and Schmid (L = 10σ and 30σ). The mean square displacement

curve we obtain for the L = 30σ simulations matches closely with the curve obtained
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by Zhou and Schmid.

From curves in figure 6.1 it is clear that the diffusion constant increases with

Figure 6.1: The mean squared displacements of spherical colloidal particles over time
for various system sizes. Solid curve show our simulation results, while dashed curves
are from ref. [30]

increasing box size. This is a hydrodynamic effect caused by the interactions between

the colloid and its periodic image. The relation between the diffusion constant and

the system size L can be derived analytically in terms of an expansion of powers of
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1/L [35]

D =
kBT

6πµ

(
1

R
− 2.837

L
+

4.19R2

L3
+ . . .

)
. (6.2)

Using equation 6.1, we calculated the diffusion constant of the colloids at large times

by finding the slope of the mean squared displacement at large times. These diffusion

constants are plotted in terms of 1/L and compared to the curve from equation 6.2

in figure 6.2. Like Zhou and Schmid, we found that the simulations and equation 6.2

agree fairly well.

Other benchmarks used in [30] are the velocity and angular velocity auto corre-

Figure 6.2: Simulation diffusion constant plotted against the reciprocal of the length
(points) along with the theoretical prediction of 6.2 (line)
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lation functions over time

Cv(t) =
〈v(0) · v(t)〉
〈v〉

(6.3)

Cω(t) =
〈ω(0) · ω(t)〉
〈ω〉

(6.4)

where v(t) and ω(t) are the translational and rotational velocities of the colloid at

time t. For short time scales, the autocorrelation functions decay exponentially. The

Enskog dense-gas kinetic theory predicts that

lim
t→0

Cv(t) = exp(−ξvENSt) (6.5)

lim
t→0

Cω(t) = exp(−ξωENSt) (6.6)

where ξvENS and ξωENS, the Enskog friction coefficients, are

ξvENS =
8

3

(
2πkBTmM

m+M

)1/2

ρR2 2

M
(6.7)

ξωENS =
8

3

(
2πkBTmM

m+M

)1/2

ρR2 5

2M
(6.8)

where m is the fluid bead mass, M is the colloid mass, T is the temperature, kB

is the Boltzmann constant and ρ is the solvent density. In our simulation system

ξvENS = 3.61τ−1 and ξωENS = 4.51τ−1. For long time scales, mode-coupling theory
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predicts algebraic behavior [30]

lim
t→∞
〈v(0) · v(t)〉 =

kbT

12mρ(π(µ/ρ+D))3/2
t−3/2 (6.9)

lim
t→∞
〈ω(0) · ω(t)〉 =

πkbT

mρ(4π(µ/ρ+D))5/2
t−5/2 (6.10)

where µ is the shear viscosity and D is the diffusion constant. We get

lim
t→∞
〈v(0) · v(t)〉 = 0.95t−3/2 (6.11)

lim
t→∞
〈ω(0) · ω(t)〉 = 3.13t−5/2. (6.12)

for our simulations.

The mode coupling and Enskog dense gas kinetic theory predictions are plotted

against the translational and angular velocity auto-correlation functions for a spher-

ical colloid in a box of size L = 25σ in figure 6.3. We see that the predictions of the

Enskog dense gas kinetic theory agree well with the velocity autocorrelation function

at small timescales (t < 10−1τ), but does not agree as well in the case of the angular

velocity autocorrelation function. This is likely due to the fact that we are approx-

imating a continuous surface using a set of discrete DPD interaction points, which

would affect the angular velocity autocorrelation function more than the translational

velocity autocorrelation function. We would expect the simulations to more closely

match theory as the number of interaction points is increased. In the case of the
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Figure 6.3: The translational (top) and angular (bottom) velocity autocorrelation
(blue markers) functions plotted alongside the predictions of the Enskog dense-gas
kinetic theory (green line) and the mode-coupling theory (red line).
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mode coupling theory predictions, the velocity and angular velocity autocorrelation

functions seems to be consistent with the theory at large times (t > 10τ). However,

at these timescales both the autocorrelation functions have large fluctuations due to

a lack of statistics. Improving the statistics for t > 10τ would require very long sim-

ulations.

6.1.2 Sedimenting Spherical Colloids

In order to simulate the sedimentation of particles, we apply a constant force on every

point in the rigid bodies in the z direction. This results in a force on the center of mass

with a net torque of zero. When simulating sedimentation, it is important to keep in

mind that we are dealing with a finite system, and that the boundary conditions can

play a significant effect on the dynamics of the colloids. If we were to näıvely simu-

late the sedimentation of our colloids with periodic boundary conditions, the friction

between the colloids and the fluids would cause the entire system to continuously ac-

celerate downwards. This scenario is unphysical, as we expect a sedimenting particle

to eventually reach a terminal velocity and stop accelerating. Thus, it is necessary to

counter this effect in some way. The two methods we tested in our simulations are

to either introduce walls at the top and bottom of the simulation box or to apply a
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force on the fluid such that the net force on the fluid and colloids is zero.

The walls were modeled using a Lennard Jones potential defined as

V (r) =


4εLJ

[(
σLJ

r

)12 −
(
σLJ

r

)6
]

r < rcut

0 r ≥ rcut

(6.13)

where r is the distance to the wall. Typically we use σLJ = 1.0, εLJ = 1.0, and

rcut = 6
√

2σ. This means that the cutoff occurs at the minimum in the potential, en-

suring that the interaction is purely repulsive. These walls are placed at the highest

and lowest z coordinates in the simulation box and lie in the xy plane.

To test the walled system, a spherical colloid of radius R = 3.0σ was simulated in

a cubic box with side lengths L = 25σ for various applied forces. In figure 6.4, the

mean velocity of the colloids (the terminal velocity) is plotted against the applied force

along with the predicted curve for a spherical particle sedimenting under Stokes’ drag

u/F = 1/(6πµa) = 0.0148τ/m, using the value for viscosity µ = 1.23m/τσ found by

Zhou and Schmid [30]. Based on this graph, we can see that the walled system does

not reproduce the expected behaviour for a sedimenting spherical particle. These

results are consistent with the idea that the velocity of particles in a viscous medium

tends to decrease near walls.

For the simulations in which the net force is zero, a constant force Ffluid = Fcolloid

nfluid
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Figure 6.4: Terminal velocity of a spherical particle plotted against the applied force
in a system where there are walls at the top and bottom boundaries of the system. A
line representing the relation between the quantities for Stokes drag is also plotted.

is applied to the every fluid particles in the positive z direction. This results in a net

force of zero on the system which prevents the entire system from accelerating. This

is confirmed in figure 6.5 where it can be seen that the velocity of the sedimenting

particle remains level over long times. In figure 6.6, the relative terminal velocity

of the spherical particles is plotted against the applied force, again alongside the re-

lation predicted by Stokes’ Law. In this case we can see that the terminal velocity

of the simulated colloids matches closely with the expected values, with the slope of
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the linear fit giving a value of du
dF

= 0.0144τ/m. Because of this result, most of the

simulations we performed used the zero net force method, especially as it has the

additional benefit of allowing much longer simulations.

Figure 6.5: Running mean velocity in the z direction over time of the sedimenting
colloid for various applied forces.

The Péclet number of the simulated systems can be found using the equation Pe

= Fa
kBT

. Because this expression for Pe depends only on the applied force, the radius,

and the temperature we can easily vary the Péclet number by changing these vari-

ables. For F = 6.52mσ/τ 2 on a spherical particle of radius a = 3.0σ and in a fluid
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Figure 6.6: Terminal velocity of a spherical particle plotted against the applied force
in a system in which a force is applied to the particles to make the net force on the
system zero. A line representing the relation between the quantities for Stokes drag
is also plotted.

with temperature kBT = 1.0ε, the Péclet number is Pe = 19.56.

6.1.3 Sedimentation of 1D arrays of Spherical colloids

One of the simplest systems in which we can observe the Crowley instability is a line of

5 spherical particles. In such a system, we expect that due to the line of center forces

between the particles, the closer to the center a particle is, the faster it sediments.
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Figure 6.7: Initial condition of the 5 sphere sedimentation simulations.

Simulation Box
Lx Ly Lz
60σ 30σ 30σ

Sphere Properties

Radius 2.0σ
Mass 100.0m

Moment of Inertia 160mσ2

Surface Points 162

Table 6.2: Properties of the simulation system for a line of 5 spherical particles.

A line of 5 spheres along the x-axis with initial conditions as shown in figure 6.7 was

simulated with sedimentation force F = 6.52mσ/τ 2 and an inter-particle distance of

8σ. The Péclet number was varied by changing the temperature of the system. As

we are interested in relatively long-time effects, we used a zero net force system. The

properties of the spherical colloid particles are specified in table 6.2.

In figures 6.8 and 6.9 the trajectories of the spherical particles are plotted over time

for T = 0.05ε (Pe = 262), 0.1ε (Pe = 131), 0.25ε (Pe = 52), and 0.5ε (Pe = 26), where

the temperature T is expressed in model energy units and kb = 1. We can clearly

observe the clustering of the central particles in the T = 0.05ε and T = 0.1ε systems,

while in the T = 0.25ε and T = 0.5ε this effect is not observed, though the proximity
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of the particles to one another does seem to have an effect on the sedimentation

speeds of the particles, as the spheres seem to move under the influence of line of

center forces. This confirms that, as the Péclet numbers of the systems suggest, the

T = 0.05ε and T = 0.1ε systems are largely non-Brownian, and Brownian motion has

a significant effect on the motion of the particles when T = 0.25ε and T = 0.5ε.

One problem that arises in the systems due to the periodic boundary conditions

used in the simulations is that the particles “see” themselves above and below during

sedimentation. Thus, the five particles end up moving in their own wakes and start

to accelerate rapidly due to the lower drag in the wake of their periodic images. At

long times in the T = 0.05ε and T = 0.1ε simulations, this leads to the particles

grouping up and forming columns which fall at very high speeds. This is illustrated

in figure 6.10, where there is a clear shift in the acceleration on the particles causing

a large fluctuations in the speed of the particles after around 600τ . Thus, we can

only use results from earlier portions of the simulations. Nonetheless, the clustering

effects we observe occur well before the periodic boundary conditions begin to cause

such behavior in the particles.
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Figure 6.8: x and z positions of the five spheres over time for temperatures T = 0.05ε
(Pe = 262) on the left and T = 0.1ε (Pe = 131) on the right. Red lines indicate
the centroid of the spheres and circles are used to represent the spheres at intervals
of 30τ . The solid black lines indicate the periodic boundaries of the system and the
green dashed lines connect spheres of the same time step.
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Figure 6.9: x and z positions of the five spheres over time for temperatures T = 0.25ε
(Pe = 52) on the left and T = 0.5ε (Pe = 26) on the right. Red lines trace the centroid
of the spheres and circles are used to represent the spheres at intervals of 30τ . The
solid black lines indicate the periodic boundaries in the system and the green dashed
lines connect spheres of the same time step.
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Figure 6.10: Velocity in the z direction over time for 5 sphere simulations with T =
0.05ε (Pe = 262) on the top and T = 0.1ε (Pe = 131) on the bottom. The spheres
are numbered from left to right as they appear in figure 6.8.
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Figure 6.11: Initial condition for simulations of two initally vertical rods sedimenting.

6.2 Simulations of Rod Colloids

6.2.1 Sedimentation of Two Adjacent Rods

One hydrodynamic effect we are interested in reproducing in our simulations is the

periodic rotations of anisotropic particles during sedimentation reported by Jung et.

al. [11]. In order to do so, we simulated two sedimenting rod particles which are

initially oriented vertically near one other as shown in figure 6.11 with an initial

inter-particle distance of 6.0σ. The properties of the rod particles can be found in

table 6.3. These simulations were carried out using an applied force of F = 13.04

and the Péclet number of the system was varied by changing the temperature of the
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fluid. Based on the experiments and hydrodynamic theory studied in [11], we expect

the rod particles to rotate in periodically as illustrated in figure 2.2.

Simulation Box
Lx Ly Lz
60σ 60σ 60σ

Rod Properties

Radius (R) 2.0σ
Length (L) 12.0σ

Hydrodynamic Radius (RH) 3.43σ
Mass (M) 500.0m

Ixx Iyy Izz
≈ 5257mσ2 ≈ 5290mσ2 ≈ 970mσ2

Surface Points 628

Table 6.3: Properties of the rod particles.

In figure 6.12, the orientations and positions two rod particles initially oriented

vertically are plotted over time for T = 0.1ε (Pe ∼ 445), 0.25ε (Pe ∼ 180), and

0.5ε (Pe ∼ 90). We estimate the Péclet number Pe using the equation Pe= FRH

kBT
,

where kB = 1.0 and use equation 2.4 in section 2.1.1 to calculate the hydrodynamic

radius RH = 3.43. In the plot for the T = 0.1ε simulation, we observe that the

rods move as expected for part of the rotation, spreading outwards and rotating into

a horizontal position while largely remaining in the yz-plane. However, while the

rods do begin to tip inwards, they do not undergo the next stage of the rotation

and continue to sediment in a horizontal position. This may be due to the periodic

boundary conditions, which produce periodic images of the rods on either side of the
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simulation box. As a result, the tendency of the rods to rotate and move closer to

one another is opposed by similar influences due to the periodic images of the rods,

resulting in the rods remaining horizontal as they sediment. However, this could also

be a result of the initial separation distance between the rods, as it was found in [9]

that above some cutoff separation a pair of sedimenting disks (1mm wide, 1.2cm in

diameter) will rotate into a horizontal orientation and will not rotate back into a

vertical orientation. Experimentally this cutoff separation was found to be around 5

times the disks’ widths, which is larger than the separation used in our simulation

which was 1.5 times the rods’ diameters. However, this cutoff distance may vary

between differently shaped particles, so we cannot rule out this explanation for the

observed behavior of the rods. Performing simulations using larger simulation boxes

and using different separation distances will help address this question. Taking the

time taken for the rods to rotate from a vertical position to a horizontal position to

be half the period of the rotational motion, we find the period is ≈ 650τ .

In the T = 0.25ε and T = 0.5ε simulations, the rods also rotate into a roughly

horizontal orientation and continue to sediment horizontally thereafter. As can be

seen from figure 6.13, the rods in the T = 0.25ε simulation tend to reach a horizontal

orientation at around the same time (≈ 300τ) as those in the T = 0.1ε simulation.

The T = 0.5ε simulations rods also tend to rotate to the horizontal, but experience
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much more variation in orientation and rotation speed, which results in the rods

rotating out of the xz plane in which they are initially positioned. The fact that the

rotational motion of the rods in our simulations is similar to the motion of anisotropic

particles in the hydrodynamic domain fits with what we’d expect given their Péclet

numbers, as all the simulations have Pe >90. The greater influence of random motion

on the rotation of the rods in the T = 0.5ε simulations also fits with the behavior

we’d expect given the system’s Pe ∼ 90, which is outside of the non-Brownian domain

(Pe > 100).



6.2 Simulations of Rod Colloids 85

Figure 6.12: y and z positions of particles in a two rod simulation over time for
temperatures T = 0.1ε (A - Pe ∼ 445), T = 0.25ε (B - Pe ∼ 180) and T = 0.5ε (C -
Pe ∼ 90). Red lines trace the centroid of the rods and blue lines are used to represent
the primary axis of the rods at intervals of 10τ . The solid black lines indicate the
periodic boundaries in the system.
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Figure 6.13: Running mean of the polar angle θ of the rods over time of a two rod
simulation wherein the rods begin vertical. The simulations were run at temperatures
T = 0.1ε (A - Pe ∼ 445), T = 0.25ε (B - Pe ∼ 180) and T = 0.5ε (C - Pe ∼ 90).
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6.2.2 Sedimentation of a 1D array of Rod Particles

Figure 6.14: Initial condition for simulations of five initally vertical rods sedimenting

Another system we are interested in is one that is similar to one that was tested

experimentally by Rahul Chajwa [9]: the sedimentation of a line of 5 disks (Pe∼ 1015).

In [9], it was found that when the disks were initially oriented vertically, they tended to

spread outwards. We represented this system with a line of 5 rods oriented vertically

and aligned in the yz plane as shown in figure 6.14. The properties of the rod particles

are the same as in table 6.3, with the rods having an inter-particle distance of 6.0σ,

an applied force of F = 6.52mσ/τ 2, and a system temperature which is varied to

change the Péclet number.

Figure 6.15 plots the positions and orientations of the rods as they sediment

for temperatures of T = 0.1ε (Pe ∼ 230), 0.15ε (Pe ∼ 150), and 0.2ε (Pe ∼ 110).

In all three simulations, we can see that the rods initially swing outwards, just as
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shown experimentally in [9], with the non-central particles rotating into horizontal

orientations. In the T = 0.15ε and 0.2ε simulations, the random motion causes the

rods to rotate out of the yz plane and the rods continue to sediment in a horizontal

orientation.

In the T = 0.1ε simulation, the central rod remains vertical and quickly falls ahead

the other rods. Soon after, the center-left and center-right rods tip inwards from their

horizontal positions and rotate into a vertical orientation, picking up speed as they

enter the wake of the central particle. These phenomena can be seen in the velocity of

the rods in the z direction is when it is plotted over time (fig. 6.16). One can see that

the speed of the outer particles usually undergo an initial increase, then decrease as

the rods rotate into a horizontal position. This does not occur for the central particle

(trajectory 3) in the T = 0.1ε simulation, and at t ≈ 500 we observe that the speeds

of the center-left (2) and center-right trajectories (4) increase rapidly corresponding

to the rotation of the particles into a vertical position and the reduced drag force in

the wake of the central rod. The motion of the rods in the T = 0.1ε system seems to

be the result of a combination of the Crowley instability, as the rods cluster together

as they sediment, and the periodic rotational motion described in [11], as the center-

left and center-right rods undergo a full rotation in a manner similar to the two rod

systems they described.
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Figure 6.15: y and z positions of particles in a five rod simulation over time for
temperatures T = 0.1ε (A - Pe ∼ 230), T = 0.15ε (B - Pe ∼ 150) and T = 0.2ε (C -
Pe ∼ 110). Red lines trace the centroid of the rods, blue lines are used to represent
the primary axes of the rods at intervals of 10τ , and green dashed lines connect points
in the same timestep at intervals of 50τ . The solid black lines indicate the periodic
boundaries in the system.
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Figure 6.16: Running mean of the velocity in the z direction of the rods over time of
a five rod simulation wherein the rods begin vertical. The simulations were run at
temperatures T = 0.1ε (A - Pe ∼ 230), T = 0.15ε (B - Pe ∼ 150) and T = 0.2ε (C -
Pe ∼ 110). The trajectories are numbered from left to right in the yz plane.
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6.2.3 Sedimentation of a 2D array of Rod Particles

Figure 6.17: Initial condition for simulations of a 5 by 5 array of horizontal rods
sedimenting. The blue box indicates the periodic boundaries of the simulation.

The final set of simulations we ran were simulations of the sedimentation of 5 by

5 grids of horizontal rods. The rods have properties as shown in table 6.3. The rods

were oriented 45 degrees from the xz plane and placed with an initial inter-particle

spacing of 12σ and were simulated with a system temperature of kBT = 1.0ε. Due to

the proximity and number of rods, the effect of a given rod on itself due to the peri-

odic boundary conditions is minimal, though does manifest at long enough timescales.
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The rods are then simulated as they sediment with applied forces of F = −1.63mσ/τ 2

(Pe ∼ 5.6), −3.26mσ/τ 2 (Pe ∼ 11), −6.52mσ/τ 2 (Pe ∼ 22), and −26.08mσ/τ 2 (Pe

∼ 90).

Figures 6.18 and 6.19 show the sedimenting rods at various time intervals. Note

that because of the differing sedimentation speeds, the time intervals are not the same

across the images. For the simulations with higher applied forces (F = −6.52mσ/τ 2

and −26.08mσ/τ 2), we observe that groups of rods begin to break away from the

rest after some time. This effect can be seen in figure 6.19 at times t = 250τ and

t = 125τ for the F = −6.52mσ/τ 2 and −26.08mσ/τ 2 systems respectively. At these

times we observe that a handful of rods have sedimented faster than the rest. This

results in the rods being far more spread out in the z direction at these times than

at similar times in the lower Péclet number systems, where we would expect equal

amounts of dispersion due to Brownian motion (all systems have the same tempera-

ture), but less due to hydrodynamic effects. For simulations with lower applied forces

(F = −1.63mσ/τ 2 and −3.26mσ/τ 2), the rods become disordered and slowly dis-

perse, and we do not observe the rods forming clusters that fall away from the rest

of the rods. This does not necessarily mean that clustering does not occur, as the

distances sedimented in the lower force simulations is less than those in the higher

force simulations. Nonetheless, when we compare the simulations after the rods have
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sedimented similar distances, there is a visible difference in degree to which the rods

have clustered. The observed changes in the clustering of the rods as the Péclet

number decreases match the expected contributions of hydrodynamics and Brownian

motion to the dynamics of the particles. This is because the clustering, if it is indeed

caused by the Crowley instability, is a hydrodynamic effect and would disappear as

Brownian motion became more important. At very long times (t > 200τ for Pe ∼

90 and t > 400τ for Pe ∼ 22 simulations), the rods begin to fall into the wakes of

their periodic images and accelerate rapidly, just like in the previous multiple colloid

simulations.

By plotting the standard deviations of the areas of the Voronoi polygons (figure

6.20) we can get an idea of how clustered the rods become over time. Due to the

random motion of the rods, we expect the standard deviation to increase from the

initial value even for a completely Brownian system. However, if there is any clus-

tering occurring due to hydrodynamics, the value will increase much faster than in

a simple Brownian system. This behavior can be seem in standard deviations of the

Voronoi areas of the Pe ∼ 22 and Pe ∼ 90 systems, where we would expect stronger

hydrodynamic effects and therefore more clustering due to the Crowley instability.

While we don’t observe any noticeable clustering in the lower Pe systems, this

does not mean that the Crowley instability does not manifest at these Péclet num-
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bers. Since the rods sediment slower at lower Pe, even though each simulation was

run for the same amount of time steps, the rods in low Pe systems don’t sediment as

far as those in systems with higher Pe. Thus, it may be the case that the Crowley

instability still occurs for relatively low Pe (∼ 1 − 10) and we simply have not sim-

ulated the sedimentation of the rods for long enough for the clustering to manifest.

Furthermore, as noted in the experimental results section, the clustering effects we

observe in our experiments (Pe ∼ 2 - 5) have sizes greater than 5 rod lengths, which is

larger than our simulation box size. Performing larger and longer simulations would

be needed to get a better understanding of the behavior of the Crowley instability at

Pe values similar to those in our experiments.
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Figure 6.18: Rendering of the 25 rod sedimentation simulations in the xz plane at
different time intervals for Pe ∼ 5.6 (left) and Pe ∼ 11 (right).
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Figure 6.19: Rendering of the 25 rod sedimentation simulations in the xz plane at
different time intervals for Pe ∼ 22 (left) and Pe ∼ 90 (right).
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Figure 6.20: Standard Deviation of the Voronoi Areas of colloids in a 25 rod simulation
over time for various Péclet numbers.



Chapter 7

Conclusion

Summary of Results

Through the use of experiments and simulations we were able to make some progress

towards gaining a better understanding of the dynamics of rod-like colloids during

sedimentation, though many questions still remain. In the experimental images, it

was observed that the instabilities form in the rod-like colloids as they sediment,

which subsequently develop into clusters after some time and into columns of sedi-

menting colloids at even later times. This behavior is very reminiscent of the Crowley

instability that is seen in the sedimentation of particles in the hydrodynamic domain.

The fact that these instabilities were observed in spite of the fact that the Brownian

motion has a significant contribution to the dynamics of the colloids (Pe ∼ 1 to 5)

suggests that the Crowley instability in many body systems is a fairly robust hydro-

dynamic effect.

By analyzing the images using the distributions of the areas of the polygons gen-
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erated by a Voronoi diagram Avor, it is possible to get quantitative measures of the

clustering of the colloids. Using the distributions of Avor for colloids above and below

the median z coordinate in images in which we observe the clustering of colloids, we

confirmed that the clustering of colloids tends to first occur at the leading edge of

the sedimenting particles. By using the skewness of Avor as a measure of the clus-

tering and calculating it for the experimental image sets in which the formation of

instabilities and clusters can be clearly observed, it is possible to track development

of clusters in the sedimenting colloids over time. It is found that the skewness of Avor

increases steadily as the colloids sediment and cluster together, though the rate at

which the skewness increases varies among the image sets we analyzed.

Both quantitative examination and the histograms of Avor for experiments of ver-

tical and freely rotating colloids at similar times seem to suggest that the rod-like

colloids tend to cluster closer together when they are held in a vertical position.

However, since the two systems have different colloid concentrations and have similar

Avor/< Avor > histograms, we cannot conclusively say that this is actually the case.

Using Dissipative Particle Dynamics (DPD), the dynamics of sedimenting col-

loids in a number of systems were simulated. In the case of a single spherical colloid

diffusing in a DPD fluid, the mean squared displacement, velocity autocorrelation

functions, and angular velocity autocorrelation functions of our simulation colloids
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matched closely with the behavior observed by Zhou and Schmid [30]. Furthermore,

it was found that the diffusion constants of the spherical colloids agreed well with the

theory of Hasimoto for spheres in a box with periodic boundaries.

In order to simulate the sedimentation of colloids, two different methods for cor-

recting the long-time behavior of the systems were tested. When a wall is introduced

at the top and bottom of the simulation box, the terminal velocity of the colloid dur-

ing sedimentation becomes considerably smaller than the value predicted by Stokes’

drag. On the other hand, when a constant force is applied to the fluid so that the net

force on the system is zero, the relation of the terminal velocity of a single sedimenting

sphere to the applied force agrees well with Stokes’ drag. However, when simulating

more than one colloid, hydrodynamic interactions such as the mutual drag reduction

of particles in close proximity to one another cause the zero net force method to fail

at long times, resulting in a constantly accelerating system.

To test the Crowley instability and the periodic rotational motion of pairs of

anisotropic particles in the DPD simulations, a series of simulations of multiple col-

loid systems were performed. These are:

• 5 spherical colloids in a row

• 2 adjacent rod colloids

• 5 rod colloids in a rod

• 25 rod colloids in a 2D lattice.
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Crowley instability-like behavior is observed in the 5 sphere, 5 rod, and 25 rod

simulations. In the case of 5 spheres, at high enough Péclet numbers (Pe >100) the

central colloids sediment faster than those on the sides and the colloids form v-shaped

clusters. At lower Pe (Pe ∼ 26 and 52), the spheres seem to move under the influence

of line of center forces, but they do not form v-shaped clusters.

For 2 adjacent rod colloids, the rods rotate from their vertical to horizontal in a

manner similar to the periodic rotation described in [11], however they do not rotate

back into a vertical orientation as expected. In [9] it was found that if two vertical

disks are placed at an initial separation above a certain threshold value and allowed

to sediment, the disks will rotate into a horizontal position, but will not rotate back

into a vertical position. This may be the reason why the rods in our simulations do

not complete full periodic rotational motions. Alternatively, it could be a result of

the periodic boundary conditions of the simulation box.

In simulations of 5 rod colloids in a row, it is observed that the rods initially

spread outwards, just as shown experimentally in [9] for particles in the hydrody-

namic domain. When the system was simulated at high Pe (∼ 230), the rods spread

out initially and as the sedimentation continues the rods rotate into a vertical position

and cluster together. This behavior seems to be the result of a combination of the

effects that cause the Crowley instability and those that cause the periodic rotational
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motion of anisotropic particles.

Finally, in simulations of a sedimenting lattice of 25 rods, the formation of insta-

bilities and clusters is observed in high Pe systems (Pe ∼ 22, 44, and 90), but not

in lower Pe systems (Pe ∼ 5.6 and 11). This seems to contradict what we see in our

experimental systems, however since the instabilities observed in experiments tend

to be on the order to 5 to 10 rod lengths in width, it is likely that the simulation

systems are simply too small to reproduce the clustering observed in experiments.

Future Work

Future experimental work would likely focus on performing more experiments to

compare the clustering of vertical and freely rotating rod colloids for the same colloid

concentration to verify if the observation that the colloids tend to cluster more closely

when held in a vertical orientation is true. In order to better characterize the cluster-

ing instabilities in the colloids one may wish perform sedimentation experiments for

systems of different colloid concentrations and different temperatures (and therefore

different Péclet numbers), as these seem to be variables that affect the formation

and sizes of the clustering instabilities. On the other hand, if one were looking to

study the dynamics of individual colloids during sedimentation in greater detail, one

would need to perform experiments using a much faster imaging system or slow the
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motion of the colloids by increasing the viscosity of the solvent (e.g. by decreasing

the temperature). This would allow for better time resolution information and give

better information on the rotational and diffusive motion of the colloids and make it

much easier to track the trajectories of the colloids over time.

Future work on simulations of sedimenting colloids might involve finding ways to

limit the acceleration of simulation colloids. This is because one of the issues we ran

into in our simulations is that the colloids accelerate constantly in systems in which

there is more than one colloid, even when the net force on the system is zero. If this

problem can be resolved, it would allow for much longer simulations.

In the case of our 2 rod simulations, we found that the rods do not undergo peri-

odic rotational motion as expected. Performing simulations of two rods sedimenting

using different simulation box sizes, initial rod separations, and particle geometries

would be useful in determining the cause of the behavior we observed in our current

two rod simulations.

Finally, though we observed the formation of clusters in our 25 rod simulations,

the systems are too small to be able to truly observe instabilities like those we ob-

serve in our experimental systems. Improving our understanding of the behavior of

the Crowley instability at different Pe would require significantly larger systems of

particles. Given that the current 25 rod simulations are performed in (60σ)3 simula-
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tion boxes and take around 10 hours to complete 2×105 time steps, increasing the size

of the systems is quite feasible as the execution time scales roughly linearly with the

number of fluid particles and the number of time steps. Since we observe instabilities

in experimental systems with Pe ∼ 3 to 5, future simulations would likely focus on

simulating systems with 0.1 <Pe < 10 to find how significant Brownian motion must

be to prevent the Crowley instability.
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Appendix A

Ellipsoid Fitting Code

A.1 Minimum Volume Enclosing Ellipsoid calcu-

lation

In order to determine the position and orientation of the rod colloids in our images,

we find the minimum volume enclosing ellipsoid (MVEE) for the rods. This is done

using a Python implementation of Nima Moshtagh’s MATLAB code [18]. The code

we wrote is presented below:

1 # Python implementation of Nima Moshtagh ’s

# Minimum Volume enclosing ellipsoids MATLAB code

# http ://www.mathworks.com/matlabcentral/fileexchange /9542 - minimum -

↪→ volume -enclosing -ellipsoid

import numpy as np

import numpy.linalg as linalg

6 # Returns A matrix for an ellipse and the center c

# such that (x-c)^T * A * (x-c) = 1

# defines the ellipse.

# P = d by N numpy array of N points in R^d

def MVEE(P,tol = 0.01):

11 d, N = P.shape

Q = np.zeros ((d+1,N))

Q[0:d,:] = P
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Q[d,:] = np.ones((1,N))

count = 1

16 err = 1

u = (1.0/N)*np.ones(N)

u = u.transpose ()

while err > tol:

21 X = np.dot(np.dot(Q,np.diag(u)),Q.T)

try:

invX = linalg.inv(X)

M = np.diag(np.dot(np.dot(Q.T,invX),Q))

maxM = np.amax(M)

26 j = np.argmax(M)

step_size = (maxM - d - 1)/((d+1)*(maxM - 1))

new_u = (1- step_size)*u

new_u[j] = new_u[j] +step_size

count += 1

31 err = linalg.norm(new_u -u)

u = new_u

except:

print "Error"

return None

36 MatU = np.diag(u)

u.transpose ()

c = np.dot(P,u)

try:

41 A = (1./d)*linalg.inv(np.dot(np.dot(P,MatU),P.T)-np.multiply.

↪→ outer(c,c))

except:

print "Error"

return None

return [A,c,count]

A.2 Ellipsoid Fitting Main Code

The main code used to read, pre-process, and find the MVE ellipsoids for the rod

colloids. The code includes an algorithm used to find the intercepts of a plane with
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the ellipsoids using a method described in [20]. It is run using the command:

import EllipsoidFit

E = EllipsoidFit.EllipsoidFit(’image.tif’, ... optional arguments

↪→ ...)

E.dofit ()

The EllipsoidFit.py code:

import numpy as np

2 import time

import tifffile as tiff

from scipy import ndimage , spatial

import sys

import pandas as pd

7 import matplotlib.pyplot as plt

from matplotlib import patches

import itertools as it

import MVEE

import EF_imageprocess as IP

12 ’’’

class: EllipsoidFit

Main class used to interact with the ellipsoid fitting code.

Includes the initialization , execution , and output code.

See MVEE.py for the math and HH_imageprocess.py for the image

↪→ processing.

17

INPUTS:

image [str/array] 3D image input. Either a string to specify the

↪→ location of a .tiff image which is opened using tifffile , or

↪→ an image array.

OPTIONS: (See default dictionary in EllipsoidFit for default values

↪→ .)

rodwid [float] expected rod width in pixels

22 rodlen [float] expected rod length in pixels

threshold [str , float] specifies the method used to determine

↪→ the threshold intensity value used to identify voxels in a rod

↪→ . Either a number which is used as the threshold or a string

↪→ which specifies the method used. SEE: EF_imageprocess.

↪→ thresholding () for more information on inputs. Makes heavy use

↪→ of the skimage package.

voxelscale [3 element list of floats] specifies the shape of the

↪→ voxels. If the voxels are not cubic , the image will be

↪→ stretched and interpolated so that the voxels become cubic.

outfile [str] specifies the filename used to save the data and

↪→ graph outputs. Default is either the name of the input file or

↪→ the date , depending on the input method for the image.
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tol [float] error tolerance used to end the MVEE fitting

27 outputdata [bool] toggles output of data files

outputhist [bool] toggles output of histograms

displayhist [bool] toggles display of histograms

hull [bool] toggles using the hull of groups of voxels during the

↪→ MVEE

smooth [str] specifies the smoothing method used in pre -

↪→ processing. SEE: EF_imageprocess.imagesmooth ()

32 quiet [bool] toggles printing of debug information

maxsize [float] specifies maximum expected object size. Used for

↪→ threshold refinements.

minsize [float] specifies minimum expected object size. Used for

↪→ threshold refinements.

refinethresh [str] specifies type and setting for threshold

↪→ refinements. SEE: EF_imageprocess.refinethresh ()

histtype [list of str] specifies what values to print histograms

↪→ for. Strings must be valid tags for the data dictionary.

37 histnorm [bool] toggles normalization of the output histrograms

outzslice [str , list of int] specifies which z-slices to use

↪→ output with along with ellipsoid -plane intersections. If

↪→ maxintens , the code chooses the slice with the highest mean

↪→ intensity.

’’’

class EllipsoidFit:

42 default = {"rodwid": 5,

"rodlen": 20,

"threshold": "otsu global",

"voxelscale":[1,1,1],

"outfile":None ,

47 "tol": 0.01,

"outputdata": True ,

"outputhist": True ,

"displayhist":False ,

"hull": True ,

52 "smooth": "gaussian 1.0",

"quiet": False ,

"maxsize": None ,

"minsize": None ,

"refinethresh": None ,

57 "histtype": ["len","theta","phi","orderparam","zcent","object 

↪→ vol"],

"histnorm": True ,

"outzslice": "maxintens"}
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def __init__(self ,image ,** kwargs):

62 #Initialization function. Computes any values that are left

↪→ unspecified.

# Checks for invalid inputs and ends execution if any are found.

for k in kwargs:

if not k in self.default:

print ’ERROR: ’+k+’ IS NOT A VALID INPUT. PLEASE CHECK FOR 

↪→ MISSPELLED OR INVALID INPUTS.’

67 sys.exit()

# If not provided , set to default values

for k in self.default.keys():

if not k in kwargs:

72 kwargs[k] = self.default[k]

# process outfile name

if kwargs["outfile"] is None:

if isinstance(image ,str):

77 kwargs["outfile"] = image.split(".")[0]

else:

kwargs["outfile"] = time.asctime(time.localtime(time.time()))

# calculate min/max sizes

82 expectedvol = np.pi*( kwargs["rodwid"]**2)*kwargs["rodlen"]/4

if kwargs["maxsize"] is None:

maxfactor = 1.5

kwargs["maxsize"] = expectedvol *( maxfactor)**3

if kwargs["minsize"] is None:

87 minfactor = 1./3.

kwargs["minsize"] = expectedvol *( minfactor)**3

# clean up refinethresh input

if not isinstance(kwargs["refinethresh"],list):

92 kwargs["refinethresh"] = [kwargs["refinethresh"],1]

# process image input

if isinstance(image ,str):

imgtiff = tiff.TIFFfile(image)

97 image = imgtiff.asarray ()

image = image.swapaxes (0,2) # swap z and x such that coords

↪→ are [x,y,z]

# else if input is list convert to array

elif isinstance(image ,list):

image = np.array(image)

102 # else if input is not already a numpy array , throw an error
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elif not isinstance(image , np.ndarray):

sys.exit("Invalid input for image , must be a string or numpy 

↪→ array!")

# set some values for convenience

107 self.image = image

self.ishape = image.shape

self.dims = len(self.ishape)

self.opts = kwargs

self.minsize = kwargs[’minsize ’]

112 self.vosc = kwargs[’voxelscale ’]

self.quiet = kwargs[’quiet’]

self.outfile = kwargs[’outfile ’]

self.vox = min(self.vosc)

self.tol = kwargs[’tol’]

117 self.info = {}

del image ,kwargs

def dofit(self):

#Executes ellipsoid fitting code and outputs.

122 # Do image pre -processing SEE: imageprocess

time1 = time.time()

self.imageprocess ()

# Do ellipsoid fitting

127 time2 = time.time()

self.get_ellipsoids ()

self.info[’Ellipsoid Count’] = len(self.data[’x’])

# Calculate various information on the ellipsoids (length ,

↪→ orientation , etc.)

132 time3 = time.time()

self.elldatacalc ()

time4 = time.time()

# plot histograms of ellipsoid data

137 if self.opts[’outputhist ’] or self.opts[’displayhist ’]:

self.graphdata ()

# output z-slices will ellipsoids overlayed

if self.opts[’outzslice ’]:

142 self.overlayellipses ()

time5 = time.time()

# Calculate the time required for various steps
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self.info[’total time’] = time5 -time1

147 self.info[’image process time’] = time2 -time1

self.info[’fit ellipsoids time’] = time3 - time2

self.info[’calc data time’] = time4 -time3

self.info[’plotting time’] = time5 -time4

152 # print output files

if self.opts[’outputdata ’]:

self.metadataprint ()

self.data.to_csv(self.outfile+"_featuredata.csv")

157 def imageprocess(self):

#Runs image processing

# smooth

if not self.quiet: print ’Smoothing ’,self.opts[’smooth ’],’...’

self.image = IP.imagesmooth(self.image ,self.opts[’smooth ’])

162

# rescale using voxelscale values

if len(set(self.vosc)) >1:

if not self.quiet: print "Original image dimensions: ",self.

↪→ ishape , "\n Rescaling ..."

self.image = IP.cubifyvoxels(self.image ,self.vosc)

167

# save new image info

self.vosc = [self.vox for i in range(self.dims)]

self.ishape = self.image.shape

self.info[’rescaled voxel’] = self.vosc

172 self.info[’rescale image size’] = self.ishape

if not self.quiet: print "New Image dimentions: ", self.ishape

# set outzslice:

if ’outzslice ’ in self.opts and self.opts[’outzslice ’] ==’

↪→ maxintens ’:

177 self.opts["outzslice"] = [np.argmax(np.mean(self.image ,axis

↪→ =(0 ,1)))]

# Threshold

if not self.quiet: print "Thresholding , Method: ", self.opts["

↪→ threshold"], "..."

# find binary image

182 binimg , self.info[’Threshold ’] = IP.thresholding(self.image ,self

↪→ .opts[’threshold ’], minsize = self.minsize ,quiet = self.

↪→ quiet)

# label regions of voxels above the threshold

self.lbimg , self.objnum = ndimage.label(binimg)
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# Calculate the size of the regions

187 self.objsizes = IP.get_blobsize(self.lbimg ,self.objnum)

if not self.quiet: print "Threshold: {} \nObjects: {}".format(

↪→ self.info[’Threshold ’],self.objnum)

self.info[’Initial Object Count’] = self.objnum

# Refine threshold if required

192 if self.opts[’refinethresh ’][0]:

if not self.quiet: print "Refining Thresholding , Method:",self

↪→ .opts["refinethresh"]

self.lbimg ,self.objsizes = IP.refinethresh(self.image ,self.

↪→ lbimg ,self.objsizes ,self.minsize ,self.opts["maxsize"],

↪→ self.opts["refinethresh"][0], self.opts["refinethresh"

↪→ ][1])

self.objnum = len(self.objsizes)

self.info["Refined Object Count"] = self.objnum

197 if not self.quiet: print "Done! New object count: ", self.

↪→ objnum

def get_ellipsoids(self):

#Runs fitting of ellipsoids to the labelled thresholded regions

hull = self.opts[’hull’]

202 # Stores ellipsoid Matrices and centroids

tempdict = {’ellmat ’:[],’x’:[],’y’:[],’z’:[],’zextent ’:[],’

↪→ objsize ’:[],’MVEE_iter ’:[]}

# loop through regions larger than the minimum size

for i in [o[0] for o in self.objsizes if o[1] > self.minsize and

↪→ not o[0] == 0]:

207 # Counter for the user

if not self.quiet:

sys.stdout.write("\r {0} / {1}".format(int(i),self.objsizes.

↪→ shape [0]))

sys.stdout.flush()

212 # Create binary image of the object in question only

objindices = np.argwhere(self.lbimg == i)

zextent = (np.amin(objindices [:,2]),np.amax(objindices [:,2]))

# Check against the minimum size

if hull:

217 # Attempt to get convex hull for the object

try:

hull = spatial.ConvexHull(objindices)

points= np.transpose(objindices[hull.vertices ])
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tempE = MVEE.MVEE(points ,tol = self.tol)

222 # If this fails , get the ellipsoid of the object itself

except:

print "\nConvex Hull error"

# Saves the matrices and centroid of the fitted ellipsoid

tempE = MVEE.MVEE(np.transpose(objindices),tol=self.tol)

227 # MVEE returns None if there is an error

else:

tempE = MVEE.MVEE(np.transpose(objindices),tol=self.tol)

if tempE:

232 # append ellipsoid data to data dictionary

tempdict[’objsize ’]. append(objindices.shape [0])

tempdict[’zextent ’]. append(zextent)

tempdict[’ellmat ’]. append(tempE [0])

tempdict[’x’]. append(tempE [1][0])

237 tempdict[’y’]. append(tempE [1][1])

tempdict[’z’]. append(tempE [1][2])

tempdict[’MVEE_iter ’]. append(tempE [2])

self.data = pd.DataFrame(tempdict)

242 if not self.quiet:

sys.stdout.write("\r {0} / {1}".format(self.objsizes.shape[0],

↪→ self.objsizes.shape [0]))

sys.stdout.flush()

def elldatacalc(self):

247 #Calculation of information on the fitted ellipsoids.

data = []

for i in range(len(self.data[’ellmat ’])):

E = self.data[’ellmat ’].ix[i]

252 U,Q,V = np.linalg.svd(E) # single value decomposition

eivals ,eivecs = np.linalg.eig(E) # eigenvalues

primax = eivecs[:,np.argmin(eivals)] # determine longest axis

lengths = np.sqrt (1/Q) # lengths of the axes

257 # input data into data dictionaries in a pandas friendly

↪→ format

datadict = {}

# Calculate orientations

datadict[’costheta ’] = primax [2]/np.linalg.norm(primax)

262 datadict[’theta ’] = np.arccos(datadict[’costheta ’])

datadict[’phi’] = np.arctan(primax [1]/ primax [0])
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# transpose eigenvectors so that the vectors are on the along

↪→ the columns

datadict["eigenvectors"] = np.transpose(eivecs)

267 datadict["eigenvalues"] = eivals

datadict["rotation matrix"] = V

datadict["principal numbers"] = Q

datadict["lengths"] = lengths

datadict["len"] = max(lengths)*2 # lengths of the longest axis

272 datadict["ellipsoid vol"] = 4*np.pi*lengths [0]* lengths [1]*

↪→ lengths [2]/3

# a comparison of the volumes of the regions and the ellipsoid

# is a measure of how "close" to an ellipsoid the regions are

datadict["ellipsoidiness"] = self.data["objsize"].ix[i]/

↪→ datadict["ellipsoid vol"]

277 datadict["aspect ratio"] = datadict[’len’]*2/( lengths [1]+

↪→ lengths [2])

# Average of the shorter lengths

datadict["width"] = (lengths [1]+ lengths [2])/2

data.append(datadict)

282 self.data = pd.merge(self.data ,pd.DataFrame(data),left_index=

↪→ True ,right_index=True)

def graphdata(self):

#Plot histograms for specified values

for graph in self.opts[’histtype ’]:

287 print "Plotting ",graph ,"..."

try:

fig = plt.figure ()

ax = fig.add_subplot (111)

n,bins ,patchs = ax.hist([d for d in self.data[graph] if

↪→ isinstance(d,(float ,int ,long))],normed=self.opts[’

↪→ histnorm ’],bins =50)

292 ax.set_ylabel("Quantity")

ax.set_xlabel(graph+"(bin size = "+str(bins[1]-bins [0])+")")

ax.set_title(’Histogram of ’+graph)

if self.opts[’outputhist ’]: fig.savefig(self.outfile+"_"+

↪→ graph+"hist.png")

if self.opts[’displayhist ’]: fig.show()

297 plt.close(fig)

except:

print ’Invalid ’

pass
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302 def metadataprint(self):

#Print image information and average values from the ellipsoids.

hline = "\n 

↪→ --------------------------------------------------------"

f = open(self.outfile+"_metadata.dat","w")

f.write(self.outfile+"_metadata.dat ... "+time.asctime(time.

↪→ localtime(time.time())))

307 f.write(hline)

f.write("\n USER INPUTS: ")

for i in self.opts.keys():

f.write("\n {0:40s} {1:10s}".format(str(i),str(self.opts[i])))

f.write(hline)

312 f.write(’\n IMAGE INFO: ’)

for i in self.info.keys():

f.write("\n {0:40s} {1:10s}".format(str(i),str(self.info[i])))

f.write(hline)

f.write("\n FITTING AVERAGES:")

317 for i in self.data:

if isinstance(self.data[i][0] ,(float ,int ,long ,np.int64)):

f.write("\n {0:40s} {1:10f}".format("Mean "+i+": ",self.data

↪→ [i].mean()))

f.write("\n {0:40s} {1:10f}".format("Median "+i+": ",self.

↪→ data[i]. median ()))

f.write("\n {0:40s} {1:10f}".format("Standard Deviation "+i+

↪→ ": ",self.data[i].std()))

322 f.write("\n 

↪→ --------------------------------------------------------

↪→ ")

f.close ()

def overlayellipses(self):

#Print ellipsoids intersections with selected z-slices.

327 #Based on "On the Ellipsoid and Plane Intersection Equation" by

↪→ Peter Paul Klein (2012)

z = self.opts[’outzslice ’]

if isinstance(z,int):

z = [z]

for i in z:

332 ellinds = range(len(self.data[’x’]))

img = self.image[:,:,i]

fig = plt.figure ()

ax = fig.add_subplot (111)

# plot selected z-slice

337 ax.imshow(img ,interpolation = "nearest",cmap="gray")
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ax.set_ylabel("y")

ax.set_xlabel("x")

ells = []

for e in ellinds:

342 # collect data to use for calculating the ellipsoid -plane

↪→ intersection

cent = [self.data[’x’].ix[e],self.data[’y’].ix[e],self.data[

↪→ ’z’].ix[e]]

A = self.data["ellmat"].ix[e]

eivecs = self.data["eigenvectors"].ix[e]

eivals = self.data["eigenvalues"].ix[e]

347 rot = self.data["rotation matrix"].ix[e]

# reorganize eigenvectors and eigenvalues

eivecs ,eivals = reorg_eig(eivecs ,eivals ,rot)

roti = np.linalg.inv(rot)

352

# Find a point on the selected plane that is also in the

↪→ ellipsoid

q = findellpnt(A,i,cent ,eivecs ,eivals)

if not q is None:

n = rot[:,2]

357

# Gets the ellipses from the ellipsoid place intersection

vecs , m, elens = ellplaneintersect(eivals ,np.dot(rot ,np.

↪→ array(q)),n)

# determine which direction the major axis is in.

362 l1 = 0 if elens [0] > elens [1] else 1

l2 = 1 if elens [0] > elens [1] else 0

# rotates the vectors

anglevec = np.dot(roti ,vecs[l1])

367 angle = np.arctan(anglevec [1]/ anglevec [0]) *180/ np.pi

m1 = np.dot(roti ,m)

angle = -1*(angle)

# Sets up matplotlib patches the ellipsoids on the image

372 ells.append(patches.Arc((m1 [0:2]+ np.array(cent)[0:2])

↪→ [[1,0]], elens[l2],elens[l1],angle=angle ,color

↪→ =[1 ,0,0]))

for e in ells:

# Plots ellipsoids on the image

ax.add_patch(e)

e.set_clip_box(ax.bbox)
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377 # save image

fig.savefig(self.outfile+"_overlay_b"+str(i)+".png",

↪→ bbox_inches=’tight ’)

def reorg_eig(eivecs ,eivals ,rot):

382 # Reorganizes the eigenvalues and eigenvectors

a = np.argmax(np.absolute(rot.dot(eivecs [0])))

b = np.argmax(np.absolute(rot.dot(eivecs [1])))

c = np.argmax(np.absolute(rot.dot(eivecs [2])))

t = [a,b,c]

387 t = np.argsort(t)

tempval = np.zeros (3)

tempvec = np.zeros ((3 ,3))

tempvec [0] = eivecs[t[0]]

tempvec [1] = eivecs[t[1]]

392 tempvec [2] = eivecs[t[2]]

tempval [0] = eivals[t[0]]

tempval [1] = eivals[t[1]]

tempval [2] = eivals[t[2]]

397 return tempvec , tempval

def findellpnt(A,z,cent ,eivecs ,eivals):

# Finds a point in the plane that is also in the ellipsoid.

eivecs = eivecs/eivals

402 # ellipsoid matrix A, z coord z, centroid cent

# Find bounding rectangle

xr = int(np.amax(np.absolute(eivecs [:,0])))+2

yr = int(np.amax(np.absolute(eivecs [:,1])))+2

zc = z - cent [2]

407 area = it.product(range(-1*xr ,xr),range(-1*yr ,yr))

# check if any of the points are in the ellipsoid

for p in area:

point = {2:np.array(list(p)+[zc]),

412 1:np.array ([p[1],zc ,p[0]]),

0:np.array ([zc]+list(p))}[2]

check = np.dot(point ,np.dot(A,point))

if check < 1:

return point

417 return None

def ellplaneintersect(eivals ,q,n):

# Calculates ellipsoid -plane intersection.
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# q is a point in the ellipsoid , n is the direction of the main

↪→ axis

422 # Extended version of Klein 2012 algorithm

if np.linalg.norm(n) != 1.0:

n= np.array(n)/np.linalg.norm(n)

D1 = np.diag(np.sqrt(eivals))

s1 = np.cross(n,[1 ,0,0])

427 r1 = np.cross(n,s1)

D1s1 = np.dot(D1 ,s1)

D1r1 = np.dot(D1 ,r1)

DRDS1 = np.dot(D1r1 ,D1s1)

432 DRDR1 = np.dot(D1r1 ,D1r1)

DSDS1 = np.dot(D1s1 ,D1s1)

omega = np.arctan (2* DRDS1 /(DRDR1 - DSDS1))/2.

r = np.cos(omega)*r1+np.sin(omega)*s1

437 s = -1*np.sin(omega)*r1+np.cos(omega)*s1

r = r/np.linalg.norm(r)

s = s/np.linalg.norm(s)

DQ = np.dot(D1 ,q)

442 DR = np.dot(D1 ,r)

DS = np.dot(D1 ,s)

DQDR = np.dot(DQ ,DR)

DQDS = np.dot(DQ ,DS)

DSDS = np.dot(DS ,DS)

447 DRDR = np.dot(DR ,DR)

r0 = -1*DQDR/DRDR

s0 = -1*DQDS/DSDS

d = np.dot(DQ,DQ)-DQDR **2/DRDR -DQDS **2/ DSDS

A = np.sqrt((1-d)/DRDR)

452 B = np.sqrt((1-d)/DSDS)

m = q+r0*r+s0*s

return (r,s),m,(A,B)

A.3 Image Processing

Python functions used to pre-process and find the threshold for ellipsoid fitting.
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from scipy import ndimage , spatial

from skimage import filters , morphology

import numpy as np

’’’

5 FUNC: refinethresh

PURPOSE: iteratively refines the thresholding of parts of the image

↪→ in order to separate rods with overlapping PSFs.

INPUT:

image [np.ndarray ]: Numpy array containing the image info

lblimg [np.ndarray ]: numpy array with thresholded objects labeled

↪→ by scipy.ndimage.label

10 objsizes [list]: List of information on the sizes of the objected

↪→ labeled (from get_blobsizes).

minsize [double ]: Minimum object threshold. Objects under this

↪→ threshold are ignored

maxsize [double ]: Maximum object threshold. Objects over this

↪→ threshold are re -thresholded

threshtype [str]: Defines what type of threshold is used. (SEE:

↪→ thresholding)

iterations [int]: Defines the number of iterations the refinement

↪→ goes through

15 OUTPUT:

lbimg [np.ndarray ]: A new array containing the new labelled

↪→ regions

objsizes [list]: list containing the sizes of the new labelled

↪→ regions added to the old ones

OUTLINE:

20 For the given number of iterations , identify any objects that

↪→ are above the maxsize. Then isolate them , set the

↪→ background to their minimum value and calculate the new

↪→ threshold. Add the new objects to the lblimg and

↪→ objsizes.

NOTES:

Generally only worthwhile if the PSFs of the rods are severely

↪→ overlapped. One should be careful not to set the maxsize to

↪→ small , or good rod objects might get re -thresholded. This

↪→ will cause a lot of rods to shrink in size , so if size

↪→ statistics are important to you , I would advise finding some

↪→ other method to fix issues with the PSF.

’’’

def refinethresh(image ,lblimg ,objsizes ,minsize ,maxsize ,threshtype ,

↪→ iterations):

25 for j in range(iterations):

# Max label index , used to add new objects
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lbind = max([o[0] for o in objsizes ])+1

# Identify which objects are above the maxsize threshold

30 bigparticles = [o[0] for o in objsizes if o[1]> maxsize and o[0]>

↪→ 0]

print "Iteration: ",j," Re-thresholding: ",len(bigparticles)

initlbind = lbind

refthreshs = []

35 for i in bigparticles:

# Find the points in the object

blobpnts = lblimg == int(objsizes[i][0])

# Set background appropriate to the minimum intensity in the

↪→ blob

40 # note the background can’t be zero for the histogram based

# thresholding methods

blobimg = np.full(image.shape ,np.amin(image[blobpnts ]))

# Get image of only the object in question

45 blobimg[blobpnts] = image[blobpnts]

# thresholding , labelling , etc.

blobbin , thresh = thresholding(blobimg ,threshtype ,minsize=

↪→ minsize)

bloblab , objnum = ndimage.label(blobbin)

refthreshs.append(thresh)

50

blobobj = get_blobsize(bloblab ,objnum)

lblimg[blobpnts] = 0 # Set pixel intensities for the object in

↪→ question to zero

firstblob = True # the first blob is placed in the ith

↪→ position , the rest are appended to the end of the list

for j in [o[0] for o in blobobj if o[0]>0 and o[1] > minsize ]:

55 # Add new objects to the labelled image

if firstblob:

lblimg[bloblab == j] = i

objsizes[i][1] = blobobj[j][1]

firstblob = False

60 else:

lblimg[bloblab == j] = lbind

objsizes = np.append(objsizes ,[(lbind ,blobobj[j][1])],axis

↪→ =0)

lbind += 1

if len(bigparticles): print "Threshold Avg: ",np.mean(np.array(

↪→ refthreshs))," Num Added: ",lbind -initlbind
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65 return lblimg , objsizes

# formats the histogram for the labelled objects

def get_blobsize(lbimg ,objnum):

objsizes = np.histogram(np.ravel(lbimg),bins=range(objnum +2))

objsizes = np.array ([[ objsizes [1][i],objsizes [0][i]] for i in

↪→ range(objnum +1)])

70 return objsizes

#

↪→ --------------------------------------------------------------------

↪→
’’’

FUNC: imagesmooth

75 PURPOSE: handles the smoothing of the image

INPUT:

image [np.ndarray ]: input image as a numpy array

smooth [str]: Sets smoothing type. (median , maximum , minimum ,

↪→ gaussian , or None). If gaussian , add a double to the string

↪→ to set the sigma. If median , maximum , minimum , add an int to

↪→ the string to set the radius

OUTPUT:

80 image [np.ndarray ]: The smoothed image

NOTES: Uses the smoothing functions provided by scipy.ndimage.

↪→ filters

’’’

def imagesmooth(image ,smooth):

85 smooth = smooth.split ()

if smooth [0] == "median":

if len(smooth) == 1:

rad = 1

else:

90 rad = int(smooth [1])

image = ndimage.filters.median_filter(image ,footprint =

↪→ morphology.ball(rad))

elif smooth [0] == "maximum":

if len(smooth) == 1:

rad = 1

95 else:

rad = int(smooth [1])

image = ndimage.filters.maximum_filter(image ,footprint =

↪→ morphology.ball(rad))

elif smooth [0] == "minimum":

if len(smooth) == 1:

100 rad = 1



A.3 Image Processing 128

else:

rad = int(smooth [1])

image = ndimage.filters.minimum_filter(image ,footprint =

↪→ morphology.ball(rad))

elif smooth [0] == "gaussian":

105 if len(smooth) == 2:

sigma = float(smooth [1])

elif len(smooth) == 4:

sigma= [float(smooth[i+1]) for i in range (3)]

else:

110 sigma = 1.0

image = ndimage.filters.gaussian_filter(image ,sigma)

return image

#

↪→ --------------------------------------------------------------------

↪→
115 ’’’

FUNC: cubifyvoxels

PURPOSE: Uses given voxel scaling and tricubic interpolation to

↪→ convert voxel sizes to cubes

’’’

def cubifyvoxels(image ,voxelscale):

120 vox = min(voxelscale)

zoomimg = ndimage.interpolation.zoom(image ,[v/vox for v in

↪→ voxelscale ])

return zoomimg

#

↪→ --------------------------------------------------------------------

↪→
’’’

125 FUNC: thresholding

PURPOSE: calculates a suitable threshold and returns a binary 3D

↪→ image

INPUT: image [np.ndarray] - the image of interest

threshold [str or int] - SEE: threshold in EllipseFit

OUTPUT: binimg - binary thresholded image

130 threshold - calculated threshold

NOTES: Currently uses threshold finding methods available through

↪→ skimage. May add more methods later.

’’’

def thresholding(image , threshold ,minsize = 10,quiet = False):

if isinstance(threshold ,int) or isinstance(threshold ,float):

135 thresh = threshold

elif isinstance(threshold ,str):



A.3 Image Processing 129

# Assume its Ok to use the same threshold for each layer.

parsestr = threshold.split(" ")

parsestr = [i.lower () for i in parsestr]

140 if "otsu" in parsestr:

if "local" in parsestr:

ind = np.argmax ([np.mean(i) for i in image])

if len(parsetr) > 1:

radius = int(parsestr [2])

145 else:

radius = 20

mask = morphology.disk(radius)

thresh = filters.rank.otsu(image[0],mask)

return thresh , 0

150 else:

thresh = filters.threshold_otsu(image)

if "li" in parsestr:

thresh = filters.threshold_li(image)

if "yen" in parsestr:

155 thresh = filters.threshold_yen(image)

threshinds = image <thresh

binimg = np.ones(image.shape)

binimg[threshinds] = 0

return binimg , thresh
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Simulation System Generation

B.1 Geodesic Generation

Python implementation of Nick Teanby’s geodesic spherical grid generation algorithm

[32]. This is used to generate spherical colloidal particles for our simulations.

1 # generates a geodesic grid

# implementation of N.A. Teanby ’s algorithm

import numpy as np

import numpy.linalg as la

6 class geodesic:

tol = 1E-3

phi = 2*np.cos(np.pi/5)

# Coordinates of vertices of original Icosahedron

icos = np.array ([[0,phi ,1],[0,-phi ,1],[0,phi ,-1],[0,-phi ,-1],

11 [1,0,phi],[-1,0,phi],[1,0,-phi],[-1,0,-phi],

[phi ,1,0],[-phi ,1,0],[phi ,-1,0],[-phi ,-1,0]]) /(1+ phi **2)

↪→ **(0.5)

icostriangles = np.array ([[ icos[0],icos[2],icos [8]],

[icos[0],icos[2],icos [9]],

[icos[0],icos[4],icos [5]],

16 [icos[0],icos[4],icos [8]],

[icos[0],icos[5],icos [9]],

[icos[1],icos[3],icos [10]] ,

[icos[1],icos[3],icos [11]] ,

[icos[1],icos[4],icos [5]],

21 [icos[1],icos[4],icos [10]] ,

[icos[1],icos[5],icos [11]] ,



B.1 Geodesic Generation 131

[icos[2],icos[6],icos [7]],

[icos[2],icos[6],icos [8]],

[icos[2],icos[7],icos [9]],

26 [icos[3],icos[6],icos [7]],

[icos[3],icos[6],icos [10]] ,

[icos[3],icos[7],icos [11]] ,

[icos[4],icos[8],icos [10]] ,

[icos[5],icos[9],icos [11]] ,

31 [icos[6],icos[8],icos [10]] ,

[icos[7],icos[9],icos [11]]])

def __init__(self):

# initializes points and triangles

36 self.points = self.icos

self.triangles = self.icostriangles

def trianglediv(self ,t,l):

# Finds new triangle vertices

newp = [(t[0]+t[1])/la.norm(t[0]+t[1]),

41 (t[2]+t[0])/la.norm(t[2]+t[0]),

(t[1]+t[2])/la.norm(t[1]+t[2])]

# Adds points to new

addpoints = np.array(newp)

46 keepflag = [1,1,1]

for p in self.points:

for n in range(len(addpoints)):

if la.norm(addpoints[n]-p) < self.tol:

keepflag[n] = 0

51 addpoints = addpoints[np.where(keepflag)]

if len(addpoints > 0): self.points = np.append(self.points ,np.

↪→ array(addpoints),axis =0)

if l > 1:

self.trianglediv ([t[0],newp[0],newp [1]],l-1)

self.trianglediv ([t[1],newp[0],newp [2]],l-1)

56 self.trianglediv ([t[2],newp[1],newp [2]],l-1)

def geodesicgen(self ,radius ,level ,cent =[0,0,0]):

print "Generating a Geodesic Grid with ", 2+10*4** level ," points

↪→ ."

for t in self.triangles:

61 self.trianglediv(t,level)

self.points = self.points*radius+cent
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B.2 Rod Particle Generation

Generates rod colloid surface interaction points.

import geodesicgen

import numpy as np

3 import numpy.linalg as la

def genrod(rad ,length ,level):

# Generate Geodesic for end caps

g = geodesicgen.geodesic ()

8 g.geodesicgen(rad ,level)

circlepnts= np.linspace (0,2*np.pi,round (2*np.pi*rad*2))

rr ,cc = np.cos(circlepnts)*rad ,np.sin(circlepnts)*rad

cylinder = []

13 count = 0

for i in np.arange(-length /2+rad ,length/2-rad +0.1 ,1/2.):

for j in range(len(rr)):

cylinder.append ([rr[j],cc[j],i])

#cylinder.append ([rr[j]*(-1)**( count %2),cc[j]*(-1)**( count %2),i

↪→ ])

18 count +=1

cylinder = np.array(cylinder)

topcap = g.points[np.where(g.points [:,2]>=0)]+[0,0, length/2-rad]

botcap = g.points[np.where(g.points [:,2]<=0)]+[0,0,- length /2+ rad]

23 print len(topcap),len(topcap)

return np.concatenate ((cylinder ,topcap ,botcap),axis =0)

B.3 Simulation System Generation

Sample code used to generate the initial .xml file for a 5 vertical rod DPD HOOMD-

Blue simulation.

import numpy as np
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import genrod

from numpy import random

# Generated rotation matrix from given lists of theta and phi

5 # Where theta is the rotation from the xy plane about the x axis and

# phi is the rotation about the z-axis.

def get_rotmat(THETA ,PHI ,num=1):

rotmat = []

if num == 1:

10 if not isinstance(THETA ,(int ,float ,long)):

THETA = THETA [0]

if not isinstance(PHI ,(int ,float ,long)):

PHI = PHI[0]

cosph = m.cos(PHI)

15 sinph = m.sin(PHI)

costh = m.cos(THETA)

sinth = m.sin(THETA)

return [np.array ([[ cosph*costh ,-1*sinph ,cosph*sinth],

20 [sinph*costh ,cosph ,sinph*sinth],

[-1*sinth ,0,costh ]])]

else:

for i in range(num):

cosph = m.cos(PHI[i])

25 sinph = m.sin(PHI[i])

costh = m.cos(THETA[i])

sinth = m.sin(THETA[i])

rotmat.append(np.array ([[ cosph*costh ,-1*sinph ,cosph*sinth],

[sinph*costh ,cosph ,sinph*sinth],

30 [-1*sinth ,0,costh ]]))

return rotmat

#-----

def config(Lx = 60,Ly = 60,Lz = 30,length = 9.,rad=2., level=2,theta

↪→ =0,phi=0,rodmass =500.0):

nrod = 5

35 pos = np.array ([[0,12,0],[0,6,0],[0,0,0],[0,-6,0],[0,-12,0]])

rotmat = get_rotmat(theta ,phi)

NLJ = 3*(length -2*rad)

L = length -2*rad

40 L,L2,L3 =L,L**2, L**3

R,R2,R3,R4 = rad , rad**2, rad**3, rad **4

# Adjust random number counter to account for empty space left

↪→ around colloids/walls

V1 = nrod*np.pi*R3 /3+2*np.pi*R*(L-2*R)
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45 V2 = nrod*np.pi*(R+1.2) **2/3+2* np.pi*(R+0.7)*(L-2*R)

V3 = 2*Lx*Ly

V = Lx*Ly*Lz

nrand = int(3*V**2/(V-V2+V1-V3))

50 # Generate central LJ point and surface interaction point

↪→ coordinates

LJpnts = np.array ([np.zeros(NLJ),np.zeros(NLJ),np.linspace(-length

↪→ /2+rad ,length/2-rad ,NLJ)]).T

g = genrod.genrod(rad ,length ,level)

LJpnts = np.append(LJpnts ,[[0,0,0]], axis =0)

55 if rodmass is None:

rodmass = V1*3/ nrod

ngeo = 2+10*4** level +16

# Calculate masses of surface points

60 H = length - 2*rad

mhemi = (rodmass *(3/20.) *(15*H**3+104*H**2*R+180*H*R**2+96*R**3)

↪→ /((3*H+4*R)*(7*H**2+18*H*R+12*R**2)))

capdens = 2* mhemi/ngeo

mcyl = (rodmass *(3/10.)*H*(25*H**2+58*H*R+36*R**2) /((3*H+4*R)*(7*H

↪→ **2+18*H*R+12*R**2)))

cyldens = mcyl/(len(g[:,0])-ngeo)

65 centmass = rodmass - mcyl - mhemi *2

# Rotate colloid

for i in range(len(g)):

g[i] = rotmat [0]. dot(g[i])

70 for i in range(len(LJpnts)):

LJpnts[i] = rotmat [0]. dot(LJpnts[i])

n = len(g[: ,0])

nlj = len(LJpnts [:,0])

75 print n,nlj

#-----

# Write Wrapping

f = open("init.xml","w")

f.write(" <?xml version =\"1.0\" encoding =\"UTF -8\"? > \n"+

80 "<hoomd_xml > \n"+

"<configuration time_step =\"0\" >\n")

# box size

f.write("<box Lx=\""+str(Lx)+"\" Ly=\""+str(Ly)+"\" Lz=\""+str(Lz)

↪→ +"\"/>\n")
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85

# point positions

f.write("<position >\n")

for i in range(nrod):

for p1 in g:

90 p = p1+pos[i,:]

f.write(str(p[0])+" "+str(p[1])+" "+str(p[2])+"\n")

for p1 in LJpnts:

p = p1+pos[i,:]

f.write(str(p[0])+" "+str(p[1])+" "+str(p[2])+"\n")

95 for i in range(nrand):

p = random.rand (3)*[Lx,Ly,Lz]-[Lx/2.,Ly/2.,Lz/2.]

flag1 = True

for j in range(nrod):

if np.min(np.linalg.norm(p-LJpnts -pos[j,:],axis =1)) < rad +1.2

↪→ or p[2] <-Lz/2.+1 or p[2] > Lz/2. -1:

100 flag1 = False

if flag1: f.write(str(p[0])+" "+str(p[1])+" "+str(p[2])+"\n")

else: nrand -=1

f.write(" </position >\n")

105 # Define particle type

f.write("<type >\n")

for j in range(nrod):

for i in range(n):

f.write("C\n")

110 for i in range(nlj):

f.write("CLJ\n")

for i in range(nrand):

f.write("F\n")

f.write(" </type >\n")

115

# Define Particle Diameter

f.write("<diameter >\n")

for j in range(nrod):

for i in range(n):

120 f.write("0.0\n")

for i in range(nlj):

f.write(str(R*2)+"\n")

for i in range(nrand):

f.write("0.0\n")

125 f.write(" </diameter >\n")

# Define Particle body

f.write("<body >\n")



B.3 Simulation System Generation 136

for j in range(nrod):

130 for i in range(n+nlj):

f.write(str(j)+"\n")

for i in range(nrand):

f.write(" -1\n")

f.write(" </body >\n")

135

# Define Particle mass

f.write("<mass >\n")

for j in range(nrod):

for i in range(n-ngeo):

140 f.write(str(cyldens)+"\n")

for i in range(ngeo):

f.write(str(capdens)+’\n’)

for i in range(nlj -1):

f.write("0.0\n")

145 f.write(str(centmass)+"\n")

for i in range(nrand):

f.write("1.0\n")

f.write(" </mass >\n")

150 # Write Wall

f.write(’<wall >\n’)

f.write(’<coord ox =\"0.0\" oy =\"0.0\" oz=\"-’+str(Lz/2.)+’\" nx

↪→ =\"0.0\" ny =\"0.0\" nz =\"1.0\"/ >\n’)

f.write(’<coord ox =\"0.0\" oy =\"0.0\" oz=\"’+str(Lz/2.)+’\" nx

↪→ =\"0.0\" ny =\"0.0\" nz =\"1.0\"/ >\n’)

f.write(’</wall >\n’)

155

# Write Wrapping

f.write(" </configuration >\n"+

" </hoomd_xml >\n")

f.close ()



Appendix C

HOOMD-Blue Simulation Code

Sample code used to run a HOOMD-Blue DPD colloid sedimentation simulation. This

particular code is used for a simulation of 5 rod particles. Note: We first generate the

initial .xml files (“init.xml”), then run the HOOMD code. To visualize the simulation

results using vmd, one needs to generate a separate initial .xml file with only the points

in the colloids and using the command vmd -hoomd rodpoints.xml rodpoints.dcd

1 from hoomd_script import *

from numpy import random

import numpy as np

import os

6 # system settings

Lx, Ly, Lz = 40,90,60

length = 12.

rad = 2.

level = 2

11

theta = np.pi/2

t_warmup = 5E3

t_run = 195E3

16 t_step = 0.005

n = int(t_run/t_step)

nrod = 5

T = 0.2

forcez = -0.04*163/628

21
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dirname = ’mar10_16_5rod_T ’+str(T)

os.chdir(dirname)

# Open output .csv file and write column headers

26 flist = []

for k in range(nrod):

flist.append(open(’colloid_data_rod ’+str(k)+’.csv’,’w’))

flist[k]. write("time ,num ,mass ,MIx ,MIy ,MIz ,")

31 flist[k]. write("COMx ,COMy ,COMz ,velx ,vely ,velz ,orientRe ,orientIm_i ,

↪→ orientIm_j ,orientIm_k ,")

flist[k]. write("AMx ,AMy ,AMz ,forcex ,forcey ,forcez ,torquex ,torquey ,

↪→ torquez\n")

f1 = open(’fluiddata.csv’,’w’)

f1.write(’fvelx ,fvely ,fvelz\n’)

def writebody(t):

36 # Writes information on the rod to a .csv file

if t >0:

for k in range(nrod):

col = system.bodies[k]

flist[k].write(str(t)+", "+str(col.num_particles)+", "+str(col

↪→ .mass)+", "+str(col.moment_inertia [0])+", "+str(col.

↪→ moment_inertia [1])+","+str(col.moment_inertia [2])+", ")

41 flist[k].write(str(col.COM [0])+", "+str(col.COM [1])+", "+str(

↪→ col.COM [2])+", "+str(col.velocity [0])+", "+str(col.

↪→ velocity [1])+", "+str(col.velocity [2])+","+str(col.

↪→ orientation [0])+", "+str(col.orientation [1])+", "+str(

↪→ col.orientation [2])+", "+str(col.orientation [3])+", ")

flist[k].write(str(col.angular_momentum [0])+", "+str(col.

↪→ angular_momentum [1])+", "+str(col.angular_momentum [2])+"

↪→ , "+str(col.net_force [0])+","+str(col.net_force [1])+", "

↪→ +str(col.net_force [2])+", "+str(col.net_torque [0])+", "+

↪→ str(col.net_torque [1])+","+str(col.net_torque [2])+"\n")

del col

ss = system.take_snapshot ()

46 fvelmean = np.mean(ss.particles.velocity ,axis =0)

f1.write(str(fvelmean [0])+’,’+str(fvelmean [1])+’,’+str(fvelmean

↪→ [2])+’\n’)

del ss

# read in the initial configuration

51

system = init.read_xml(filename="init.xml",restart=’restart.xml’)
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dpd = pair.dpd(r_cut = 1.0,T=T,seed=random.randint (0 ,100000))

dpd.pair_coeff.set(’F’, ’F’, A=0.0, gamma = 5.0)

56 dpd.pair_coeff.set(’F’, ’C’, A=0.0, gamma = 10.0)

dpd.pair_coeff.set(’C’, ’C’, A=0.0, gamma = 0)

dpd.pair_coeff.set(’C’, ’CLJ’, A=0.0, gamma = 0)

dpd.pair_coeff.set(’CLJ’, ’CLJ’, A=0.0, gamma = 0)

dpd.pair_coeff.set(’F’, ’CLJ’, A=0.0, gamma = 0)

61

# Define lennard jones force between fluid and central particles

lj = pair.slj(r_cut =2**(1./6))

lj.pair_coeff.set(’F’, ’CLJ’,epsilon = 1.0, sigma =1.0)

lj.pair_coeff.set(’F’, ’C’,epsilon = 0.0, sigma =0.0)

66 lj.pair_coeff.set(’C’, ’C’,epsilon = 0.0, sigma =0.0)

lj.pair_coeff.set(’CLJ’, ’C’,epsilon = 0.0, sigma =0.0)

lj.pair_coeff.set(’CLJ’, ’CLJ’,epsilon = 1.0, sigma =1.0)

lj.pair_coeff.set(’F’, ’F’,epsilon = 0.0, sigma =0.0)

71 integrate_mode = integrate.mode_standard(dt=t_step)

non_rigid = integrate.nve(group=group.nonrigid ())

dump.xml(filename=’restart.xml’,restart=True ,period = 1000,all=True)

dump.dcd(filename=’rodpoints.dcd’,period =500, group=group.rigid())

76 analyze.log(filename=’thermo.log’,quantities =[’temperature ’,’

↪→ pressure ’],period =500)

# Relaxation time

run(t_warmup ,callback = writebody ,callback_period =20)

81 # Start integration for colloid particles

rigid = integrate.nve_rigid(group=group.rigid ())

force.constant(fx=0.0,fy=0.0,fz=forcez ,group = group.rigid ())

# apply force to fluid

86 ffluid = -1*( forcez /628)*nrod/(len(system.particles) -628* nrod)

force.constant(fx=0.0,fy=0.0,fz=ffluid ,group = group.nonrigid ())

run(t_run ,callback = writebody ,callback_period =20)

for k in range(nrod):

91 flist[k].close ()

del flist

f1.close()

del lj , dpd , system , k,integrate_mode ,rigid ,non_rigid

init.reset()

96 os.chdir(’..’)


